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Shear strength of discontinuities 

Introduction 

All rock masses contain discontinuities such as bedding planes, joints, shear zones and 
faults. At shallow depth, where stresses are low, failure of the intact rock material is 
minimal and the behaviour of the rock mass is controlled by sliding on the discontinuities.  
In order to analyse the stability of this system of individual rock blocks, it is necessary to 
understand the factors that control the shear strength of the discontinuities which separate 
the blocks. These questions are addressed in the discussion that follows. 
 
Shear strength of planar surfaces 

Suppose that a number of samples of a rock are obtained for shear testing. Each sample 
contains a through-going bedding plane that is cemented; in other words, a tensile force 
would have to be applied to the two halves of the specimen in order to separate them. The 
bedding plane is absolutely planar, having no surface irregularities or undulations. As 
illustrated in Figure 1, in a shear test each specimen is subjected to a stress σn normal to 
the bedding plane, and the shear stress ±, required to cause a displacement G, is measured.  
 
The shear stress will increase rapidly until the peak strength is reached. This corresponds 
to the sum of the strength of the cementing material bonding the two halves of the bedding 
plane together and the frictional resistance of the matching surfaces. As the displacement 
continues, the shear stress will fall to some residual value that will then remain constant, 
even for large shear displacements. 
 
Plotting the peak and residual shear strengths for different normal stresses results in the 
two lines illustrated in Figure 1. For planar discontinuity surfaces the experimental points 
will generally fall along straight lines. The peak strength line has a slope of Φ and an 
intercept of c on the shear strength axis. The residual strength line has a slope of Φr. 
 
The relationship between the peak shear strength ±p and the normal stress σn can be 
represented by the Mohr-Coulomb equation: 
  

            (1) 
 

where  c is the cohesive strength of the cemented surface and      
              Φ is the angle of friction. 
 

± σ Φp nc= + tantau sub p = c + sigma sub n tan 
phi
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Figure 1: Shear testing of discontinuities 

       
In the case of the residual strength, the cohesion c has dropped to zero and the relationship 
between Φr and σn can be represented by:  

            (2)  
where  Φr is the residual angle of friction. 
 
This example has been discussed in order to illustrate the physical meaning of the term 
cohesion, a soil mechanics term, which has been adopted by the rock mechanics 
community. In shear tests on soils, the stress levels are generally an order of magnitude 
lower than those involved in rock testing and the cohesive strength of a soil is a result of 
the adhesion of the soil particles. In rock mechanics, true cohesion occurs when cemented 
surfaces are sheared. However, in many practical applications, the term cohesion is used 
for convenience and it refers to a mathematical quantity related to surface roughness, as 
discussed in a later section. Cohesion is simply the intercept on the ± axis at zero normal 
stress. 
 
The basic friction angle Φb is a quantity that is fundamental to the understanding of the 
shear strength of discontinuity surfaces. This is approximately equal to the residual friction 
angle Φr but it is generally measured by testing sawn or ground rock surfaces. These tests, 
which can be carried out on surfaces as small as 50 mm u 50 mm, will produce a straight 
line plot defined by the equation: 
 

            (3)  
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Figure 2: Diagrammatic section through shear machine used by Hencher and Richards (1982). 

 

 
 

Figure 3: Shear machine of the type used by Hencher and Richards (1982) for 
measurement of the shear strength of sheet joints in Hong Kong granite. 
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A typical shear testing machine, which can be used to determine the basic friction angle Φb 
is illustrated in Figures 2 and 3. This is a very simple machine and the use of a mechanical 
lever arm ensures that the normal load on the specimen remains constant throughout the 
test. This is an important practical consideration since it is difficult to maintain a constant 
normal load in hydraulically or pneumatically controlled systems and this makes it difficult 
to interpret test data. Note that it is important that, in setting up the specimen, great care 
has to be taken to ensure that the shear surface is aligned accurately in order to avoid the 
need for an additional angle correction. 
 
Most shear strength determinations today are carried out by determining the basic friction 
angle, as described above, and then making corrections for surface roughness as discussed 
in the following sections of this chapter. In the past there was more emphasis on testing 
full scale discontinuity surfaces, either in the laboratory or in the field. There are a 
significant number of papers in the literature of the 1960s and 1970s describing large and 
elaborate in situ shear tests, many of which were carried out to determine the shear strength 
of weak layers in dam foundations. However, the high cost of these tests together with the 
difficulty of interpreting the results has resulted in a decline in the use of these large scale 
tests and they are seldom seen today.  
 
The author’s opinion is that it makes both economical and practical sense to carry out a 
number of small scale laboratory shear tests, using equipment such as that illustrated in 
Figures 2 and 3, to determine the basic friction angle. The roughness component which is 
then added to this basic friction angle to give the effective friction angle is a number which 
is site specific and scale dependent and is best obtained by visual estimates in the field. 
Practical techniques for making these roughness angle estimates are described on the 
following pages. 
 
Shear strength of rough surfaces 

A natural discontinuity surface in hard rock is never as smooth as a sawn or ground surface 
of the type used for determining the basic friction angle. The undulations and asperities on 
a natural joint surface have a significant influence on its shear behaviour. Generally, this 
surface roughness increases the shear strength of the surface, and this strength increase is 
extremely important in terms of the stability of excavations in rock. 
 
Patton (1966) demonstrated this influence by means of an experiment in which he carried out shear 
tests on 'saw-tooth' specimens such as the one illustrated in Figure 4. Shear displacement in these 
specimens occurs as a result of the surfaces moving up the inclined faces, causing dilation (an 
increase in volume) of the specimen.  
 
The shear strength of Patton's saw-tooth specimens can be represented by: 
 
           𝜏 =  𝜎𝑛 tan(𝜙𝑏 + 𝑖)                                                            (4)  
where  Φb is the basic friction angle of the surface and  
    i is the angle of the saw-tooth face. 
 

tau = sigma sub n tan (phi sub b + i)



Shear strength of rock discontinuities 

5 

 
 

Figure 4: Patton’s experiment on the shear strength of saw-tooth specimens. 
 
Barton’s estimate of shear strength  

Equation (4) is valid at low normal stresses where shear displacement is due to sliding 
along the inclined surfaces. At higher normal stresses, the strength of the intact material 
will be exceeded and the teeth will tend to break off, resulting in a shear strength behaviour 
which is more closely related to the intact material strength than to the frictional 
characteristics of the surfaces. 
 
While Patton’s approach has the merit of being very simple, it does not reflect the reality that 
changes in shear strength with increasing normal stress are gradual rather than abrupt. Barton 
(1973, 1976) studied the behaviour of natural rock joints and proposed that equation (4) could be 
re-written as: 
 

        (5) 

 
where  JRC is the joint roughness coefficient and 
   JCS is the joint wall compressive strength . 
 
     Barton developed his first non-linear strength criterion for rock joints (using the basic friction 
angle Φb) from analysis of joint strength data reported in the literature. Barton and Choubey (1977), 
on the basis of their direct shear test results for 130 samples of variably weathered rock 
joints, revised this equation to  

        (6) 

Where  Φr is the residual friction angle 
Barton and Choubey suggest that Φr can be estimated from 
 

          (7) 
 
where r is the Schmidt rebound number wet and weathered fracture surfaces and R is the Schmidt 
rebound number on dry unweathered sawn surfaces. 
 
Equations 6 and 7 have become part of the Barton-Bandis criterion for rock joint strength and 
deformability (Barton and Bandis, 1990). 
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Field estimates of JRC 

The joint roughness coefficient JRC is a number that can be estimated by comparing the 
appearance of a discontinuity surface with standard profiles published by Barton and 
others. One of the most useful of these profile sets was published by Barton and Choubey 
(1977) and is reproduced in Figure 5.  
 
The appearance of the discontinuity surface is compared visually with the profiles shown 
and the JRC value corresponding to the profile which most closely matches that of the 
discontinuity surface is chosen. In the case of small scale laboratory specimens, the scale 
of the surface roughness will be approximately the same as that of the profiles illustrated.  
However, in the field the length of the surface of interest may be several metres or even 
tens of metres and the JRC value must be estimated for the full scale surface.  
 
An alternative method for estimating JRC is presented in Figure 6. 
 
Field estimates of JCS 

Suggested methods for estimating the joint wall compressive strength were published by 
the ISRM (1978). The use of the Schmidt rebound hammer for estimating joint wall 
compressive strength was proposed by Deere and Miller (1966), as illustrated in Figure 7. 
 
Influence of scale on JRC and JCS 

On the basis of extensive testing of joints, joint replicas, and a review of literature, Barton 
and Bandis (1982) proposed the scale corrections for JRC defined by the following 
relationship: 
 

               (8) 

 
where JRCo, and Lo (length) refer to 100 mm laboratory scale samples and JRCn, and Ln 
refer to in situ block sizes. 

Because of the greater possibility of weaknesses in a large surface, it is likely that the 
average joint wall compressive strength (JCS) decreases with increasing scale. Barton and 
Bandis (1982) proposed the scale corrections for JCS defined by the following relationship: 

 

                (9) 

 
where JCSo and Lo (length) refer to 100 mm laboratory scale samples and JCSn and Ln refer 
to in situ block sizes. 
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Figure 5: Roughness profiles and corresponding JRC values (After Barton and Choubey 1977). 
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Figure 6: Alternative method for estimating JRC from measurements of surface 
roughness amplitude from a straight edge (Barton 1982). 
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Figure 7: Estimate of joint wall compressive strength from Schmidt hardness. 
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Shear strength of filled discontinuities 

The discussion presented in the previous sections has dealt with the shear strength of 
discontinuities in which rock wall contact occurs over the entire length of the surface under 
consideration. This shear strength can be reduced drastically when part or all of the surface 
is not in intimate contact, but covered by soft filling material such as clay gouge. For planar 
surfaces, such as bedding planes in sedimentary rock, a thin clay coating will result in a 
significant shear strength reduction. For a rough or undulating joint, the filling thickness 
has to be greater than the amplitude of the undulations before the shear strength is reduced 
to that of the filling material. 
 
A comprehensive review of the shear strength of filled discontinuities was prepared by 
Barton (1974) and a summary of the shear strengths of typical discontinuity fillings, based 
on Barton's review, is given in Table 1. 
 
Where a significant thickness of clay or gouge fillings occurs in rock masses and where 
the shear strength of the filled discontinuities is likely to play an important role in the 
stability of the rock mass, it is strongly recommended that samples of the filling be sent to 
a soil mechanics laboratory for testing. 
 
 Influence of water pressure 

When water pressure is present in a rock mass, the surfaces of the discontinuities are forced 
apart and the normal stress σn is reduced. Under steady state conditions, where there is 
sufficient time for the water pressures in the rock mass to reach equilibrium, the reduced 
normal stress is defined by σn' = (σn - u), where u is the water pressure. The reduced normal 
stress σn' is usually called the effective normal stress, and it can be used in place of the 
normal stress term σn in all of the equations presented above. 

 
Instantaneous cohesion and friction 

Due to the historical development of the subject of rock mechanics, many of the analyses, 
used to calculate factors of safety against sliding, are expressed in terms of the Mohr-
Coulomb cohesion (c) and friction angle (Φ), defined in Equation 1. Since the 1970s it has 
been recognised that the relationship between shear strength and normal stress is more 
accurately represented by a non-linear relationship such as that proposed by Barton and 
Bandis (1990). However, because this relationship (e.g. is not expressed in terms of c and 
Φ, it is necessary to devise some means for estimating the equivalent cohesive strengths 
and angles of friction from relationships such as those proposed by Barton and Bandis. 
 
Figure 8 gives definitions of the instantaneous cohesion ci and the instantaneous friction 
angle Φi for a normal stress of σn. These quantities are given by the intercept and the 
inclination, respectively, of the tangent to the non-linear relationship between shear 
strength and normal stress. These quantities may be used for stability analyses in which the 
Mohr-Coulomb failure criterion (Equation 1) is applied, provided that the normal stress σn 
is reasonably close to the value used to define the tangent point. 
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Table 1: Shear strength of filled discontinuities and filling materials (After Barton 1974) 
 

Rock 
 

Description 
 

Peak 
c' (MPa) 

Peak 
Φ° 

Residual 
c' (MPa) 

Residual 
Φ° 

 
Basalt 

 
Clayey basaltic breccia, wide variation 
from clay to basalt content 

 
0.24 

 
42 

  

 
Bentonite 

 
Bentonite seam in chalk 
Thin layers 
Triaxial tests 

 
0.015 

0.09-0.12 
0.06-0.1 

 
7.5 

12-17 
9-13 

  

 
Bentonitic shale 
 

 
Triaxial tests 
Direct shear tests 

 
0-0.27 

 
8.5-29 

 
 

0.03 

 
 

8.5 
 
Clays 
 

 
Over-consolidated, slips, joints and minor 
shears 

 
0-0.18 

 
12-18.5 

 

 
0-0.003 

 
10.5-16 

 
Clay shale 
 

 
Triaxial tests 
Stratification surfaces 

 
0.06 

 

 
32 

 
 

0 

 
 

19-25 
 
Coal measure rocks 

 
Clay mylonite seams, 10 to 25 mm  

 
0.012 

 
16 

 
0 

 
11-11.5 

 
Dolomite 

 
Altered shale bed, r 150 mm thick 

 
0.04 

 
1(5) 

 
0.02 

 
17 

 
Diorite, granodiorite 
and porphyry 

 
Clay gouge (2% clay, PI = 17%) 

 
0 

 
26.5 

  

 
Granite 

 
Clay filled faults 
Sandy loam fault filling 
Tectonic shear zone, schistose and broken 
granites, disintegrated rock and gouge 

 
0-0.1 
0.05 

 
0.24 

 
24-45 

40 
 

42 

  

 
Greywacke 

 
1-2 mm clay in bedding planes 

   
0 

 
21 

 
Limestone 

 
6 mm clay layer 
10-20 mm clay fillings 
<1 mm clay filling 

 
 

0.1 
0.05-0.2 

 
 

13-14 
17-21 

 
0 
 

 
13 

 
Limestone, marl and 
lignites 

 
Interbedded lignite layers 
Lignite/marl contact 

 
0.08 
0.1 

 
38 
10 

  

 
Limestone 

 
Marlaceous joints, 20 mm thick 

 
0 

 
25 

 
0 

 
15-24 

 
Lignite 

 
Layer between lignite and clay 

 
0.014-.03 

 
15-17.5 

  

 
Montmorillonite 
Bentonite clay 

 
80 mm seams of bentonite (mont- 
morillonite) clay in chalk 

 
0.36 

0.016-.02 

 
14 

7.5-11.5 

 
0.08 

 
11 

 
Schists, quartzites 
and siliceous schists 

 
100-15- mm thick clay filling 
Stratification with thin clay 
Stratification with thick clay 

 
0.03-0.08 
0.61-0.74 

0.38 

 
32 
41 
31 

  

 
Slates 

 
Finely laminated and altered 

 
0.05 

 
33 

  

 
Quartz / kaolin / 
pyrolusite 
 

 
Remoulded triaxial tests 

 
0.042-.09 

 
36-38 
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Figure 8: Definition of instantaneous cohesion  and instantaneous friction angle  for a non-
linear failure criterion. 
 
 
Note that equation 6 is not valid for σn = 0 and it ceases to have any practical meaning for 

. This limit can be used to determine a minimum value for σn. 
An upper limit for σn is given by σn = JCS. 
 
In a typical practical application, a spreadsheet program can be used to solve Equation 6 
and to calculate the instantaneous cohesion and friction values for a range of normal stress 
values. A portion of such a spreadsheet is illustrated in Figure 9. In this spreadsheet the 
instantaneous friction angle Φi, for a normal stress of σn, has been calculated from the 
relationship 

                                            (10) 

 

            (11) 

 
The instantaneous cohesion is calculated from: 
 

                                                              (12) 
 
In choosing the values of ci and Φi for use in a particular application, the average normal stress σn 
acting on the discontinuity planes should be estimated and used to determine the appropriate row 
in the spreadsheet. For many practical problems in the field, a single average value of σn will 
suffice but, where critical stability problems are being considered, this selection should be made 
for each important discontinuity surface. 
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Figure 9 Printout of spreadsheet cells and formulae used to calculate shear strength, 
instantaneous friction angle and instantaneous cohesion for a range of normal stresses. 
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