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The problem is represented in Figure 1a. We want to model a composite section using beam or liner 

elements in FLAC or Phase2. We consider a stretch of 1 meter of composite section. The section is 

composed of regularly spaced elements ‘1’ (e.g., steel sets) and regularly spaced elements ‘2’ (e.g., 

shotcrete). There are n elements ‘1’ and ‘2’ in a meter of section —this is equivalent to saying that the 

spacing between elements is 𝑠 = 1.0/𝑛. Each element has a Young’s modulus 𝐸, a cross-sectional area 

𝐴 and a moment of inertia 𝐼 . So each element ‘1’ is characterized by parameters 𝐸1, 𝐴1 and 𝐼1 and each 

element ‘2’ is characterized by parameters 𝐸2, 𝐴2 and 𝐼2. 

The elements ‘1’ and ‘2’ in the composite section are considered to be rigidly attached to each other, so 

that the elements will deform uniformly in the axial direction, if a thrust 𝑁 is imposed on the composite 

section, and the elements will rotate uniformly, if a bending moment 𝑀 is imposed on the composite section 

—see lower sketch in Figure 1a. 

To model the problem in FLAC or Phase2 we smear the geometrical and mechanical properties of the 

elements in the composite section into an equivalent rectangular element of width 1 meter, and height 

ℎ𝑒𝑞—see Figure 1b. Furthermore, we consider that the equivalent rectangular section has a Young’s 

modulus 𝐸𝑒𝑞 . We compute the values of ℎ𝑒𝑞 and 𝐸𝑒𝑞 as follows: 

 

ℎ𝑒𝑞 = 2
√3𝐶𝐴𝐶𝐼

𝐶𝐴
 ( 1 ) 

𝐸𝑒𝑞 =
√3

6

𝐶𝐴
2

√𝐶𝐴𝐶𝐼

 ( 2 ) 

Where 

𝐶𝐴 = 𝑛(𝐴1𝐸1 + 𝐴2𝐸2) ( 3 ) 

𝐶𝐼 = 𝑛(𝐼1𝐸1 + 𝐼2𝐸2) ( 4 ) 
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By solving the problem in terms of the equivalent section (Figure 1b), we get from FLAC or Phase2 the 

total values of thrust 𝑁 and bending moment 𝑀. We need to re-distribute then these values into each 

element ‘1’ and ‘2’ in the section (see Figure 2). This is done as follows. 

The thrust 𝑁 that acts in each element ‘1’ and ‘2’, is, respectively 

𝑁1 =
𝑁

𝑛

𝐴1𝐸1

𝐴1𝐸1 + 𝐴2𝐸2
 ( 5 ) 

𝑁2 =
𝑁

𝑛

𝐴2𝐸2

𝐴1𝐸1 + 𝐴2𝐸2
 ( 6 ) 

The moment 𝑀 that acts in each element ‘1’ and ‘2’, is, respectively 

𝑀1 =
𝑀

𝑛

𝐼1𝐸1

𝐼1𝐸1 + 𝐼2𝐸2
 ( 7 ) 

𝑀2 =
𝑀

𝑛

𝐼2𝐸2

𝐼1𝐸1 + 𝐼2𝐸2
 ( 8 ) 

Normally, each element in the composite section will have to be verified/designed to sustain the stresses 

induced by the values of thrust (𝑁1 for element ‘1’ and 𝑁2 for element ‘2’) and bending moment (𝑀1 for 

element ‘1’ and 𝑀2 for element ‘2’) using classical equations of strength of materials. 

Note also that cases in which elements ‘2’ do not exist can be accounted for with these expressions —

this case would correspond, for example, to the case in which regularly spaced steel sets are installed 

without shotcrete. To consider this situation, we simply make 𝐸2 = 0 in the equations above. 

 

Demonstration of equations 1 through 8 

We analyze first the behavior of the elements ‘1’ and ‘2’ in the axial direction. Under the application of 

thrust, the axial strain that these elements undergo is 

𝜀1 =
𝑁1

𝐴1𝐸1
 ( 9 ) 

𝜀2 =
𝑁2

𝐴2𝐸2
 ( 10 ) 

Equilibrium and compatibility of axial deformation conditions can be written as follows, 
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𝑁 = 𝑛(𝑁1 + 𝑁2) ( 11 ) 

𝜀1 = 𝜀2 ( 12 ) 

Solving for 𝑁1 and 𝑁2 from the set of equations ( 9 ) through ( 12 ),we get the equations ( 5 ) and ( 6 ). 

Considering the equivalent section in Figure 1b, a similar relationship as in equations 

( 9 ) and ( 10 ) can be constructed using the total trust 𝑁, i.e., 

𝜀 =
𝑁

𝐴𝑒𝑞𝐸𝑒𝑞
 ( 13 ) 

Then, in view that the axial deformation 𝜀 of the equivalent section must also be equal to the deformation 

of each individual element (equations ( 9 ) and ( 10 )), and that the relationship between the axial force in 

each element and the total axial force in the equivalent section is given by equations ( 5 ) and ( 6 ), one 

gets, 

𝐴𝑒𝑞𝐸𝑒𝑞 = 𝑛(𝐴1𝐸1 + 𝐴2𝐸2) ( 14 ) 

A similar analysis as done above for axial deformation induced by thrust, can be done for rotation induced 

by bending moment, using the following relations 

𝜃1 =
𝑀1

𝐼1𝐸1
 ( 15 ) 

𝜃2 =
𝑀2

𝐼2𝐸2
 ( 16 ) 

𝜃 =
𝑀

𝐼𝐸
 ( 17 ) 

Then, one gets, 



 4  rocscience.com 

𝐼𝑒𝑞𝐸𝑒𝑞 = 𝑛(𝐼1𝐸1 + 𝐼2𝐸2) ( 18 ) 

For the rectangular equivalent section represented in Figure 1b, the cross-sectional area 𝐴𝑒𝑞 and the 

moment of inertia 𝐼𝑒𝑞 are, 

𝐴𝑒𝑞 = ℎ𝑒𝑞 × 1.0 𝑚 ( 19 ) 

𝐼𝑒𝑞 =
ℎ𝑒𝑞

3

12
× 1.0 𝑚 ( 20 ) 

The expressions for ℎ𝑒𝑞 and 𝐸𝑒𝑞 given by equations ( 1 ) and ( 2 ) are the ones that satisfy both, the 

conditions given by equations ( 14 ) and ( 18 ), with cross-sectional area and moment of inertia computed 

as in equations ( 19 ) and ( 20 ). 
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Figure 1. Problem statement. 
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Figure 2. Distribution of thrust and bending moment to each section. 


