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Summary

This work proposes hybrid simulated annealing for the global optimization of the critical

failure surface in slope stability analysis. The aim of slope stability analysis is to find the

critical surface along which failure of a soil or rock mass is likely to occur. This is achieved

by minimizing a cost function known as the factor of safety F(v), for a position parameter

v. This position parameter can be either a circular surface (a problem with three control

variables) or a general surface represented by vertices (a problem with n control variables).

In the latter case, n can be very high, and the presence of multi-minima makes standard

optimization highly inefficient.

Simulated annealing (SA) is a method of global optimization, and was first developed

for solving combinatorial systems such as the traveling salesman problem and chip placement.

The original SA has been applied recently to slope stability with varying degrees of success.

A major issue with SA is the large number of iterations required and asymptotic convergence.

The current work proposes a hybrid simulated annealing (HSA) algorithm for the

search of general failure surfaces. The method couples a Very Fast Simulated Annealing

algorithm (VFSA) with an efficient searching technique which we will refer to as Local Monte-

Carlo (LMC). The method was implemented in C++ and incorporated into the SLIDE 5

software developed by Rocscience. The VFSA is a state-of-art SA algorithm, relying on a

probabilistic random walk and an exponentially decreasing schedule. The LMC relies on

local exploration of each vertex, with a step-reduction mechanism as the search approaches

the global minimum. Dynamic bounds for each control variable were applied.

HSA was found to be far superior to path-search for all verification and customer cases

tested. A comparison with other global optimization methods demonstrates that HSA has

a higher precision and employs significantly less iterations to find the global minimum. The

hybrid algorithm couples the robustness of a global optimization algorithm with the speed

and refinement of a local optimizer. Recommendations for future work include the use of

non-linear interpolation between vertices, and parallel processing to increase computation

speed.
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1 Introduction

The analysis of the stability of slopes is essential to modern society, as it examines the safety

of major human constructions such as dams, embankments and structures built along the

sides of slope. At the core of slope analysis lies the challenge of finding the geological surface

with the greatest instability or representing the most probable region in which the mass of

soil or rock will slide. The potential instability is estimated by the factor of safety F , and

critical failure is the surface with the lowest F .

The problem then becomes finding the surface with position vector v(x1, x2, x3, . . . , xn)

which minimizes the safety function F . For examples, the parameters x1 to xn can be

the centre and radius of a circular surface or the vertices of a non-circular surface. The

challenge lies in that the cost function is often highly multi-modal, and the function domain

can be strongly discontinuous. Most optimization methods, especially gradient-based, tend

to get trapped in local minima. Simulated annealing (SA), on the other hand, is a global

optimization method that allows up-hill as well as down-hill moves, being capable of escaping

from local minima.

In the current section, some basic slope stability concepts are briefly reviewed. The

original simulated annealing is then presented, its major drawbacks are discussed, as well

as factors that led to the development of faster annealing algorithms. Finally, the inherent

weaknesses of global search are discussed and the use of hybrid optimization is proposed.

1.1 Slope Stability Concepts

The factor of safety F is defined as the ratio of the total shear strength (S) available along

a slip surface to the shear stress (Sm) that is actually mobilized along the surface due to

actions of the weight of the soil mass and possible external loads:

F =
S

Sm

. (1)

Many methods were developed to compute factor of safety, either from moment or

force equilibrium, most of them pertaining to the well established class of limit equilibrium

methods (LEM). Even though LEMs do not consider stress-strain relationships, they provide
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an accurate estimate of the factor of safety without the need for extensive knowledge of initial

conditions (Cheng et al., 2007a).

The LEMs generally result in a problem formulation which is statically indeterminate.

To obtain a solution, different assumptions can be made on the distribution of internal

forces. Thus, the quality of the solution is closely tied with the reality of these approxi-

mations. Other techniques exist for computing factors of safety such as strength reduction

methods (SRM). These methods do not require assumptions on inter-slice shear force distri-

butions and employ finite element techniques (Abramson et al., 2002). However, the SRM

have disadvantages which include long solution time and the need for detailed knowledge of

boundary conditions, the latter being unknown in many cases.

The flexibility and speed of LEMs lie in the method of slices. The earth mass within

the trial surface is divided into vertical slices and at each slice, force and moment equilibrium

resultants must be zero for static equilibrium (Abramson et al., 2002). The factor of safety

at each slice is taken as the factor of safety F of the slope. It results in a non-linear equation

with F as a root, usually found through iterations. Often, the procedures for solving the

factor of safety equation do not converge (the solution “blows up”), due to inappropriate

force assumptions or negative friction values (Duncan and Wright, 2005).

1.2 The Method of Slices

The method of slices is used by most computer programs, as it can readily accommodate

complex slope geometries, variable soil conditions and the influence of external boundary

loads (Abramson et al., 2002). The method divides the slope geometry into n vertical slices,

creating 6n− 2 unknowns (Abramson et al., 2002), as summarized in Table 1.

A common assumption is that the normal force on the base of the slice acts at the

midpoint thus reducing the number of unknowns to 5n− 2. From moment, force and Mohr-

Coulomb relationships, only n − 2 assumptions are left to make the problem determinate

(Table 1). How these last degrees of freedom are handled differentiate the available methods

of analysis (Abramson et al., 2002). The most popular methods are reviewed below:
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Table 1: Required variables for safety factor analysis

Equations Condition

n Moment Equilibrium for each Slice

2n Force equilibrium in two directions for each slice

n Mohr-Coulomb relationship between shear strength and normal effective stress

4n Total Number of equations

Unknowns Variable

1 Factor of safety

n Normal force at base of each slice

n Location of normal force

n Shear force at base of each slice

n− 1 Interslice force

n− 1 Inclination of interslice force

n− 1 Location of interslice force (line of thrust)

6n− 2 Total number of unknowns

• Ordinary Method of Slices (OMS) — This method neglects all inter-slice forces, there-

fore relying on moment equilibrium alone. It is one of the simplest analysis procedures.

• Bishop’s Simplified Method — assumes that all inter-slice shear forces are zero, reduc-

ing the number of unknowns by n− 1. This leaves 4n− 1 degrees of freedom, leaving

the solution overdetermined as horizontal force equilibrium will not be satisfied for one

slice.

• Janbu’s Simplified Method — Janbu also assumes zero inter-slice shear forces. Simi-

lar to Bishop’s method, the solution is over-determined and does not satisfy moment

equilibrium completely. Janbu presents a correction factor f0 to account for this inad-

equacy.

• Spencer’s Method — Spencer proposes a method that rigorously satisfies static equi-

librium by assuming that resultant inter-slice forces have a constant, but unknown
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inclination. It requires an iterative method for both the factor of safety and the inter-

slice force inclination between the slices, matching the required 4n equations. It is

considered a complete procedure (i.e. force and moment equilibrium are satisfied for

all slices).

1.3 The Need for Global Optimization

For all LEMs presented above, the critical failure surface is generally found by trial and error.

Many search methods were developed (Greco, 1996, Malkawi et al., 2001), but in most cases a

good initial guess is needed, and the quality of results depends on the engineers’ experience.

The factor of safety function is often highly multimodal, and it is certainly non-smooth,

being regarded as an N−P complete problem (Cheng, 2007). This multi-modality generally

results from multi-layering of the soil or mineral lenses.

Therefore, finding the critical slip surface pertains to the field of global optimization.

Well-known deterministic methods such as the gradient or Newton’s method inherently per-

form local optimization (Polyak, 1987). Further, Newton’s method does not even distinguish

minima (or maxima) from saddle points (Polyak, 1987). A class of techniques that has been

relatively successful in global search is that of the stochastic methods. These methods are

particularly useful for slope stability, as they are generally robust and relatively insensitive

to problem type.

A promising start-up is simulated annealing (SA), a powerful stochastic method for

global optimization.

1.4 Simulated Annealing (SA)

Simulated annealing (SA) was developed in the early 80s (Kirkpatrick et al., 1983) for com-

binatorial optimization. It differs from other search methods as it allows downhill as well

as uphill moves, based on the underlying similarity between the physico-chemical process of

annealing and the minimization of a function (Kirkpatrick, 1984). The method soon became

as popular as the well-known genetic algorithms (GA), being used in various fields for im-

age and signal processing, biology, geophysical inversion (Pei, Louie, & Pullammanappallil,
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2007) and finance (Van Laarhoven & Aarts, 1987). Similarities between the two methods

were soon drawn, due to the “natural” basis of the algorithms (Davis, 1987).

In annealing, a material (i.e. metal) is heated until its molecules acquire sufficient

mobility (a melted state). Then, by decreasing the temperature slowly, the molecules undergo

various configuration changes, always seeking for a lower energy state. If the decrease is

sufficiently slow, a perfect crystalline solid will form, and the system will be at its minimum

energy state. If the temperature is decreased fast, as in quenching, the molecules will collapse

into an amorphous solid and have poor physical properties (its energy state will be at a “local

minimum”).

In statistical mechanics, the probability P of the atom existing at an energy state

E can be modeled by a Boltzmann distribution P (E) = exp (−E/T ). It is clear that the

higher the temperature T the greater the chance of an atom existing at a higher energy

state. This concept is implemented as a transition probability for the optimization through

the well-known Metropolis criterion (Metropolis et al., 1953).

Similarly for SA, let E1 be the energy of the system at configuration 1. To model the

probability of the system changing to state 2 (at an Energy E2), the Metropolis criterion

consists in the acceptance/rejection probability P (E) = exp (−E/T ). Simulated annealing

uses this criterion as the acceptance probability for a random move - let the function F (x)

be defined. For the move to be accepted from x1 to x2, a random number r with uniform

distribution between (0, 1) is generated and compared with P (dF ) = exp (−dF/T ). If r <

P (dF ), then the move is accepted. If higher, the move is rejected. It can be seen that if

dF < 0 (F2 < F1), the move will always be accepted as the move is clearly downhill.

It can be seen that at high temperatures, more uphill moves will be accepted. It is the

goal of simulated annealing to start the temperature T high enough so the search method

can sample every valley of the parameter space. A “melting criterion” was initially proposed

as a 0.8 ratio between accepted and rejected moves (Kirkpatrick, 1984). Then, by reducing

the temperature the search becomes more selective and less up-hill moves are accepted, until

at T = 0 only down-hill moves are accepted.

The algorithm was soon extended to continuous functions (Corana et al., 1987). The

position vector becomes then analogous to the molecular arrangement of a metal, and the cost
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function to the energy of the arrangement. The goal becomes to find the perfect arrangement

of atoms which will minimize the overall energy of a system, by performing random-walks

along the function domain.

In a more rigorous formulation, simulated annealing depends on three functions

(Van Laarhoven and Aarts, 1987, Yao, 1995). All of these three functions are dependent

on Tk, which denotes the temperature at the k − th annealing iteration:

1. A generation function GXY (Tk), which generates a state Y based on a state X at the

annealing temperature Tk.

2. An acceptance function AXY (Tk), which is the transition probability from one state to

another. This is determined by the Metropolis criterion.

3. An annealing schedule S(Tk), which determines the temperature reduction rule.

During the past two decades, intensive research has been invested in improving the

performance of the method by proposing more sophisticated functions for GXY (Tk) and

S(Tk), such that global convergence can still be guaranteed at fewer iterations and a higher

speed.

1.5 Improvements on Simulated Annealing

The original annealing has many issues, and is now considered in fact a simulated quenching

(SQ) algorithm as its convergence is not guaranteed for every case (Ingber, 1993). These

mainly refer to algorithms which use an exponentially decreasing schedule without an ade-

quate generation functon, such as:

Tk+1 = aTk, (2)

which fails to comply with the necessary convergence conditions. The constant a is a tem-

perature decreasing parameter between 0 and 1. However, this is not to say that quenching

methods are inefficient. In fact, for many specific problems in which the behavior of the

system is well-known, simulated quenching can be far superior and should therefore be used.

Adaptive step-size for the random-walk has been proven to increase performance (Corana

et al., 1987). By increasing the step-size if the search is going well (and vice-versa if badly),
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the ratio between accepted and rejected moves is kept close to 1:1. Even though sufficiency

conditions have not been proved for this algorithm, it was shown to be efficient in finding

global minima of very hard test functions, such as Rosenbrock valleys of up to 1020 local

minima.

The concept of using an adaptive step-size has been essential to the development of

better annealing algorithms. The Classical Simulated Annealing (CSA) was the first anneal-

ing algorithm with a rigorous mathematical proof for its global convergence (Geman and

Geman, 1984). It was proven to converge if a Gaussian distribution is used for GXY (TK),

coupled with an annealing schedule S(Tk) that decreases no faster than T = To/(log k).

The integer k is a counter for the external annealing loop, as will be detailed in the next

section. However, a logarithmic decreasing schedule is considered to be too slow, and for

many problems the number of iterations required is considered as “overkill” (Ingber, 1993).

An exponentially faster variant known as fast simulated annealing (FSA) was proposed

by Szu and Hartley (1987) which uses a Cauchy distribution as GXY (TK). It was heuristically

proven that if coupled with an annealing schedule T = T0/k, the method will converge

rapidly, due to its capabilities of performing longer jumps in the parameter space. Ingber

(1989), using a similar proof, proved the convergence of a schedule exponentially faster than

the fast annealing, namely T = T0/ exp k. This algorithm is commonly referred to as very

fast simulated annealing (VFSA).

Ingber (1989) also proposed a different generation temperature for each dimension, and

the re-annealing of temperature every couple of iterations. The combination of the VFSA

with a re-annealing is often referred to as adaptive simulated annealing (ASA) (Chen and

Luk, 1999, Ingber, 1993). It has been shown successful in fields such as signal processing

(Chen and Luk, 1999) as well as wavelet estimation in geophysics (Velis and Ulrych, 1996).

However, for highly dimensional problems such as slope stability analysis, the assumption of

different generation temperatures is theoretically valid but its proper control is practically

impossible due to frustration problems.
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1.6 The Need for Hybrid Optimization

The original simulated annealing, as proposed by Kirkpatrick et al. (1983), was applied by

Cheng (2007) to slope stability analysis with a fair amount of success. However, in a recent

comparison (Cheng et al., 2007b) simulated annealing was found to require a large amount

of iterations, and its accuracy is unsatisfactory, especially for multi-layer problems. Also,

parameter tuning was also found to be an issue for the original SA algorithm. Due to the

number of different slope geometries, the optimization method is required to be relatively

insensitive to change in function characteristics. Similar problems were encountered with

other global optimization methods when applied to slope stability problems. Currently,

all optimization methods applied to slope problems have either accuracy, speed or function

representation issues. In the work completed in the summer work-term of 2008, the ASA was

successfully applied to the optimization of a circular surface. However, with the increase in

the dimensionality of the problem, even ASA becomes inefficient. The curse of dimensionality

is expressed in the 1/n exponent in the function for temperature annealing (see Section 2), in

which n is the number of dimensions in the problem (Ingber, 1993). Further, the identifying

aspect of ASA, parameter re-annealing, was implemented in the start of the current project

and found to be inefficient for non-circular surfaces. The reasons and implications are detailed

in Section 5, Discussion.

At high-dimensionality, convergence issues for stochastic methods are not related to any

specific method, but instead are inherent to heuristic methods of global optimization. This

has been noted not only for SA, but also for many other global search methods (Davis, 1987,

Haupt and Haupt, 2004, Hedar and Fukushima, 2002). A practical approach to increase

the efficiency, and to truly “nail down” the global minimum, is to combine two or more

optimization techniques, resulting in the now popular field of hybrid optimization.

Hybrid methods have been used in a variety of applications, such as the optimization of

alumina production (Song et al., 2008), flow-shop scheduling (Murata et al., 1996), as well as

the optimization of molecular cluster (Moyano et al., 2002). The goal of hybrid optimization

is to combine the power of the global optimizer in gravitating towards the region of the

global minimum, with the descent speed of the local optimizer. The following modes of
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hybridization were suggested for a genetic algorithm (Haupt and Haupt, 2004), however, the

statements can be easily generalized for any global optimization method.

1. Running the global optimizer until it slows down, and letting the local optimizer take

over. This requires the assumption that the first method is already in a valley close

to the global minimum, which is not always the case as early convergence can occur

(Haupt and Haupt, 2004).

2. Seeding the global optimizer with points found from a random-generation function.

This approach was partly adopted in the hybrid simulated annealing algorithm, as a

random initialization function makes the method far more robust.

3. After every set of iterations from the global optimizer, a local optimizer can be used,

and the best solution can be updated into the scheme of the global search.

4. A fourth mode of hybridization can be applied specifically for functions with a clearly

encapsulated generation function, such as SA. The use of an intelligent, local generation

function can be used instead of a purely random-walk. This mode of hybridization is

more intrinsic than the previous three.

Some modes of hybridization may be more effective than others depending on the

model and the optimization algorithms involved. Hybrid optimization has been applied

extensively with SA and GA, due to their global search capabilities. SA has been coupled

with conjugate gradient for the simulation of mercury clusters (Moyano et al., 2002), as a

type 1 hybridization technique. Alternatively, Hedar and Fukushima (2002) have proposed

the use of SA in conjunction with the direct search method.

A popular hybrid method is combining SA with the simplex method by Nelder and

Mead (1965). Kvasnicka and Pospichal (1997) propose the simplex as the state-generation

function for the simulated annealing, that is, after every move made by the simplex, its

update is decided by the Metropolis criterion. Hedar and Fukushima (2002) extend the

hybridization: they combine the simplex-simulated annealing with a direct search method,

and finalize the search with a simplex method, thus being both type 1 and 4.
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A similarity shared between the different local optimizers, such as conjugate-gradient or

simplex, is that they all possess some capability of reducing the search radius as the method

closes on the global minimum. This can be understood intuitively: as the method applies

the global minimum, it is desired for the accuracy of the optimization to increase. This is

especially important in slope stability analysis, as weak layers act as very narrow valleys in

the energy landscape. The similarity between these narrow regions and Dirac functions has

been noted by Cheng (2007).

In the current work, we apply hybrid optimization by combining the very fast simulated

annealing (VFSA) with an efficient local-Monte-Carlo (LMC) search, and can be classified

under mode 1 mentioned above. The LMC shares similarities between the conjugate-gradient

and the simplex in the fact that it descends towards the minimum and adjusts its step-size.

It does not need gradient computation, and is very easily programmed. The major advantage

is that it has been developed specifically for critical surface, and has been tested successfully

for various slopes (Greco, 1996).

10



2 Methods

The Hybrid Simulated Annealing (HSA) was implemented in the Slide 5 engine using C++.

Slide is a 2D slope stability program designed for rock or soil slopes and contains a variety of

modeling capabilities, including material shear strength, external loading, groundwater and

support. The software already employs several search methods for non-circular surfaces, an

important one being the Path-Search algorithm. The path-search resembles a pattern-search

in the fact that it generates a multitude of non-circular surfaces and then computes the factor

of safety for all of them. The Path-Search when combined with a Local Monte-Carlo (LMC)

optimizer is fairly powerful, and is currently the most efficient technique for non-circular

surfaces in SLIDE.

The HSA is composed of two parts: a Very Fast Simulated Annealing (VFSA), fol-

lowed by a Local Monte-Carlo (LMC). Simulated annealing is a stochastic method, therefore

requiring the use of random-number generators. For all purposes, pseudo-random number

generation uses the CRandomNumber class developed by Rocscience. The class allows a variety

of capabilities and carries a variety of statistical distributions. Finally, CRandomNumber allows

the use of seeds for pseudo-random number generation, therefore making the optimization

results reproducible.

Spencer’s method is used for all cases as it considers both moment and force equilib-

rium, and is considered the simplest of the complete equilibrium procedures (Duncan and

Wright, 2005). As the HSA is a combination of the VFSA and the LMC, the current section

will describe each of these two methods separately.

2.1 Very Fast Simulated Annealing (VFSA)

The VFSA was implemented in the Aslide.cpp file under the function NC_ASA_XY.cpp. The

algorithm is derived from a standard Boltzmann simulated annealing with a more sophisti-

cated generation function and an exponential annealing schedule. The control mechanism

of VFSA is ruled by two parameters: a generation temperature Tgen which decides on the

radius of search, and an acceptance temperature Taccept that decides on the probability of

visiting a state. The very fast simulated annealing relies mainly on two loops: (1) an internal
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loop in which the algorithm performs Ngen random moves, with each move having a chance

of being accepted according to a probability Paccept; (2) an external loop decreases Taccept and

Paccept, which is a direct function of Taccept. A flowchart for the VFSA is shown in Figure 1,

and the details for its implementation are given below.

Figure 1: Flowchart for VFSA
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We will give a quick description of the notation which will be used throughout the rest

of this work. The index i refers to the control variable being optimized (1 ≤ i ≤ n). The

index j refers to the internal iteration of the annealing algorithm, and the index k refers

to the external annealing loop. At the start of every k-th annealing iteration, j is set to 0,

and Ngen iterations are performed. Variables are subscripted with according indices, that is,

on whether they are a function of its respective index. As an example, the Cauchy random

variable ri,j,k refers to the random number generated for the i − th control variable at the

j−th internal iteration and k−th annealing iteration. Other variables such as the generation

temperature Tgen,k depend only on the annealing iteration, at least for the current VFSA

formulation. It must be noted that for ASA, Tgen,k is also a function of the control variable

(therefore requiring the index i).

However, before the implementation of the algorithm can be discussed, the control

variables must be clearly defined. As discussed before, the aim of an optimization algorithm

is to minimize a function F (v), in which v is a vector containing the control variables. For

the case of a non-circular surface, v = (x1, x2, ..., xN , y1, y2, ..., yN), where (xm, ym) are the

coordinates for the m-th vertex, and N equals the number of vertices (1 ≤ m ≤ N). In the

current investigation, a linear interpolation is assumed between the control vertices on the

failure surface. The distinction between the number n of control variables and the number

N of vertices must be emphasised. In a general geometric problem, n = 2N . For the

specific case of slope stability problems, the number of degrees of freedom is reduced by 2

(n = 2N − 2) as the two extremity points of the failure surface can only move along the

slope line. In the implementation of the original annealing (Cheng, 2007), it was suggested

that equi-distant vertices should be used in order to reduce the degrees of freedom of the

problem, thus making it easier to optimize . The equi-distant implementation assumes all x

coordinates to be equi-distant, and only the slope points and the y-coordinates are allowed

to move (n = N − 1 as opposed to 2N − 2).

The equi-distant approach was initially adopted, and it was found out that the ability

of the vertices to represent an arbitrary surface is greatly reduced. To compensate for

this, more vertices must be used, which again increases the dimensionality. Therefore, the

increase in dimension due to adding vertices offsets the decrease in dimension due to the equi-
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distant assumption, and the balance is often negative. The approach taken in the current

investigation is different from both the previously discussed methods: the HSA starts with

a VFSA that allows both the x-coordinates as well as the y-coordinates to move, although

with relatively few vertices (around nine to ten). This allows flexibility to the surface and

a reasonable dimensionality to the optimization, although at a slightly decreased precision.

The local optimizer then takes over and further optimizes the surface by adaptively inserting

vertices as the search proceeds.

Finally, it was noted that the optimization is much more efficient when the domain of

each control variable is properly bounded. This was found in the work with circular surfaces,

and the results found in the previous work-term motivated the implementation of bounds

for each control variable. The restriction of the domain for the variables contributes to the

algorithm by allowing only kinematically feasible surfaces to be generated, as well as making

the problem one of constrained optimization as opposed to unconstrained. We will discuss

the use of bounds for the x and y coordinates.

2.1.1 Bounds for x-coordinates

The bounds for the horizontal coordinates (which we will denote as x) are set to be the

equidistant divisions between the two slope points. Let x1 be the first/left slope point, and

xN be the right slope point. Let Dm be the x-location of the m-th equidivision given by:

Dm = x1 + (m− 1)
(xN − x1)

N − 2
(3)

In which D1 = x1, and DN−1 = xN . Note that there are N − 1 divisions as opposed to N

vertices. Mathematically:

Dm−1 < xm < Dm (4)

The actual x-coordinates xm for the vertices between the slope points are parameterized

with respect to the width W of each division as:

PXm =
xm −Dm−1

W
(5)

in which

W =
[xN − x1]

N − 2
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Figure 2: Bounds for the x-coordinates

The need for bounds is clear if we consider a random walk, especially for simulated

annealing, for which at high temperatures the control variables often walk the span of the

search space. Two vertices might occasionally overlap each other, creating difficulties in

sorting, especially as the x- and y-coordinates are intrinsically related. A representation of

the equi-divisions and the respective location of five vertices is shown in figure 2. It can be

seen that there are four equidivisions for five vertices.

2.1.2 Bounds for y-coordinates

The use of a dynamic range for the y-coordinates has been proposed by Cheng (2007), as

to increase the number of kinematically acceptable surfaces. Let us consider the surface in

Figure 3 (Cheng, 2007), with six vertices (m = 6) represented by V1, V2, . . . , V6.

1. First, the two slope points V1 and V6 are defined. The x-coordinates for the various ver-

tices are known previous to the calculation of the dynamic ranges for the y-coordinates.

2. The y-coordinate for V2 is generated between the upper slope limit y2,max and the lower

slope limit y2,min.

3. With V1 and V2 generated, the bound for V3 becomes the lines connecting V1V2 and
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Figure 3: Representation of Dynamic Bounds by Cheng (2007)

V2V6. Let the function denoting the slope line be represented by R(x), therefore the

minimum bound for y3 becomes the maximum of yH for R(x3), and the minimum of

yG and y1(x).

4. Each control variable ym is parameterized to PYm as follows:

PYm =
ym − ym,min

ym,max − ym,min

(6)

The dynamic bounds were initially proposed by (Cheng, 2007) in order to generate

kinematically feasible surfaces by allowing smaller domain ranges for each control variable,

as well as preventing the generation of concave failure surfaces. In HSA, concave surfaces

can still be produced (as in the physical world convex surfaces can indeed exist), although

only at the local optimization phase.

2.1.3 Initialization of Surfaces

A random number between 0 and 1 using the CRandomNumber class is generated and assigned

to each control variable. This is feasible and contains all surface possibilities due to the

parameterization of the control variables. The initial acceptance temperature Taccept,in is set

to the initial factor of safety value. The initial value of Tgen is set to 1.0.
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2.1.4 State-generation Function

In the very fast simulated annealing, the generation function is based on the product of a

D-dimensional Cauchy distribution. The state of the system v is updated according to this

rule from vj to vj+1 in the j-th iteration. It must be noted that v is a vector containing the

control variables, and is n values long. The index j is set to 0 at the start of the internal

loop, and incremented until it reaches Ngen (see Figure 1) . The generation is based on a

random walk for each control variable i, ruled by the following functional relationship:

vi,j+1 = vi,j + ri,kLi (7)

where Li denotes the characteristic length of the problem for the i-th control variable.

In the original formulation by Ingber (1989), Li = Ui −Bi in which Ui represents the upper

bound of the i-th control variable and Bi represents the lower bound. In the current algorithm

L equals unity as each control variable is normalized with respect to its domain, according

to PXm and PYm in equations 5 and 6.

The random variable ri,k ∈ [0, 1] follows a Cauchy distribution, and is mapped from a

uniform random variable ui ∈ [0, 1] using the following function:

ri,k = sgn(ui − 0.5)Tgen,k

[(
1 +

1

Tgen,k

)|2ui−1|

− 1

]
(8)

The subscripts i and k show that a different r is generated for each control variable,

all of them a function of the current annealing iteration k. This relationship between r and

k can be seen in the previous equation through the control parameter Tgen,k. In the C++

program, the generation of the Cauchy variable and the random number is performed by the

function void GetStep(). The walk is performed by the function void PerformWalk().

The VFSA presented here does not perform a re-annealing, therefore a single generation

temperature Tgen is equal for all control variables (Tgen,i,k = Tgen,k for 1 < i < n).

2.1.5 Acceptance Function

The acceptance function is dependent on the acceptance temperature Taccept,k as well as vj+1

and vj. The annealing algorithm uses the difference between the values of the objective
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function F (vj+1) and F (vj) to decide on whether to accept or reject the new move. Let

dE = F (vj+1) − F (vj). If dE ≤ 0, the acceptance probability Paccept = 1. Else, if dE ≥ 0,

the acceptance probability is given by the following equation (Chen and Luk, 1999):

Paccept =
1

1 + exp(dE/Taccept,k)
(9)

A uniform random number u is generated and compared with Paccept. If u ≤ Paccept,

the move is accepted. If u > Paccept, the move is rejected. It can be seen that down-

hill moves are always accepted, whereas up-hill moves are only sometimes accepted. The

acceptance criterion stated above is a modification of the original criterion. The current

criterion is more selective than the original one, however, it preserves the main features of

the Metropolis criterion.

2.1.6 Scheduling Function

After Ngen states are generated, the temperature annealing is performed in the function void

ReduceTemperature, according to an exponentially decreasing schedule (Ingber, 1989). The

schedule corresponds to the function S(Tk) discussed in the introduction. The acceptance

temperature Taccept,k is decreased according to:

Taccept,k = Taccept,in exp
(
−ck1/n

)
(10)

Similarly, the generation temperature Tgen,k is decreased according to:

Tgen,k = Tgen,in exp
(
−ck1/n

)
(11)

It must be noted that the index k is 0 at the start of the search, and is incremented

once Ngen states are generated. This way, at the first temperature annealing, k = 1 and the

temperature is decreased according to equation 11. The control parameter c is a user-defined

control parameter (Chen and Luk, 1999). This value is assumed to be constant throughout

the search, and the same for all dimensions. Its optimal value was found by tuning, although

a rigorous sensitivity analysis is recommended. The value of c = 8.0 was adopted, and it

has been noted by (Chen and Luk, 1999) and confirmed in the current study that values
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in the range of 1.0 to 10.0 are adequate. In the VFSA, the generation temperature and

the acceptance temperature are decreased according to the same rule. However, they do

not always have the same value, due to the control mechanisms placed on the search. In

ASA, the value of the generation temperature is often updated through re-annealing (Chen

and Luk, 1999), in the current algorithm, the value of the acceptance temperature is often

re-scaled.

2.1.7 Stopping Criterion

The stopping criterion consists in comparing the last few safety factors found at each Ngen

iterations (Cheng et al., 2007b). The values of fopt[k] are compared with fopt[k − j], where

j is an integer between 0 and nε. If the difference fopt[k] − fopt[k − j] < ftol for all j, the

search is stopped, where ftol is a pre-defined tolerance level. In other words, if there has not

been any visible improvement for the global optimum in the previous nε consecutive runs,

the algorithm is to be stopped. An alternative criterion often used in standard annealing

(Kirkpatrick, 1984) is to stop the search once the acceptance temperature has almost reached

zero. However, the placement of control mechanisms often renders the latter stopping cri-

terion meaningless. For example, in ASA, the acceptance temperature is frequently reset to

the latest value of the cost function, therefore preventing the acceptance temperature from

decreasing (Chen and Luk, 1999, Ingber, 1989).

2.1.8 Control Mechanisms for VFSA

Corana et al. (1987) proposed a control mechanism that maintains the ratio r between

accepted states and rejected states close to 1.0. This mechanism shortens or elongates the

walk in order to achieve this stationary state.

In the current work, we use the acceptance temperature Taccept to achieve a similar

effect. Instead of forcing r to be 1.0, we allow it to be within a range from 0.5 to 2.0, and

adjust Taccept according to r itself:

• If r > 2.0, Taccept = 0.5Taccept;

• If r < 0.5, Taccept = 2Taccept.
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where the parameters were chosen from experience.

Another control mechanism was implemented so the algorithm can perform more iter-

ations at higher temperatures. In the current annealing algorithm, the number of generated

states Ngen is halved for consecutive annealing iterations. This approach was adopted as it is

clear that annealing requires more iterations in the start of the search to sample the function

domain completely. For the models tested, the parameter Ngen was initially set to be 1000n

for which n is the number of dimensions. In the three consecutive annealing iterations, Ngen

is consecutively reduced to 500n, 250n and finally 125n. These control mechanisms are an

attempt to maintain a trade-off between the semi-global and local search necessary for the

optimization (Szu and Hartley, 1987).

2.1.9 Error Handling and Bounds Check

A crucial issue is the validity of the failure surfaces generated, as well as whether each control

variable is within its domain. The parameters PXm and PYm must be within 0 and 1.0.

It was initially proposed that if a parameter is generated outside its domain, reset it to its

state. This was found to be inefficient, as the point would remain stationary for the given

j-th iteration.

An alternative solution for bounds check is to re-generate the surface by using a Cauchy

distribution properly truncated with respect to the bounds. Let us say the parameter PXm

has a value of 0.2. The void CheckBounds() function will now re-generate a new random

variable ri,k using equation 8. However, the function will also truncate ri,k with respect

to the position of PXm and its bounds. As PXm has a domain within [0,1], the bounds

check will truncate ri,k between the values of -0.2 and 0.8. That is, values of ri,k < −0.2 or

ri,k > 0.8 are discarded. In general terms, for a parameter Pi, the bounds check truncates

the Cauchy random number according to −Pi < ri,k < 1 − Pi. This way, we avoid wasting

iterations and as such, keep the algorithm constantly moving.

As for error-handling, the following procedure is adopted: if an invalid surface is gen-

erated, the optimal surface so far is retrieved and a new random-walk is performed using

this surface. If this procedure fails for a certain number of trials, the algorithm is reset to

the current optimum location.
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2.2 Local Monte-Carlo (LMC)

The Local Monte-Carlo (LMC) search was developed by Greco (1996), with the aim of

motivating the use of stochastic algorithms as opposed to the then more popular deterministic

methods. The LMC can be considered a local explorer, exhaustively trying all nearby move-

sets and adjusting its step-size during the search.

The LMC uses non-parameterized x and y coordinates of the slip surface as its control

variables. For notation, let the n vertices of the surface be represented by V1, V2, . . . , Vi, . . . , VN ,

with the respective coordinates (x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xN , yN).

The random-walk for the LMC has two procedures: an exploration phase and an

extrapolation phase. In the extrapolation phase, one vertex of the current trial surface is

shifted. The safety factor associated with the new surface is then computed and compared

with the value of the original surface. If the function was optimized, then the new surface is

accepted, otherwise, the surface is discarded.

In the extrapolation phase, the total displacement obtained in the exploration phase is

repeated, and the surface is updated if the corresponding safety factor is smaller.

Exploration Phase: In the exploration phase, each vertex of the current slip surface

is randomly moved in an attempt to reduce the safety factor. Thus, at iteration j, vertex i

is shifted from point < xj
i , y

j
i > to point < xj+1

i , yj+1
i > where

xj+1
i = xj

i + ξi (12)

in which ξi is a random displacement in the i-th vertex given by:

ξi = NxRxDxj
i (13)

where Rx is a random number extracted from a uniform distribution in the range (-0.5, 0.5)

and Dxi is the width of the search step in the x-direction. Nx is a directional parameter

with a value of -1, 0 or 1. An identical move-set applies for the y-coordinate, in which

a displacement ηi is made with a random number Ry, a step-size Dyi and a directional

parameter Ny. For each vertex, Nx and Ny form eight combinations for the same Rx and Ry

(see Figure 3), allowing the surface to exhaustively search its close neighborhood.
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Figure 4: Possible Displacements for Exploration Phase Greco (1996)

Step Adjustment: If the displacement is successful, the following update is made to

the width of each search step. Else, if no trial is successful for vertex i, a step reduction for

the successive step j + 1 occurs:

Dxj+1
i = Dxj

i (1− ε) (14)

Dyj+1
i = Dxj

i (1− ε) (15)

where ε is a number bettween 0 and 1. The value of ε must be carefully chosen, as a small

value leads to a long computation time whereas a high value may lead to early convergence.

The default ε in SLIDE is 0.75.

Extrapolation Phase: Once the exploration is performed, the extrapolation phase

ensues. The movement of the vertices that occurred in the previous phase is repeated, and

the new slip surface is then generated with vertices as given. The slip surface is checked with

respect to the boundaries, and they are re-updated if necessary. If the safety factor is now

at a minimum, the new vertices are updated. A new extrapolation is performed.

Stopping criterion: At the end of each search step, for both exploration and ex-

trapolation phases, it is necessary to check if the current slip surface can be assumed as the

critical one and if the algorithm can be stopped.
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In the proposed method, the iterative procedure is stopped, and the current point Sj+1

is assumed as minimum when the following two criteria are simultaneously verified:

Dxj+1
i < ∆ andDyj+1

i < ∆ for every i = 1 to n.

∣∣F (Sj+1)− F (Sj)
∣∣ < δ

where ∆ is the lowest admissible width for the search range; and δ=tolerable difference

between the values of safety factors in subsequent iterations.

2.3 Path-Search

The path search in SLIDE is a pattern-search technique based on the STABL program

(Boutrup et al., 1979). Trial surfaces are generated from a number of initiation points with

equal horizontal spacing along the slope line.

The direction θ of the first segment is calculated according to the following formula:

θ = α2 + (α1 − α2)R
2 (16)

Where α1 and α2 are the counterclockwise and clockwise direction limits (see Figure 5), and

R is a random function Ranf(x) (Boutrup et al., 1979). The use of R squared introduces

a bias so that angles closer to the clockwise direction limit are more likely. This bias is

necessary to obtain a good distribution of completed surfaces. The rest of the segments are

generated with the equation:

θ = θ2 + (θ1 − θ2)R
1+R (17)

In which θ1 and θ2 are the new limits as defined by the Path-Search algorithm (Boutrup

et al., 1979). The path-search bears similarities with the circular grid-search in SLIDE: it

generates the surfaces without requiring feedback from the model.
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Figure 5: Segment Initialization and Bounds for Path-Search (Boutrup et al., 1979)
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3 Results

The optimization methods were tested on fifty verification and twenty-six customer examples.

The verification cases are actual engineering cases including a variety of slopes, embankments,

dams, as well as multiple material layers and support properties. These test-cases can be

found in the Examples folder of every commercial SLIDE version. The customer cases on

the other hand consist of models sent by SLIDE users for individual engineering projects,

and often present more complex geological features. The numbering for the original cases is

preserved for the purposes of this report.

3.1 Verification Cases

The verification cases from SLIDE are a compilation of published examples in engineering

journals and conference proceedings, and include a set of five slope cases as part of a survey

sponsored by ACADS (Association for Computer Aided Design), in 1988 (Rocscience, 2006).

Fifty examples were selected, comprising a variety of geological cases, with different drainage

conditions and material properties for each of them. A summary of the optimization results

is given in Table 2. The success rate refers to the percentage of verification cases for which

the given method found the global minimum. The global minimum is assumed to be the

lowest safety factor found by the methods.

Table 2: Summary of Results for Verification Cases

VFSA HSA PATH-SEARCH

Success rate within 0.1(%) 100% 100% 72%

Success rate within 0.01(%) 88% 100% 56%

Initialization rate (%) 100% 100% 90%

Average time (s) <497 497 72

Average No. of iterations 57,835 62,835∗ 9,000∗

* The maximum LMC iteration number of 4000 is assumed, as well as the maximum

5000 iterations from the Path-Search. The 4000 from the LMC was added to both the HSA

and Path-Search. There were 5 uninitialized examples from the path search.
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Detailed results are presented in Tables 4 and 5. The performances are compared with

respect to success in locating the global minimum, speed and the capability of generating a

valid initial surface (initialization rate). Due to the fact that many cases show tension zones,

a check for tensile normal stresses was performed in SLIDE for all verification cases in order

to obtain critical failure surfaces that are kinematically feasible.

The success of finding the global minimum is measured in terms of accuracy in finding

the lowest safety factor, with the results for both 0.1 and 0.01 tolerance levels being presented.

From Table 2, it can be noticed that the HSA successfully finds all global minima within

0.01 of the cost function value. The verification cases were the basis for the development of

the final version of the algorithm, including parameter-tuning for simulated annealing. The

parameters chosen for the VFSA when applied to the verification cases are:

VFSA: Ngen = 1000n and then decreased as mentioned in Section 2, c = 8, Tin = 1.0,

with stopping criterion Nε = 5, where n=number of dimensions and npts=number of points.

For all cases, npts=10, therefore n=18 (an 18-dimensional problem). A safety factor tolerance

of 1e-06 was used, and a stopping criterion tolerance of 1e-04 was chosen.

LMC: Nmax=4000, ftol = 1 × 10−9, ε = 0.75 (see Section 2 for details). The number

of vertices is optimized as the optimization progresses.

Path-search: Number of surfaces generated = 5000.

It was noticed that all methods were usually slower for slopes using material properties

that are not the standard Mohr-Coloumb, such as Hoek-Brown and Barton-Bandis.

3.2 Customer Cases

The customer cases are part of the Rocscience library, and they consist in challenging models

sent by SLIDE users. Many of these models have dozens of material layers, often arranged

in checkerboard or layered forms. Some of these user cases have input problems to the

models, creating ill-conditioned slopes. A set of twenty-six user cases was selected, and

they represent both the complexity and variety of the slopes encountered in every-day rock

engineering. Table 3 summarizes the results for the twenty-six user cases. Detailed results

are presented in Table 6.
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Table 3: Summary of Results for Customer Cases

HSA PATH-SEARCH

Success rate within 0.1(%) 100% 55%

Success rate within 0.01(%) 92.3% 44%

Initialization rate (%) 100% 93%

Average time (s) 1207 200

Average No. of iterations 60,396∗ 9,000∗
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Table 4: Performance of optimization methods for all verification cases tested. Safety factors

labeled in red indicate cases in which HSA had found a significantly lower factor of safety

than the Path-Search — Part 1

Verification FOS FOS FOS Time Number of

# PATH-SEARCH VFSA HSA HSA Iterations

1 0.981 0.983 0.982 116 52500

2 1.579 1.576 1.553 159 70000

3 1.358 1.363 1.360 124 55000

4 0.979 0.981 0.977 172 50000

5 Uninitialized 1.948 1.948 76 50000

6 Uninitialized 1.948 1.948 69 50000

8 1.221 1.266 1.222 205 50000

9 0.725 0.733 0.708 150 50000

10 1.489 1.491 1.489 195 62500

11 1.108 0.812 0.812 173 50000

12 1.918 1.031 1.031 2541 71500

14 1.388 1.393 1.385 277 49500

15 0.413 0.418 0.414 196 50000

16 1.098 1.103 1.101 156 45000

19 1.400 1.406 1.400 238 72500

20 1.086 1.091 1.088 158 50000

21 1.982 1.990 1.983 199 58500

22 1.292 1.297 1.292 129 54000

23 4.029 2.494 2.494 997 63000

24 1.744 1.410 1.395 136 52500

25 0.943 0.943 0.943 439 55000

26 Not Initialized 0.787 0.787 183 50000

27 0.135 0.109 0.108 100 45000

28 0.008 0.007 0.004 254 55000

29 0.354 0.060 0.060 925 77500
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Table 5: Performance of optimization methods for all verification cases tested. Safety factors

labeled in red indicate cases in which HSA had found a significantly lower factor of safety

than the Path-Search — Part 2

Verification FOS FOS FOS Time Number of

# PATH-SEARCH VFSA HSA HSA Iterations

30 Not Initialized 1.050 1.050 190 50000

31 Not Initialized 0.861 0.861 220 50000

32 0.861 0.799 0.799 742 50000

41 1.666 1.672 1.671 1082 47250

42 1.840 1.846 1.814 199 82500

43 1.472 1.310 1.310 2870 79750

44 0.976 0.977 0.976 243 50000

45 2.779 2.787 2.778 79 50000

46 2.500 2.499 2.499 101 45000

47 1.440 1.053 1.053 1963 88000

48 0.983 0.915 0.915 1794 92500

49 1.423 1.422 1.365 489 50000

50 1.088 0.361 0.361 274 47250

51 0.984 0.987 0.981 683 50000

52 2.006 2.012 2.006 181 52500

53 0.761 0.759 0.758 633 62500

54 1.154 1.156 1.152 477 55000

55 1.292 1.298 1.294 209 80000

56 1.288 1.290 1.287 198 87000

57 1.368 1.375 1.371 130 67500

58 0.355 0.227 0.227 520 50000

59 0.347 0.227 0.227 379 50000

60 1.060 1.007 1.007 1896 50000

61 1.363 1.362 1.360 461 66000

62 0.999 1.001 0.999 510 50000
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Table 6: Performance of optimization methods for all customer cases tested. Safety factors

labeled in red indicate cases in which HSA had found a significantly lower factor of safety

Case # FOS FOS Time Number of

PATH-SEARCH HSA HSA Iterations

1 0.751 0.754 2043 50000

2 1.100 1.156 179 15000

3 1.214 1.216 893 57500

4 1.023 0.168 2437 50000

6 1.458 1.317 1326 65000

7 1.122 1.122 1244 57750

8 1.896 1.635 450 50000

9 1.329 1.217 1319 57500

10 Uninitialized 1.406 18 21000

11 Uninitialized 2.003 124 30800

12 1.451 1.071 228 80000

13 1.385 0.819 500 55000

14 0.871 0.868 398 50000

15 1.681 0.894 2375 67500

16 0.663 0.446 684 60000

17 1.075 0.982 179 57750

20 3.993 4.005 390 87000

21 1.456 1.457 232 102500

22 1.306 1.306 414 41400

27 1.401 1.391 375 27600

28 0.748 0.748 786 21000

32 0.780 0.535 263 21000

33 2.718 2.704 10667 32000

34 1.023 0.811 1454 62000

36 0.889 0.877 2157 21000

37 1.010 1.011 260 28000
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4 Discussion and Explanatory Examples

4.1 Method Comparison — Verification Cases

The results in Table 2 demonstrate that for the verification cases the HSA is extremely

efficient, finding the global minimum in 100% of the cases. This can be attributed primarily

to the power of the VFSA. The VFSA algorithm by itself finds all surfaces within 0.1 of the

global minimum, and achieves an accuracy of 0.01 for 88% of the verification cases. We can

conclude that the VFSA by itself is highly successful in locating the neighborhood of the

global minimum in all cases, with the 0.01 refinement being effectively carried out by the

LMC.

4.2 Verification #15 - An Improved Function Representation

The advantages of using hybrid optimization can not be fully appreciated from a simple

numerical point of view. Often-times the improvement between a non-smoothened and a

smooth surface is very small in terms of safety factors. However, even for these cases, the

insertion of vertices offers the advantage of being able to physically model the failure more

accurately than otherwise.

This gain may be purely conceptual, but it definitely contributes insight to the physical

behavior of the rock or soil mass. Verification #45 illustrates these two major advantages

of using a local optimizer. Figure 6 shows the surface found through a stand-alone VFSA,

initialized with 10 vertices. The safety factor of 2.787 found is extremely near the global

minimum of 2.778.

A magnification (Figure 7) of the surface cutting the slope illustrates a lack of accuracy

in the surface representation for the solution from VFSA.

With the hybrid algorithm, the surface (Figure 8) representation is much improved,

and we can clearly see that the failure surface is actually composite, with both linear and

approximately circular parts. The representation of the circular section is much smoother

with the extra vertices inserted by the LMC (Figure 8).
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Figure 6: Very Fast Simulated Annealing for Verification Case #45

Figure 7: Rough Surface Generated by VFSA for Verification Case #15

4.2.1 Verification #24 - Composite Surface

Verification #24 is also a case in which the Path-search failed to find the global minimum.

The model consists of a slope with three layers with different un-drained shear strengths

(Rocscience, 2006). The material properties are given in Table 7.

Table 7: Material properties for Verification Case #24

Cµ (kN/m2) γ (kN/m3)

Upper Layer 30 18

Middle Layer 20 18

Bottom Layer 150 18
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Figure 8: Smooth Surface Generated by HSA for Verification #15

The middle layer is the weakest layer, with a high-cohesion layer on the bottom. The

minimum of 1.394 was found to be a log-spiral surface that flattens into a linear slip plane as

it touches the hard-layer (Figure 9). Path-search fails to locate the minimum (FOS=1.744),

even when the number of surfaces generated was set to 60000 (Figure 10). Verification #24

offers interesting insight into the HSA - the method is flexible enough to represent both

circular and polygonal characteristics in the same failure surface.

4.2.2 Verification #48 - Slope Stability with Reinforcements

A final verification case was selected to represent slopes containing reinforcements, in this

case, soil nailing. Soil nailing is a method of in situ reinforcement and uses passive inclusions

that will be mobilized if movement occurs. The design of nailed excavations and slopes

are generally based on limit equilibrium analyses in which critical potential failure surfaces

must be assumed (Abramson et al., 2002, Duncan and Wright, 2005). Slope analysis with

reinforcements are an important class of problems that global optimization must be able to

solve.

Table 8: Material properties for Fontainebleau Sand Verification Case #48

Material Cµ (kN/m2) f ′ (degrees) γ (kN/m3)

Fontainebleau Sand 3 38 20

Verification #48 examines the Clouterre Test Wall (Rocscience, 2006), constructed in

Fontainebleau sand and failed by backfill saturation. The material properties of the sand

are given in Table 8.
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Figure 9: Hybrid Simulated Annealing for Verification #24

This test was carried out as part of the French national project on soil nailing. The

test wall is reinforced by seven rows of soil nails with a shotcrete plate weighing 13.2 kN/m,

and is modeled as a point load acting on the wall face. The properties for the support are

given in Table 9.

Table 9: Soil Nail Properties for Verification #48

Type Out-of-plane Tensile Strength Plate Strength Bond

Spacing (m) (kN) Strength (kN)

Fontainebleau Sand 1.5 1.5 59 7.5
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Figure 10: Path-Search with 60,000 surfaces for Verification #24

Figure 11: Plane angles for Clouterre Earth Wall - Verification #48
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Figure 12: Hybrid Simulated Annealing for Verification #48

Verification #48 was designed to examine the relationship between the failure plane

angle and factor of safety (Figure 11) in which the primary resistance against failure is

friction generated by soil weight. The global minimum from the original analysis was 0.92

for an angle between 65o and 70o, by Spencer’s method. The HSA successfully finds the

global minimum within 22000 iterations (see Table 5). The angle of the plane slip found by

HSA matches that of the original analysis (Figure 12).

From the point of view of a stochastic optimization, locating the global minimum for

Verification #48 is a challenging task. A single, linear slip surface implies aligning all vertices,

a task that is made extremely difficult by the random-nature of the generation function. The

success of Verification #48 can be attributed to VFSA alone, as the global optimizer found

the safety factor of 0.917 (see Table 5). This is due to the capability of the method to

reduce the neighborhood of search to an almost point-like radius (see the discussion on Tgen

in Section 2). The Path-Search, on the other hand, fails to align all vertices of its surface,

as seen in Figure 13, finding a global minimum of 0.983.

4.3 Method Comparison — Customer Cases

4.3.1 Customer #04 - Extreme Multi-layering

From Table 3, it can be seen that the customer cases are significantly more challenging than

the verification cases, both due to the longer time required to optimize (1207s as compared

to 200) as well as the success rate of the path-search - only a 55% rate of finding the surface
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Figure 13: Path-Search for Verification #48

within 0.1 of the lowest safety factor. The large speed difference between the HSA and

the Path-Search are due to the correspondingly higher number of iterations. However, the

success rate achieved is almost double, therefore signifying that Path-Search faces serious

early convergence problems with more complex models. From an engineering perspective,

an average time of twenty-minutes for finding the global minimum should be considered

negligible if compared to the resources and implications associated with correctly finding the

most probable failure surface.

Customer case #4 stands for a challenging slope line, with dozens of material properties

and over twenty layers, some of them relatively thin. The results from the HSA (FOS=0.168)

can be seen in Figure 14. The minimum found by HSA is very challenging, as it is almost

point-wise due if compared to the size of the entire slope. The path-search was able to find a

failure surface, but clearly local (Figure 15). This same failure surface was also a challenging

example for the circular search method tested in the work from the summer of 2008, in which

only Adaptive Simulated Annealing was able to find the minimum.
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Figure 14: Hybrid Simulated Annealing for Customer Case #4

Figure 15: Path-Search for Customer Case #4
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4.3.2 Customer #34 - Physical Modeling and LEMs

Verification #34 offers interesting insight into the nature of limit equilibrium methods. Be-

fore the tension-check was added to the model, the HSA successfully found the global mini-

mum of the problem (Figure 16), which surprisingly displays a safety factor of 0.003. This is

too low to be a realistic number, and the problem in this case lies not with the optimization,

but rather with the modeling of the slope problem and the nature of LEM itself.

Figure 16: Hybrid Simulated Annealing for Verification Case #34

When significant tension develops, it can cause numerical problems in slope stability

calculations (Duncan and Wright, 2005), and the engineer should employ techniques to

reduce the effects of tension, including introducing a tension crack or adjusting the Mohr

failure envelope. The conclusion from this and similar cases found (Verifications #27 - 29)

is that HSA is an optimization tool that is powerful enough to find any global minimum,

however, the validity of the model and thus its function is left to the responsibility of the

engineer. Once the tension-check was added, the results from both HSA and Path-Search

more consistency.
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Figure 17: Hybrid Simulated Annealing for Verification #4

4.4 Method Comparison — HSA and Literature

4.4.1 Verification #3 & #4 - Seismic Loading Conditions

Verification #3 is a study from ACADS of a non-homogeneous slope with three layers (Roc-

science, 2006). The same case was tested by Cheng et al. (2007a) as example 2 in his com-

parison of global optimization methods. The recommended solution from ACADS (1989) is

1.359.

Verification #4 has the same geometry and soil parameters as verification #3. The

slope is subjected to a pseudo-static earthquake coefficient equal to 0.15. The lowest safety

factor found by HSA was 0.977 (Figure 17) for 40 slices. The results found by Cheng et al.

(2007a) from different optimization methods are shown in Figure 18. He states that failure

surfaces found by SA and Particle Swarm Optimization (PSO) are virtually the same.

It can be noted that the surface found by most of the global optimization techniques

(Ant-colony, SHM) reflect a circular surface, whereas the SA method actually finds a com-

posite surface. A comparison between the results from HSA and the standard SA by Cheng

et al. (2007a) shows that hybrid optimization is significantly faster when there are more

slices (see Tables 10 and 11).
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Figure 18: Results from Cheng et al. (2007a) for Verification #4

Table 10: Comparison of Safety Factors between HSA and SA (Cheng et al., 2007a) for

Verification Case #3

Methods Number of Slices Minimum Safety Factor Number of Iterations

HSA 20 1.360 55,000

HSA 30 1.358 55,000

HSA 40 1.358 55,000

SA 20 1.359 52,310

SA 30 1.357 74,120

SA 40 1.368 119,546

It can be seen that HSA achieves the same precision as SA within less than half the

number of iterations from the standard SA algorithm. It is also seen that the standard SA

(Cheng et al., 2007a) loses precision as the number of slices increases, and the number of

iterations required doubles. The opposite effect is seen with the HSA: the more slices used

the lower the safety factor found (in general - Table 11 shows an exception, attributable to

the randomness of the stochastic method).
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Table 11: Comparison of Safety Factors between HSA and SA (Cheng et al., 2007a) for

Verification Case #4

Methods Number of Slices Minimum Safety Factor Number of Iterations

HSA 20 0.979 62,500

HSA 30 0.977 60,000

HSA 40 0.993 60,000

SA 20 0.9815 52,040

SA 30 0.9769 77,366

SA 40 0.9857 108,278

Table 12: Comparison of Safety Factors between HSA and SA (Cheng et al., 2007a) for

Verification Case #8

Methods Number of Slices Minimum Safety Factor Number of Iterations

HSA 20 1.222 60,000

HSA 30 1.221 52,500

HSA 40 1.221 50,000

SA 20 1.2411 51,770

SA 30 1.2689 77,096

SA 40 1.3238 190,664

4.4.2 Verification #8 - ACADS (1989) Study of Thin Horizontal Layer

Verification #8 (Rocscience, 2006) corresponds to example #3 by Cheng et al. (2007). The

water table is assumed to coincide with the base of the weak layer. The effect of negative

pore water pressure above the water table is to be ignored (i.e. u=0 above water table). The

effect of the tension crack is also to be ignored in this problem.

A comparison between the safety factors found by HSA and the standard annealing

are shown in Table 12. In the current case with the thin layer, the improvement of HSA

over other global optimization algorithms can be clearly appreciated. As with verification

#3 and #4, it can be seen that the higher the number of slices in HSA, the more accurate
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the solution becomes.

Figure 19: Hybrid Simulated Annealing for Verification #8

The main issue with the formulation by Cheng et al. (2007a) is that the division of

slices is required to match the vertices. In SLIDE, the number of vertices is not dependent

on the number of slices, or vice-versa. Therefore, the HSA can carry out an optimization of

a surface containing 40 slices with simply ten vertices, and during the optimization process

adaptively insert new vertices without affecting the number of slices (compare Figures 20

and 21). On the other hand, the standard SA proposed by Cheng et al. (2007a) requires

40 vertices to represent 40 slices. The increase in imprecision arises from the increase in

problem dimensionality.

4.4.3 Verification #9 - ACADS (1989) Study of Diagonal Weak Layer

Verification Case #9 is a case of a diagonal weak layer, with loading conditions and a

piezometric surface (Rocscience, 2006). The effect of a tension crack is to be ignored. The

list of co-ordinates in the piezometric line can be either found in the original ACADS study

or the Slide Manual. It can be seen from a comparison between Figures 21 and 22 that

HSA successfully determines the safety factor accurately, whereas the the remaining global

optimization methods demonstrate poor results, with as much as 0.1 difference in terms of

safety factor.
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Figure 20: Results from Cheng et al. (2007a) for Verification #8

Table 13: Comparison of Safety Factors between HSA and SA (Cheng et al., 2007a) for

Verification Case #9

Methods Number of Slices Minimum Safety Factor Number of Iterations

HSA 20 0.709 50,000

HSA 30 0.709 72,000

HSA 40 0.708 70,000

SA 20 0.8122 183,341

SA 30 0.9369 85,937

SA 40 1.1657 119,800

4.5 Annealing — Theoretical Considerations

4.5.1 On Re-annealing and its Effectiveness

The choice of using the VFSA as the preferred global optimizer as opposed to the later

created Adaptive Simulated Annealing (ASA) merits some discussion. During my work-term

at Rocscience in the summer of 2008 ASA was found to be the most efficient method for the

optimization of circular surfaces, due to its ability to re-scale the generation temperature at

each dimension. However, when applied to non-circular search, frustration problems arise

due to the high-dimensionality and ASA becomes inefficient. The details behind this will be
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Figure 21: Results from Cheng et al. (2007a) for Verification #9

discussed therefore, first with an overview of the advantages of ASA and why they disappear

when dealing with non-circular search.

ASA can be seen as a VFSA with an additional step, the temperature re-annealing.

After every Naccept iterations, the generation temperatures for each dimension are re-scaled.

The sensitivity si of each parameter is given by the partial derivative of the function with

relation to the i-th dimension of the position vector:

si =
∂F

∂Xi

(18)

The temperature Ti,gen is linearly re-scaled proportional to the ratio of the maximum

sensitivity smax of the i-th dimensions:

Ti,gen =
smax

si

Ti,gen (19)

The optimization performed by ASA can be understood intuitively. If the search is

going well, decrease the temperature rapidly and if the search is going badly, decrease the

temperature slowly. For ASA, higher generation temperatures signify a larger search range

and therefore faster convergence to a minimum. For a problem with few variables such as

the circular search, the rescaling contributes considerably to the efficiency of the method by

allowing longer jumps if the function landscape is relatively flat (insensitive). This works

especially for the circular search because the variables (centre point and radius) are rela-

tively independent of each other. Allowing one dimension, say the radius r, to increase its
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Figure 22: Hybrid Simulated Annealing for Verification #9

generation temperature does not affect the surface as much as allowing one vertex of a 20

vertex non-circular surface to walk wildly.

However, due to the high-dimensionality of the non-circular, the different sensitivities

often provoke the algorithm to perform “wild walks”. As there is no communication or pairing

between the different parameters, one vertex will suddenly acquire a very high generation

temperature, and therefore it would start random-walking.

In order to use sensitivities as feedback, a careful analysis has to be made on the nature

of the safety factor function and its most common characteristics. Such a pursuit demands a

fair amount of mathematical analysis and is beyond the scope of the current work. Possible

approaches include assuming a single global sensitivity for the non-circular surface, which

can be with respect to a circle, or pairing the sensitivities between two adjacent vertices.

These suggestions will be left vague, and the reader may ponder on them at his or her leisure.

A further problem with the ASA is that it assumes the cost-function to be aligned with

the co-ordinate axis of each parameter. This is especially inefficient when the major-axis of

the problem is unaligned with the co-ordinate axis - as is often the case with a weak layer.

A solution has been proposed by Rosen (Rotationally parameterized very fast simulated

reannealing - RPVFSA, unpublished manuscript). The alternative suggests rotating the

function landscape every time the algorithm performs a rescaling. However, improvements
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are inconsiderable (around 10%), whereas the costs of calculating co-variance matrices in

order to perform the rotation are fairly high. The generation function for VFSA is aligned

along the co-ordinate axis, therefore the accuracy and speed of the method is sensitive to the

local orientation and shape of the function. If a small step is taken, this effect is minimized.

4.5.2 On the Robustness of Adaptive Schedules

Despite the fact that re-annealing did not prove effective, the need for an alternative adaptive

schedule is clear based on the difficulties of slope stability analysis. Faced with a multitude

of geometries and properties, the function landscape may range from relatively quadratic to

extremely discontinuous and multi-modal, and the optimization algorithm must have some

feed-back that allows it to suit the different problems. Very fast simulated annealing, with its

adaptive schedule, has been proven to be more efficient than the popular genetic algorithms

(Ingber and Rosen, 1992). This may be due to the fact that as opposed to standard SA, the

added re-annealing allows the search method to incorporate some measure of feed-back from

the function through the calculation of sensitivities.

Simulated annealing can be considered a dynamical system whose control system is pro-

vided by the annealing schedule (Romeo and Sangiovannivincentelli, 1991). Static schedules

are easier to implement, however, there is a need to fine-tune the annealing parameters to a

specific problem. On the other hand, dynamic schedules are proven to increase robustness

(Romeo and Sangiovannivincentelli, 1991). Adaptation as a route to better optimization was

a core concept in the development of genetic algorithms (GA) (Holland, 1992). The power of

GAs fundamentally relies on the robustness of their adaptive plans, and more sophisticated

schemes are needed according to the complexity of the system.

The choice of using the acceptance ratio as a feedback for a dynamic schedule was

initially provided by the work carried by Corana et al. (1987), and can be understood in

view of the principles that simulated annealing apply in performing its optimization.

The success of a simulated annealing algorithm depends on visiting the search space

extensively so that the region with the global minimum is sampled, yet retaining the ability

to focus on that region towards the later stages of optimization. In standard annealing, this

is the identifying feature of simulated annealing itself, and the annealing temperature is the

47



controlling mechanism behind it. The Metropolis criterion, whose input is the acceptance

temperature, decides on number of accepted walks and rejected walks, and namely the ratio

of accepted to rejected walks offers important information on the performance of the method.

If the number of accepted states is very high, the algorithm undergoes a stage of “wild” walk,

that is, it randomly searches the entire span of the domain. This is efficient at the initial

stages of the algorithm. If the number of rejected states is high, the annealing is at a

“down-hill” quenching stage, in which it only accepts strictly decreases in safety factor.

The optimization of annealing can be viewed as a hierarchical descent — at the start,

the search is high-level, the large valleys and general landscape of the function are probed. As

the annealing temperature decreases, the level of the search decreases and local, fine-grained

exploration occurs. At any level, the algorithm must have both up-hill and down-hill steps

so at the current level the algorithm can make a complete search. It was found in the

current work that when the ratio between accepted and rejected points reaches equilibrium

(see Figure 23), the efficiency of SA is maximized. Figure 23 displays the convergence for

behavior of r as the program progresses. The same behavior of exponential decrease and

periodic oscillation around 0.5 was noticed with many cases. If the adaptive schedule was

not placed, this ratio would decrease to zero and the method would freeze prematurely. An

equilibrium ratio of 0.5 was found by experience (a wide range of ratios was tested, ranging

from 0.0 to 2.0).

Corana et al. (1987) achieve this ratio through controlling the step-size of the walk.

In the current work, this is achieved by controlling the acceptance temperature as described

in Section 2. This can be considered a "direct" approach, as the acceptance temperature

directly influences the ratio.

4.5.3 On the Effectiveness of Hybrid Optimization

The results presented in the current work show that HSA is extremely successful in slope

stability analysis. In addition to finding the global minimum, the HSA method possesses

the capability of improving the surface representation by inserting vertices. The extra im-

provement brought from combining the LMC to the VFSA was seen to be crucial in many

problems.
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Figure 23: Ratio of Accepted and Rejected States for Verification #3

The success of the LMC can be attributed to the fact that it was specifically designed

for solving slope stability problems. A primary consideration in its original development

was to properly detect and explore a thin-layer (Greco, 1996). The exploration step, which

shifts every vertex, allows the algorithm to perform a complete search in the neighborhood

of the surface, and often allows the algorithm to tunnel to the global minimum despite the

fact that the method is conceptually local. This global robustness from a local optimization

method has been noted also for the simplex (Corana et al., 1987).

The LMC, due to its effectiveness, allows the VFSA method to run with more liberal

settings. Lower Ngen and nε values can be used. The greatest contribution to the speed of

the method, as discussed above, is the fact that the HSA can start the search with fewer

vertices and thus allow the global optimizer to solve a lower-dimensional problem.

This advantage can be said to be specific to slope stability analysis - the underlying

assumption is that the influence of all dimensions (of each vertex) is relatively small by itself,

and solving a lower dimensional problem merely decreases the accuracy, and does not change

the nature of the problem. For other problems this is often not possible, as every dimension

inherently defines the nature of the model. The latter might be the case for molecular
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simulations, in which one extra molecule changes the entire configuration of the problem,

or even the circular search in slope stability, for which all three dimensions are necessary.

The advantages seen in the current work closely mirror the conclusions made by Hedar and

Fukushima (2002):

The power of meta-heuristic methods comes from the fact that they are robust

and can deal successfully with a wide range of problem areas. However, these

methods, especially when they are applied to complex problems, suffer from the

high computational cost due to their slow convergence. The main reason for this

slow convergence is that these methods explore the global search space by creat-

ing random movements without using much local information about promising

search direction. In contrast, local search methods have faster convergence due

to their using local information to determine the most promising search direc-

tion by creating logical movements. However, local search methods can easily be

entrapped in local minima.

4.5.4 No Free Lunch

Finally, we note the existence of the “No Free Lunch” theorem (Haupt and Haupt, 2004),

which states that the averaged performance of all search algorithms over all problems is equal.

Similarly, Ackley (Davis, 1987) stated in his review on bit vector function optimization

that “There is simply no best strategy for solving all possible problems”. This may be

disheartening; regardless of how intelligent we build our optimization package, it is proven

to have an average performance equal to a random-search.

However, the pessimism of this theorem is purely deceptive. It is not required of us to

solve all functions in the physical world, and we have proven that at least for the important

problem of slope stability analysis, simulated annealing seems to be a promising answer.
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5 Conclusions

Based on the analysis of the global optimization methods, the following conclusions are

made:

1. Very fast simulated annealing (VFSA) is a very powerful algorithm for the global

optimization of slope stability problems. With the proper bounds, VFSA was successful

and relatively fast for all verification and customer cases.

2. The dynamic bounds placed on the y-coordinates and the parameterization of the

control variables greatly increase the speed of the method by reducing the number of

invalid surfaces generated.

3. The hybrid optimization approach (HSA) was demonstrated to be a very successful

to finding the lowest factor of safety for slope stability problems. The precision of

the optimization was greatly improved with the use of the local Monte-Carlo search,

both in terms of locally adjusting the vertices as well as inserting new vertices. This

was found to be particularly useful for composite surfaces, with both circular and

non-circular sections.

4. For simple geometries, the path-search when coupled with the LMC was found to be

moderately successful, and twice as fast as HSA. It fails to optimize more complex

slopes, even when the number of trial surfaces is increased.

5. In a comparison with classical slopes from geotechnical literature, the HSA is proven to

be twice or three times as fast as regular global optimization methods, and determines

critical safety factors with considerable more accuracy. It was demonstrated in the

current work that HSA is more effective than the standard SA, and that the method

does not lose precision as more slices are added.

6. It can be concluded that adaptive schedules are essential for guaranteeing the robust-

ness of global optimization methods, and it was found that the re-annealing originally

proposed with the VFSA is inefficient. An effective alternative is to maintain the ratio
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of accepted and rejected points close to equilibrium through adjusting the acceptance

temperature.
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6 Recommendations

Based on the analysis of the global optimization methods, the following recommendations

are made:

1. Improve interpolation between vertices by using B-Splines

The current non-circular surface is represented through a linear interpolation between

adjacent vertices. To improve the accuracy for composite surfaces, the current method

inserts new vertices. This makes the optimization more difficult, as the number of

dimensions is increased. It is recommended that a non-linear interpolation should be

used, in special B-spline representation. B-splines are a powerful tool often used in

graphics, and it allows the generation of flexible and diverse curves with fewer control

variables.

2. Optimize the Optimizer

Some of the parameters of the HSA are currently chosen based on experience. These

parameters include c, nε, and Ngen. As opposed to the standard simulated annealing,

these parameters do not need to be tuned for each slope model, but the optimal values

were chosen by trials. It is recommended that an optimization method should be per-

formed on a level higher than the HSA to tune these parameters. As the computational

efforts of optimizing an optimizer are very high, a simpler method should be used to

search for the optimal parameters.

3. Implementation of Parallel Processing

Various researchers (Ingber and Rosen, 1992, Romeo and Sangiovannivincentelli, 1991)

have commented on the speed and power gain of simulated annealing when imple-

mented with parallel computing. The optimization efficiency can be increased by run-

ning parallel walks in different processors, or even generating the random numbers in

parallel, and then sequentially checking all points that satisfy boundary conditions.
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List of Symbols

a coefficient for geometrical temperature decrease

AXY (Tk) acceptance function

ASA Adaptive Simulated Annealing

Bi lower domain bound for dimension i

c control parameter for VFSA and ASA or cohesion of soil

Dxj
i length of horizontal displacement for the i-th vertex and k-th surface

Dyj
i length of vertical displacement for the i-th vertex and k-th surface

E energy function analogous to objective function

F objective function to be minimized

fopt optimal function value

ftol tolerance for stopping criterion

FSA fast simulated annealing

GA Genetic Algorithms

GXY (Tk) state-generation function

i counter for dimension (VFSA and LMC)

j counter for internal walk loop (VFSA and LMC) and stopping criterion (VFSA)

k counter for each annealing loop

ki counter for each generation temperature at i-th dimension (VFSA)

LMC Local Monte-Carlo method

Li characteristic length for dimension i

n degrees of freedom

nε iterations required for stopping criterion i

N number of vertices for failure surface

Nmax maximum number of iterations for LMC

Nx directional unit for LMC in the horizontal

Ny directional unit for LMC in the vertical

Paccept acceptance probability for new state

r random number generated from probability distribution
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R random number for Path-Search

SA Simulated Annealing

si sensitivity of the function at the i-th dimension

smax maximum sensitivity of the function

S(Tk) annealing schedule

T annealing temperature for original SA

Taccept,in initial acceptance temperature for VFSA

Taccept,k acceptance temperature for VFSA

Tgen,in initial generation temperature for VFSA

Tgen,k generation temperature for VFSA

V FSA very fast simulated annealing

Vm vertex m for LMC representation

xm horizontal co-ordinate of vertex m

xdm the m-th division of surface

Xopt optimal state

X initial position vector

Y Final position vector

yi vertical co-ordinate of vertex i

u uniformly distributed random number

W width of equi-division

Ui upper domain bound for dimension i

Greek Letters

α direction limit for Path-Search

δ tolerance for factor of safety equation

∆ tolerance length for step-size

ε tolerance level or step reduction size for LMC

ηi random displacement in y of the i-th vertex for LMC

θ angle of line segment for Path-Search

ξi random displacement in x of the i-th vertex for LMC

φ Angle of Friction Envelope
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Appendix I Simple VFSA Calculation

In the current section we will perform a simple simulated annealing, with only two internal

iterations and two external annealing iterations (referring to the notation presented in section

2, j = 0, 1, 2 and k = 0, 1). The starting j = 0 is used to denote the initial state, no generation

step occurs at j = 0.

Complete details for calculations can be seen in the tables presented in subsection 6.

The problem to be solved is a one control variable (i = 1), circular slope stability case. The

slope is from verification case #1. Note that the random numbers were chosen arbitrarily, and

none of the annealing parameters are optimized or properly bounded. No control mechanism

is placed. The annealing parameters are set as Ngen = 2, c = 8, nε = 2. Ngen is the number

of states generated at each annealing iteration, c is a temperature decreasing parameter and

nε is the number of safety factors compared before stopping the method.

Initial Conditions

The factor of safety is calculated using Bishop’s method. The aim of this presentation is to

optimize the radius of a circular surface. The centre of the surface is fixed at co-ordinates

(40, 40). The initial radius (which is the control variable ν1) is chosen to be 15. The material

properties as well as slope geometry are shown in Figure 24.

The initial generation temperature Tgen,in is set to 1.0, and the initial acceptance tem-

perature Taccept,in is set to the initial safety factor, which is 1.292. The step-size for the

search, L, is set to 5.

The Walk

Next, we perform the walk. In the first iteration j = 1, a uniform random number is

generated (u1 = 0.2). A Cauchy random number is mapped from u1 based on the following

equation:

ri,k = sgn(ui − 0.5)Tgen,k

[(
1 +

1

Tgen,k

)|2ui−1|

− 1

]
(20)
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Figure 24: Slope geometry for Verification #1

Using the specific indices (i = 1 as the problem has one control variable, the radius.

k = 0 as we are in the first annealing iteration):

r1,0 = sgn(u1 − 0.5)Tgen,1

[(
1 +

1

Tgen,1

)|2u1−1|

− 1

]
(21)

Substituting the values in the previous equations, we find that:

r1,0 = −0.52

For the walk, we use the following equation:

νi,j+1 = νi,j + ri,kLi (22)

Substituting the indices into the previous equation:

ν1,1 = ν1,0 + r1,1L1 (23)

Substituting the values into the previous equation we find that:

ν1,1 = 12.4

All other states are generated accordingly.

58



To Accept or Not to Accept

To accept or not to accept the new state, the factor of safety is calculated. If the walk is

downhill (F (vj+1) < F (vj)), the state is updated and vj+1 = vj. If the walk is up-hill, the

Metropolis criterion is applied. In j = 2, at k = 0, the move was uphill (dE = 0.036 > 0).

In this case, the modified Metropolis criterion (equation 9) is used.

As Taccept,in = 1.292, substituting all values into the previous equation we obtain a

Paccept equal to 0.493. Therefore, a uniform random number uaccept was generated (0.73) and

compared with Paccept. As uaccept > Paccept, the move was rejected. The previous radius was

reset.

Temperature annealing

After j = 3, the temperature annealing must be carried out. The acceptance temperature

and the generation temperature are decreased according to equations 26 and 27, respectively.

Taccept,k = Taccept,in exp (−ck1/n) (24)

Tgen,k = Tgen,in exp (−ck1/n) (25)

As mentioned in the introduction, c = 8, k = 1 and n = 1.

Taccept,1 = 1.292× exp (−8× 1) (26)

Tgen,1 = 1.0× exp (−8× 1) (27)

Stopping Criterion

A simple stopping criterion for the annealing algorithm is to compare the best safety factors

found at nε consecutive annealing iterations (k-iterations). As nε = 2, we compare the pre-

vious 2 annealing iterations and see whether they are within a tolerance level ftol. Assuming
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ftol = 0.1, we compare between 1.144 (fmin at k = 0) and 1.13 (fmin at k = 1).

|fopt(1)− fopt(0)| < ftol

|1.13− 1.144| < 0.1

Therefore the method is stopped.

Solution

The global minimum fopt found is 1.13, for a surface with radius=11.395 and center at

coordinates (40,40). The failure surface is illustrated in Figure 25.

Figure 25: Solution for simple slope problem
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Tables of Search Parameters

Table 14: VFSA at annealing iteration k = 0

Initialj = 0 j = 1 j = 2

u1 - 0.2 0.6

r1,1 - -0.52 0.148

Radius 15 12.4 13.14

FOS 1.292 1.144 1.180

dE = FOS(j)− FOS(j − 1) - -0.148 0.036

Paccept - - 0.493

uaccept - - 0.73

Accepted? - YES NO

Tgen,1 1.0 1.0 1.0

Taccept,1 1.292 1.292 1.292
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Table 15: VFSA at annealing iteration k = 1

Initialj = 0 j = 1 j = 2

u1 - 0.1 0.36

r1,1 - -0.201 −2.81558× 10−3

Radius 12.4 11.395 11.38

FOS 1.144 1.13 1.131

dE = FOS(j)− FOS(j − 1) - -0.014 0.001

Paccept - - 0.0905

uaccept - - -.7

Accepted? - YES NO

Tgen,1 3.354× 10−4 3.354× 10−4 3.354× 10−4

Taccept,1 4.334× 10−4 4.334× 10−4 4.334× 10−4
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