
 
 
 
 

© 2022 Rocscience Inc. 

 

 

 

 

 

 

 

CPillar 

Factor of Safety Calculations – 
Elastic Analysis (Rectangular 
Pillar) 
Theory Manual 
 
 
  



  
 

 
 2 rocscience.com 

Table of Contents 
 

1. Introduction ......................................................................................................................................... 3 

2. Crown Pillar Geometry ....................................................................................................................... 4 

2.1. Rectangular Pillar ........................................................................................................................ 4 

3. Stresses in the Soil ............................................................................................................................. 5 

3.1. Water Pressure ............................................................................................................................ 5 

3.1.1. Impermeable Pillar .................................................................................................................. 5 

3.1.2. Permeable Pillar ...................................................................................................................... 5 

3.2. Horizontal Soil Pressure .............................................................................................................. 5 

3.2.1. Constant Stress Type .............................................................................................................. 6 

3.2.2. Gravity Stress Type ................................................................................................................. 6 

4. Dead Load ............................................................................................................................................ 7 

4.1. Self-Weight .................................................................................................................................. 7 

4.2. Overburden Weight ...................................................................................................................... 7 

4.3. Water Weight ............................................................................................................................... 8 

5. Plate Bending ...................................................................................................................................... 9 

5.1. Deflection ..................................................................................................................................... 9 

5.2. Rotation ...................................................................................................................................... 10 

5.3. Boundary Conditions ................................................................................................................. 11 

5.3.1. System of Equations ............................................................................................................. 12 

5.3.2. Bending Moment ................................................................................................................... 13 

5.4. Axial Stress Due to Bending ...................................................................................................... 13 

6. Shear Strength .................................................................................................................................. 14 

6.1. Normal Stress ............................................................................................................................ 14 

6.2. Shear Strength ........................................................................................................................... 14 

6.2.1. Mohr Coulomb ....................................................................................................................... 14 

6.2.2. Hoek-Brown ........................................................................................................................... 14 

6.2.3. Generalized Hoek-Brown ...................................................................................................... 15 

7. Factor of Safety ................................................................................................................................. 16 

7.1. Elastic Analysis .......................................................................................................................... 16 

7.2. Shear Factor of Safety ............................................................................................................... 16 

7.2.1. Elastic Buckling Factor of Safety ........................................................................................... 17 

8. References ......................................................................................................................................... 19 



 

 
 3 rocscience.com 

1. Introduction 
This paper documents the calculations used in CPillar to determine the shear failure and elastic buckling 
factors of safety for surface or underground crown pillars, and laminated roof beds. This involves the 
following series of steps: 

1. Determine the crown pillar geometry 
2. Determine the horizontal and vertical stress state of the soil/rock 
3. Determine the normal stresses on the abutments  
4. Compute the driving forces due to surcharge and self-weight 
5. Compute the moments and stresses due to bending 
6. Compute the resisting forces due to abutment shear strength 
7. Calculate the safety factor(s) 
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2. Crown Pillar Geometry 

2.1. Rectangular Pillar 
A rectangular pillar is defined by its length (𝑥𝑥), width (𝑦𝑦), and thickness (𝑧𝑧). A thickness of overburden (𝑡𝑡𝑜𝑜) 
can also be added above the pillar. The height of water (ℎ𝑤𝑤) can be specified to any height above the 
base of the pillar. 

 

Figure 2-1: Rectangular Pillar Geometry 

Where: 

𝑥𝑥  is the pillar length 

𝑦𝑦  is the pillar width 

𝑧𝑧  is the pillar height 

𝑡𝑡𝑜𝑜 is the thickness of overburden above the pillar 

ℎ𝑤𝑤 is the height of water from the base of the pillar 

𝛾𝛾𝑟𝑟  is the rock unit weight 

𝛾𝛾𝑜𝑜  is the overburden unit weight 

𝛾𝛾𝑤𝑤 is the water unit weight 
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3. Stresses in the Soil 

3.1. Water Pressure 
In CPillar, the water height is specified from the bottom of the pillar. Water pressure is taken into account 
if the pillar is specified as Permeable (RIGID and ELASTIC options only). 

 

3.1.1. Impermeable Pillar 
If the pillar is modelled as impermeable, then any water height less than the combined pillar and 
overburden thickness will have no impact on the effective vertical and horizontal stress computations. 
Porewater pressure, 𝜇𝜇 = 0. 

If water height is greater than the combined pillar and overburden thickness, then the weight of the free 
water will have an effect as an extra deadload on the pillar. 

 

3.1.2. Permeable Pillar 
If the pillar is modelled as permeable, then the effect of water pressure on vertical and lateral effective 
stress will be taken into account when computing stresses from GRAVITY.  

The average porewater pressure (located mid-height of the pillar) is computed as follows: 

If ℎ𝑤𝑤 < 𝑧𝑧: 

𝜇𝜇 =
1
2
𝛾𝛾𝑤𝑤ℎ𝑤𝑤 �

ℎ𝑤𝑤
𝑧𝑧
� 

 

If ℎ𝑤𝑤 ≥ 𝑧𝑧: 

𝜇𝜇 = 𝛾𝛾𝑤𝑤 �ℎ𝑤𝑤 −
1
2
𝑧𝑧� 

(1a) 

 

 

 

(1b) 

Where: 

𝜇𝜇 is the porewater pressure 

𝛾𝛾𝑤𝑤 is the water unit weight 

ℎ𝑤𝑤 is the water height 

𝑧𝑧 is the pillar height 

 
3.2. Horizontal Soil Pressure 
In CPillar, lateral stresses can be specified as either CONSTANT or GRAVITY.  
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3.2.1. Constant Stress Type 
Constant lateral stresses are entered directly into CPillar as 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦. These horizontal stresses act 
normal to the abutments. 

 

3.2.2. Gravity Stress Type 
Gravity lateral stresses are computed based on: 

• Locked-in stress at the top surface of the pillar, 
• Horizontal-to-vertical stress ratio constant,  
• Rock unit weight, 
• Pillar height, and 
• Porewater pressure (if the pillar is permeable). 

The average horizontal stresses (located mid-height of the pillar) is computed as follows: 

𝜎𝜎𝑥𝑥′ = 𝜎𝜎𝑙𝑙𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 +
1
2
𝐾𝐾𝑥𝑥𝛾𝛾𝑟𝑟𝑧𝑧 − 𝜇𝜇 

 

𝜎𝜎𝑦𝑦′ = 𝜎𝜎𝑙𝑙𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 +
1
2
𝐾𝐾𝑦𝑦𝛾𝛾𝑟𝑟𝑧𝑧 − 𝜇𝜇 

(2a) 

 

 

(2b) 

Where: 

𝜎𝜎𝑥𝑥′  and 𝜎𝜎𝑦𝑦′  are the lateral effective soil stresses 

𝜎𝜎𝑙𝑙𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is the constant locked in soil stress due to soil loading history 

𝐾𝐾𝑥𝑥 and 𝐾𝐾𝑦𝑦  are the horizontal-to-vertical stress ratio constants 

𝛾𝛾𝑟𝑟  is the rock unit weight 

𝑧𝑧  is the pillar height 

𝜇𝜇  is the porewater pressure 
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4. Dead Load 
The driving forces responsible for the destabilization of the crown pillar are attributed by the deadload of 
the entire system. The total dead load is computed by summing all the rock, overburden, and water 
weights. 

𝑞𝑞 = 𝑊𝑊𝑟𝑟 + 𝑊𝑊𝑜𝑜 + 𝑊𝑊𝑤𝑤 (3) 

Where: 

𝑞𝑞 is the total dead load (force per area) 

𝑊𝑊𝑟𝑟 is the weight of rock (i.e. pillar) (force per area) 

𝑊𝑊𝑜𝑜 is the weight of overburden (force per area) 

𝑊𝑊𝑤𝑤 is the weight of free water (force per area) 

 
4.1. Self-Weight 
The self-weight of the pillar is calculated as follows: 

𝑊𝑊𝑟𝑟 = 𝛾𝛾𝑟𝑟𝑧𝑧 (4) 

Where: 

𝑊𝑊𝑟𝑟 is the weight of rock (i.e. pillar) 

𝛾𝛾𝑟𝑟 is the unit weight of rock 

𝑧𝑧 is the height of pillar 

 
4.2. Overburden Weight 
The weight of the overburden is calculated as follows: 

𝑊𝑊𝑜𝑜 = 𝛾𝛾𝑜𝑜𝑡𝑡𝑜𝑜 (5) 

Where: 

𝑊𝑊𝑜𝑜 is the weight of overburden 

𝛾𝛾𝑜𝑜 is the unit weight of overburden 

𝑡𝑡𝑜𝑜 is the thickness of overburden 
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4.3. Water Weight 
The weight of the free water is calculated as follows: 
 

If ℎ𝑤𝑤 ≤ 𝑧𝑧 + 𝑡𝑡𝑜𝑜: 

 

𝑊𝑊𝑤𝑤 = 0 

 

(6a) 

If ℎ𝑤𝑤 > 𝑧𝑧 + 𝑡𝑡𝑜𝑜: 𝑊𝑊𝑤𝑤 = 𝛾𝛾𝑤𝑤[ℎ𝑤𝑤 − (𝑧𝑧 + 𝑡𝑡𝑜𝑜)] (6b) 

Where: 

𝑊𝑊𝑤𝑤 is the weight of free water 

𝛾𝛾𝑤𝑤 is the unit weight of water 

ℎ𝑤𝑤 is the height of water 

𝑧𝑧 is the height of pillar 

𝑡𝑡𝑜𝑜 is the thickness of overburden 
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5. Plate Bending 
In CPillar, the bending of the pillar is calculated using the equations in “Theory of Plates and Shells” by 
Timoshenko and Woinowsky-Krieger (1987). The pillar is idealized as a plate of uniform thickness, 𝑧𝑧, with 
dimensions 𝑎𝑎 and 𝑏𝑏. The plate is subject to a uniformly distributed area load, 𝑞𝑞 (total dead load). The 
boundary conditions are assumed to be clamped on all edges (Figure 5-1). 

 

Figure 5-1: Rectangular Plate with All Edges Built In, Uniform Load 𝒒𝒒 (Timoshenko and Woinowsky-
Krieger, 1987) 

The solution involves the superposition of deflection solutions for a simply supported rectangular plate, 
and a rectangular plate subject to moments distributed along the edges (Timoshenko and Woinowsky-
Krieger, 1987).  

 

5.1. Deflection 
The deflection of this system is symmetric about each x-axis and y-axis of interest. The maximum 
deflection occurs in the middle of the plate (𝑥𝑥 = 0,𝑦𝑦 = 0).  

The deflection of a simply supported rectangular plate can be represented by the following series 
expansion: 

For −𝑎𝑎
2
≤ 𝑥𝑥 ≤ 𝑎𝑎

2
 and −𝑏𝑏

2
≤ 𝑦𝑦 ≤ 𝑏𝑏

2
: 

𝑤𝑤 =
4𝑞𝑞𝑎𝑎4

𝜋𝜋5𝐷𝐷
�

(−1)(𝑚𝑚−1)/2

𝑚𝑚5 cos
𝑚𝑚𝜋𝜋𝑥𝑥
𝑎𝑎

�1 −
𝛼𝛼𝑚𝑚 tanh𝛼𝛼𝑚𝑚 + 2

2 cosh𝛼𝛼𝑚𝑚
cosh

𝑚𝑚𝜋𝜋𝑦𝑦
𝑎𝑎

+
1

2 cosh𝛼𝛼𝑚𝑚
𝑚𝑚𝜋𝜋𝑦𝑦
𝑎𝑎

sinh
𝑚𝑚𝜋𝜋𝑦𝑦
𝑎𝑎

�
𝑚𝑚=1,3,5,…

 

 

with 

𝛼𝛼𝑚𝑚 =
𝑚𝑚𝜋𝜋𝑏𝑏
2𝑎𝑎

 

(7) 
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Where: 

𝑤𝑤  is the vertical deflection 

𝑞𝑞  is the uniform load magnitude (areal load) 

𝐷𝐷  is the flexural rigidity 𝐷𝐷 = 𝐸𝐸ℎ3

12(1−𝜈𝜈2)
 

𝑎𝑎  is the pillar length 

𝑏𝑏  is the pillar width 

 
The deflection caused by a moment distributed along the edges of a rectangular plate can be represented 
by the following series expansions: 

 
For −𝑎𝑎

2
≤ 𝑥𝑥 ≤ 𝑎𝑎

2
 and −𝑏𝑏

2
≤ 𝑦𝑦 ≤ 𝑏𝑏

2
: 

𝑤𝑤 =
𝑎𝑎2

2𝜋𝜋2𝐷𝐷
�

sin𝑚𝑚𝜋𝜋𝑥𝑥𝑎𝑎
𝑚𝑚2 cosh𝛼𝛼𝑚𝑚

𝐸𝐸𝑚𝑚 �𝛼𝛼𝑚𝑚 tanh𝛼𝛼𝑚𝑚 cosh
𝑚𝑚𝜋𝜋𝑦𝑦
𝑎𝑎

−
𝑚𝑚𝜋𝜋𝑦𝑦
𝑎𝑎

sinh
𝑚𝑚𝜋𝜋𝑦𝑦
𝑎𝑎 �

𝑚𝑚=1,3,5,…

 

with 𝛼𝛼𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑏𝑏
2𝑎𝑎

 

 

(8) 

From Equation (17), 

Sub 𝑥𝑥 + 𝑎𝑎
2
 for 𝑥𝑥: 

𝑤𝑤1 = −
𝑎𝑎2

2𝜋𝜋2𝐷𝐷
� 𝐸𝐸𝑚𝑚

(−1)
𝑚𝑚−1
2

𝑚𝑚2 cosh𝛼𝛼𝑚𝑚
cos

𝑚𝑚𝜋𝜋𝑥𝑥
𝑎𝑎 �

𝑚𝑚𝜋𝜋𝑦𝑦
𝑎𝑎

sinh
𝑚𝑚𝜋𝜋𝑦𝑦
𝑎𝑎

− 𝛼𝛼𝑚𝑚 tanh𝛼𝛼𝑚𝑚 cosh
𝑚𝑚𝜋𝜋𝑦𝑦
𝑎𝑎 �

𝑚𝑚=1,3,5,…

 

Sub 𝑦𝑦 + 𝑏𝑏
2
 for 𝑦𝑦: 

𝑤𝑤2 =
𝑎𝑎2

2𝜋𝜋2𝐷𝐷
�

sin𝑚𝑚𝜋𝜋𝑥𝑥𝑎𝑎
𝑚𝑚2 cosh𝛼𝛼𝑚𝑚

𝐸𝐸𝑚𝑚 �𝛼𝛼𝑚𝑚 tanh𝛼𝛼𝑚𝑚 cosh
𝑚𝑚𝜋𝜋 �𝑦𝑦 + 𝑏𝑏

2�
𝑎𝑎

−
𝑚𝑚𝜋𝜋 �𝑦𝑦 + 𝑏𝑏

2�
𝑎𝑎

sinh
𝑚𝑚𝜋𝜋 �𝑦𝑦 + 𝑏𝑏

2�
𝑎𝑎

�
𝑚𝑚=1,3,5,…

 

 

(9) 

5.2. Rotation 
Likewise, the rotation must also take into account the effects from the simple supports and the moment 
along the edges. 

The rotation from the simply supported condition: 

 
From Equation (7), 

Rotation at edge 𝑦𝑦 = 𝑏𝑏
2
: 

(10) 
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�
𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦
�
𝑦𝑦=𝑏𝑏/2

=
2𝑞𝑞𝑎𝑎3

𝜋𝜋4𝐷𝐷
�

(−1)(𝑚𝑚−1)/2

𝑚𝑚4 cos
𝑚𝑚𝜋𝜋𝑥𝑥
𝑎𝑎

�
𝛼𝛼𝑚𝑚

cosh2 𝛼𝛼𝑚𝑚
− tanh𝛼𝛼𝑚𝑚�

𝑚𝑚=1,3,5,…

 

 

Rotation at edge 𝑥𝑥 = 𝑎𝑎
2
: 

�
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥
�
𝑥𝑥=𝑎𝑎/2

=
2𝑞𝑞𝑏𝑏3

𝜋𝜋4𝐷𝐷
�

(−1)(𝑚𝑚−1)/2

𝑚𝑚4 cos
𝑚𝑚𝜋𝜋𝑦𝑦
𝑏𝑏

�
𝛽𝛽𝑚𝑚

cosh2 𝛽𝛽𝑚𝑚
− tanh𝛽𝛽𝑚𝑚�

𝑚𝑚=1,3,5,…

 

 
The rotation from the distributed moment along the edges: 

From Equation (9), 

Rotation along edge 𝑦𝑦 = 𝑏𝑏
2
:  

�
𝜕𝜕𝑤𝑤1
𝜕𝜕𝑦𝑦

�
𝑦𝑦=𝑏𝑏2

= −
𝑎𝑎

2𝜋𝜋𝐷𝐷
� 𝐸𝐸𝑚𝑚

(−1)
𝑚𝑚−1
2

𝑚𝑚
cos

𝑚𝑚𝜋𝜋𝑥𝑥
𝑎𝑎

�tanh𝛼𝛼𝑚𝑚 +
𝛼𝛼𝑚𝑚

cosh2 𝛼𝛼𝑚𝑚
�

𝑚𝑚=1,3,5,…

 

�
𝜕𝜕𝑤𝑤1
𝜕𝜕𝑥𝑥

�
𝑥𝑥=𝑎𝑎/2

= −
1

4𝐷𝐷
� 𝐸𝐸𝑚𝑚

1
cosh2 𝛼𝛼𝑚𝑚

�𝑏𝑏 sinh𝛼𝛼𝑚𝑚 cosh
𝑚𝑚𝜋𝜋𝑦𝑦
𝑎𝑎

− 2𝑦𝑦 cosh𝛼𝛼𝑚𝑚 sinh
𝑚𝑚𝜋𝜋𝑦𝑦
𝑎𝑎 �

𝑚𝑚=1,3,5,…

= −
4𝑏𝑏2

𝜋𝜋2𝐷𝐷𝑎𝑎
�

𝐸𝐸𝑚𝑚
𝑚𝑚3 �

𝑖𝑖(−1)(𝑙𝑙−1)/2

�𝑏𝑏
2

𝑎𝑎2 + 𝑖𝑖2
𝑚𝑚2�

2 cos
𝑖𝑖𝜋𝜋𝑦𝑦
𝑏𝑏

𝑙𝑙=1,3,5,…𝑚𝑚=1,3,5,…

 

Rotation along edge 𝑥𝑥 = 𝑎𝑎
2
: 

�
𝜕𝜕𝑤𝑤2
𝜕𝜕𝑦𝑦

�
𝑦𝑦=𝑏𝑏/2

= −
4𝑎𝑎2

𝜋𝜋2𝐷𝐷𝑏𝑏
�

𝐹𝐹𝑚𝑚
𝑚𝑚3 �

𝑖𝑖(−1)(𝑙𝑙−1)/2

�𝑎𝑎
2

𝑏𝑏2 + 𝑖𝑖2
𝑚𝑚2�

2 cos
𝑖𝑖𝜋𝜋𝑥𝑥
𝑎𝑎

𝑙𝑙=1,3,5,…𝑚𝑚=1,3,5,…

 

�
𝜕𝜕𝑤𝑤2
𝜕𝜕𝑥𝑥

�
𝑥𝑥=𝑎𝑎/2

= −
𝑏𝑏

2𝜋𝜋𝐷𝐷
� 𝐹𝐹𝑚𝑚

(−1)(𝑚𝑚−1)/2

𝑚𝑚
cos

𝑚𝑚𝜋𝜋𝑦𝑦
𝑏𝑏

�tanh𝛼𝛼𝑚𝑚 +
𝛽𝛽𝑚𝑚

cosh2 𝛽𝛽𝑚𝑚
�

𝑚𝑚=1,3,5,…

 

 

(11) 

5.3. Boundary Conditions 
Since the edges are clamped, the rotation is restricted: 

Edges 𝑦𝑦 = ± 𝑏𝑏
2
: 

�
𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦
�
𝑦𝑦=𝑏𝑏2

+ �
𝜕𝜕𝑤𝑤1
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑤𝑤2
𝜕𝜕𝑦𝑦

�
𝑦𝑦=𝑏𝑏2

= 0 

Edges 𝑥𝑥 = ± 𝑎𝑎
2
: 

(12a) 
 

 

(12b) 
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�
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥
�
𝑥𝑥=𝑎𝑎2

+ �
𝜕𝜕𝑤𝑤1
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑤𝑤2
𝜕𝜕𝑥𝑥

�
𝑥𝑥=𝑎𝑎2

= 0 

 

5.3.1. System of Equations 
From Equation (12), 

Edges 𝑦𝑦 = ± 𝑏𝑏
2
: 

2𝑞𝑞𝑎𝑎3

𝜋𝜋4𝐷𝐷
�

(−1)
𝑙𝑙−1
2

𝑖𝑖4
cos

𝑖𝑖𝜋𝜋𝑥𝑥
𝑎𝑎
�

𝛼𝛼𝑙𝑙
cosh2 𝛼𝛼𝑙𝑙

− tanh𝛼𝛼𝑙𝑙�
𝑙𝑙=1,3,5,…

−
𝑎𝑎

2𝜋𝜋𝐷𝐷
� 𝐸𝐸𝑙𝑙

(−1)
𝑙𝑙−1
2

𝑖𝑖
cos

𝑖𝑖𝜋𝜋𝑥𝑥
𝑎𝑎
�tanh𝛼𝛼𝑙𝑙 +

𝛼𝛼𝑙𝑙
cosh2 𝛼𝛼𝑙𝑙

�
𝑙𝑙=1,3,5,…

−
4𝑎𝑎2

𝜋𝜋2𝐷𝐷𝑏𝑏
�

𝐹𝐹𝑚𝑚
𝑚𝑚3 �

𝑖𝑖(−1)
𝑙𝑙−1
2

�𝑎𝑎
2

𝑏𝑏2 + 𝑖𝑖2
𝑚𝑚2�

2 cos
𝑖𝑖𝜋𝜋𝑥𝑥
𝑎𝑎

𝑙𝑙=1,3,5,…𝑚𝑚=1,3,5,…

= 0 

therefore,  

𝐸𝐸𝑙𝑙
𝑖𝑖
�tanh𝛼𝛼𝑙𝑙 +

𝛼𝛼𝑙𝑙
cosh2 𝛼𝛼𝑙𝑙

� +
8𝑎𝑎𝑖𝑖
𝜋𝜋𝑏𝑏

�
𝐹𝐹𝑚𝑚
𝑚𝑚3

1

�𝑎𝑎
2

𝑏𝑏2 + 𝑖𝑖2
𝑚𝑚2�

2
𝑚𝑚=1,3,5,…

=
4𝑞𝑞𝑎𝑎2

𝜋𝜋3𝑖𝑖4
�

𝛼𝛼𝑙𝑙
cosh2 𝛼𝛼𝑙𝑙

− tanh𝛼𝛼𝑙𝑙� 

 

Edges 𝑥𝑥 = ± 𝑎𝑎
2
: 

2𝑞𝑞𝑏𝑏3

𝜋𝜋4𝐷𝐷
�

(−1)(𝑚𝑚−1)/2

𝑚𝑚4 cos
𝑚𝑚𝜋𝜋𝑦𝑦
𝑏𝑏

�
𝛽𝛽𝑚𝑚

cosh2 𝛽𝛽𝑚𝑚
− tanh𝛽𝛽𝑚𝑚�

𝑚𝑚=1,3,5,…

−
4𝑏𝑏2

𝜋𝜋2𝐷𝐷𝑎𝑎
�

𝐸𝐸𝑚𝑚
𝑚𝑚3 �

𝑖𝑖(−1)
𝑙𝑙−1
2

�𝑏𝑏
2

𝑎𝑎2 + 𝑖𝑖2
𝑚𝑚2�

2 cos
𝑖𝑖𝜋𝜋𝑦𝑦
𝑏𝑏

𝑙𝑙=1,3,5,…𝑚𝑚=1,3,5,…

−
𝑏𝑏

2𝜋𝜋𝐷𝐷
� 𝐹𝐹𝑙𝑙

(−1)
𝑙𝑙−1
2

𝑖𝑖
cos

𝑖𝑖𝜋𝜋𝑦𝑦
𝑏𝑏
�tanh𝛼𝛼𝑙𝑙 +

𝛽𝛽𝑙𝑙
cosh2 𝛽𝛽𝑙𝑙

�
𝑙𝑙=1,3,5,…

= 0 

therefore,  

𝐹𝐹𝑙𝑙
𝑖𝑖
�tanh𝛽𝛽𝑙𝑙 +

𝛽𝛽𝑙𝑙
cosh2 𝛽𝛽𝑙𝑙

� +
8𝑏𝑏𝑖𝑖
𝜋𝜋𝑎𝑎

�
𝐸𝐸𝑚𝑚
𝑚𝑚3

1

�𝑏𝑏
2

𝑎𝑎2 + 𝑖𝑖2
𝑚𝑚2�

2
𝑚𝑚=1,3,5,…

=
4𝑞𝑞𝑏𝑏2

𝜋𝜋3𝑖𝑖4
�

𝛽𝛽𝑙𝑙
cosh2 𝛽𝛽𝑙𝑙

− tanh𝛽𝛽𝑙𝑙� 

(13a) 
 

 

 

 

 

 

 

 

 

 

 

 

 

(13b) 

Where: 

𝐸𝐸𝑙𝑙 ,𝐸𝐸𝑚𝑚,𝐹𝐹𝑙𝑙 and 𝐹𝐹𝑚𝑚 are coefficients (unknown) 

Expanding to the 𝑛𝑛th term of the series results in a 2𝑛𝑛 by 2𝑛𝑛 system of equations. 
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5.3.2. Bending Moment 

Moment along edges 𝑦𝑦 = ± 𝑏𝑏
2
: 

�𝑀𝑀𝑦𝑦�𝑦𝑦=±𝑏𝑏/2
= � (−1)

𝑚𝑚−1
2 𝐸𝐸𝑚𝑚  cos

𝑚𝑚𝜋𝜋𝑥𝑥
𝑎𝑎

𝑚𝑚=1,3,5,…

 

 

Moment along edges 𝑥𝑥 = ± 𝑎𝑎
2
: 

(𝑀𝑀𝑥𝑥)𝑥𝑥=±𝑎𝑎/2 = � (−1)
𝑚𝑚−1
2 𝐹𝐹𝑚𝑚  cos

𝑚𝑚𝜋𝜋𝑦𝑦
𝑏𝑏

𝑚𝑚=1,3,5,…

 

 

(14a) 
 

 

 

 

(14b) 

Where: 

𝑀𝑀𝑦𝑦  is the bending moment about the y-axis, per unit perpendicular to edge 

𝑀𝑀𝑥𝑥 is the bending moment about the x-axis, per unit perpendicular to edge 

 

To be conservative, the moments are taken at the mid-point along the edge (maximum edge moments). 

Note: In CPillar, the series expansion is taken to 20 terms. 20 terms are sufficient since the functions 
series solutions converge rapidly. 

 
5.4. Axial Stress Due to Bending 
The tensile stresses due to the bending moments are computed as follows: 

For a rectangular cross-section, 

Tensile (axial in x-direction) stress due to bending about the y-axis: 

𝜎𝜎𝑏𝑏𝑥𝑥 =
6𝑀𝑀𝑦𝑦

𝑧𝑧2
 

 

Tensile (axial in y-direction) stress due to bending about the x-axis: 

𝜎𝜎𝑏𝑏𝑦𝑦 =
6𝑀𝑀𝑥𝑥

𝑧𝑧2
 

(15a) 

 

 

 

(15b) 

Where: 

𝜎𝜎𝑏𝑏𝑥𝑥 and 𝜎𝜎𝑏𝑏𝑦𝑦  are the tensile stresses due to bending, per unit perpendicular to edge 

𝑧𝑧   is the pillar height 
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6. Shear Strength 
The resisting forces are provided by the shear strength along the abutments of the pillar.  

 

6.1. Normal Stress 
The normal stresses to the abutments are equal to the lateral (principal) effective soil stresses. 

𝑁𝑁𝑥𝑥 = 𝜎𝜎𝑥𝑥′  

𝑁𝑁𝑦𝑦 = 𝜎𝜎𝑦𝑦′  

(16) 

Where: 

𝑁𝑁𝑥𝑥 and 𝑁𝑁𝑦𝑦  are the normal stresses along the abutments 

𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are the lateral soil stresses 

 

6.2. Shear Strength  
The following shear strength criteria are available in CPillar for defining the strength of the rock: 

1. Mohr-Coulomb 
2. Hoek-Brown 
3. Generalized Hoek-Brown 

 

6.2.1. Mohr Coulomb 
𝜏𝜏 = 𝑐𝑐 + 𝑁𝑁 ⋅ tan𝜙𝜙 (17) 

Where: 

𝑐𝑐  is the cohesion 

𝑁𝑁  is the normal stress along the abutments 

𝜙𝜙  is the friction angle 

 
6.2.2. Hoek-Brown 
Note that this is a special case of the Generalized Hoek-Brown criterion, with the constant 𝑎𝑎 = 0.5. 
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𝜎𝜎1′ = 𝜎𝜎3′ + 𝜎𝜎𝑙𝑙𝑙𝑙 �𝑚𝑚𝑏𝑏
𝜎𝜎3′

𝜎𝜎𝑙𝑙𝑙𝑙
+ 𝑠𝑠�

0.5

 

(Hoek and Bray, 1981) 

If 𝑠𝑠 = 0:  

𝜏𝜏 = 0 

If 𝑠𝑠 ≠ 0: 

𝜏𝜏 = �
1

tan𝜙𝜙𝑙𝑙
− cos𝜙𝜙𝑙𝑙�

𝑚𝑚𝑏𝑏𝜎𝜎𝑙𝑙𝑙𝑙
8

 

with  

𝜙𝜙𝑙𝑙 = tan−1 �
1

√4ℎ cos2 𝜃𝜃 − 1
� 

ℎ = 1 +
16(𝑚𝑚𝑏𝑏 ∗ 𝑁𝑁 + 𝑠𝑠 ∗ 𝜎𝜎𝑙𝑙𝑙𝑙)

3𝑚𝑚𝑏𝑏
2𝜎𝜎𝑙𝑙𝑙𝑙

 

𝜃𝜃 =
1
3
�
𝜋𝜋
2

+ tan−1
1

√ℎ3 − 1
� 

(18) 

Where: 

𝑚𝑚𝑏𝑏 is a reduced value (for the rock mass) of the material constant mi (for the intact rock) 

𝑠𝑠  is a constant which depends upon the characteristics of the rock mass 

𝜎𝜎𝑙𝑙𝑙𝑙 is the uniaxial compressive strength (UCS) of the intact rock pieces 

𝜎𝜎1′ is the axial effective principal stress 

𝜎𝜎3′  is the confining effective principal stress 

 
6.2.3. Generalized Hoek-Brown 
Generalized Hoek-Brown (𝑚𝑚𝑏𝑏, 𝑠𝑠, 𝑎𝑎): 

𝜎𝜎1′ = 𝜎𝜎3′ + 𝜎𝜎𝑙𝑙𝑙𝑙 �𝑚𝑚𝑏𝑏
𝜎𝜎3′

𝜎𝜎𝑙𝑙𝑙𝑙
+ 𝑠𝑠�

𝑎𝑎

 

(Hoek and Bray, 1981) 

Check for tensile strength: 

𝜎𝜎𝑡𝑡 = −
𝑠𝑠𝜎𝜎𝑙𝑙𝑙𝑙
𝑚𝑚𝑏𝑏

 

If 𝑁𝑁 < 𝜎𝜎𝑡𝑡: 

 

(19) 
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Generalized Hoek-Brown (𝐺𝐺𝐺𝐺𝐺𝐺, 𝑚𝑚𝑖𝑖, 𝐷𝐷): 

𝑚𝑚𝑏𝑏 = 𝑚𝑚𝑙𝑙 exp �
𝐺𝐺𝐺𝐺𝐺𝐺 − 100
28 − 14𝐷𝐷

� 

 

(20) 

𝑠𝑠 = exp �
𝐺𝐺𝐺𝐺𝐺𝐺 − 100

9 − 3𝐷𝐷
� 

 

(21) 

𝑎𝑎 =
1
2

+
1
6
�exp �−

𝐺𝐺𝐺𝐺𝐺𝐺
15

� − exp �−
20
3
�� 

 

(22) 

Where: 

𝑚𝑚𝑏𝑏 is a reduced value (for the rock mass) of the material constant mi (for the intact rock) 

𝑠𝑠, 𝑎𝑎 are constants which depend upon the characteristics of the rock mass 

𝜎𝜎𝑙𝑙𝑙𝑙 is the uniaxial compressive strength (UCS) of the intact rock pieces 

𝜎𝜎1′ is the axial effective principal stress 

𝜎𝜎3′  is the confining effective principal stress 

𝐺𝐺𝐺𝐺𝐺𝐺 is the Geological Strength Index 

𝑚𝑚𝑙𝑙  is a material constant for the intact rock 

𝐷𝐷  is a "disturbance factor" which depends upon the degree of disturbance to which the rock mass 
has been subjected by blast damage and stress relaxation (varies from 0 for undisturbed in situ rock 
masses to 1 for very disturbed rock masses) 

 

7. Factor of Safety 

7.1. Elastic Analysis 
For an ELASTIC analysis, two failure modes are considered: 

1. Shear, and 
2. Elastic Buckling. 

The pillar is treated as a clamped beam, with span and breadth equal to the shorter and longer of the 𝑥𝑥 
and 𝑦𝑦 dimensions, respectively. 

 

7.2. Shear Factor of Safety 
Similar to RIGID analysis, the factor of safety of the pillar against vertical downward sliding is given by the 
ratio of the sum of the shear forces acting on the four sides of the pillar, to the total weight of the pillar, 
including overburden and free water.  
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In an ELASTIC analysis, the area on which the shear stresses act is lowered if bending stresses are high. 
If confining stresses are very low, the shear factor of safety will be about half that calculated from a RIGID 
analysis. As confining stress is increased, the correction factor for bending approaches 1. Therefore, at 
high confining stress, the shear factor of safety calculated from either a RIGID or ELASTIC analysis will 
be the same. 

If the abutments are under tension, then apply a correction factor: 

If 𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑡𝑡𝑥𝑥 < 0: 

𝐶𝐶𝑥𝑥 =
�𝜎𝜎𝑏𝑏𝑥𝑥 − 𝜎𝜎𝑥𝑥�

2𝜎𝜎𝑡𝑡𝑥𝑥
 

𝑧𝑧1 = 𝐶𝐶𝑥𝑥𝑧𝑧 

If 𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑡𝑡𝑦𝑦 < 0: 

𝐶𝐶𝑦𝑦 =
�𝜎𝜎𝑏𝑏𝑦𝑦 − 𝜎𝜎𝑦𝑦�

2𝜎𝜎𝑡𝑡𝑦𝑦
 

𝑧𝑧2 = 𝐶𝐶𝑦𝑦𝑧𝑧 

(23a) 

 

 

 

(23b) 

Where: 

𝐶𝐶𝑥𝑥 and 𝐶𝐶𝑦𝑦 are the correction factors for bending in the x and y directions (between 0.5 to 1.0) 

𝜎𝜎𝑏𝑏𝑥𝑥 and 𝜎𝜎𝑏𝑏𝑦𝑦 are the tensile axial stresses due to bending  

𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are the axial stresses due to lateral soil pressure  

𝑧𝑧1 and 𝑧𝑧2 are the corrected pillar heights  

 
The correction factor effectively reduces the shear area in the factor of safety computations. 

𝐹𝐹𝐺𝐺𝑠𝑠ℎ𝑙𝑙𝑎𝑎𝑟𝑟 =
𝑠𝑠ℎ𝑒𝑒𝑎𝑎𝑒𝑒 𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒

𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑 𝑙𝑙𝑙𝑙𝑎𝑎𝑑𝑑
=

2 �𝜏𝜏𝑥𝑥𝑥𝑥𝑧𝑧1𝑥𝑥 +
𝜏𝜏𝑦𝑦𝑥𝑥𝑧𝑧2
𝑦𝑦 �

𝑞𝑞
 

(24) 

Where: 

𝐹𝐹𝐺𝐺𝑠𝑠ℎ𝑙𝑙𝑎𝑎𝑟𝑟  is the shear factor of safety 

𝜏𝜏𝑥𝑥𝑥𝑥 and 𝜏𝜏𝑦𝑦𝑥𝑥 are the shear strengths 

𝑧𝑧1 and 𝑧𝑧2 are the corrected pillar heights  

𝑥𝑥  is the pillar length 

𝑦𝑦  is the pillar width 

𝑞𝑞  is the total dead load 

 
7.2.1. Elastic Buckling Factor of Safety 
The horizontal confining stress is set equal to the stress along the breadth of the beam (the longer 
dimension). 
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Buckling or bending is assumed to occur in the longer dimension. If the 𝑥𝑥 and 𝑦𝑦 dimensions are equal, 
then bending direction is dictated by the principal horizontal stress magnitudes. 

If 𝑥𝑥 = 𝑦𝑦: 

𝜎𝜎𝑙𝑙 = max�𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦� 

𝐿𝐿𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙 = 𝑥𝑥 = 𝑦𝑦 

If 𝑥𝑥 > 𝑦𝑦: 

𝜎𝜎𝑙𝑙 = 𝜎𝜎𝑦𝑦 

𝐿𝐿𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙 = 𝑦𝑦 

If 𝑥𝑥 < 𝑦𝑦: 

𝜎𝜎𝑙𝑙 = 𝜎𝜎𝑥𝑥 

𝐿𝐿𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙 = 𝑥𝑥 

(25a) 

 

 

(25b) 

 

 

(25c) 

Where: 

𝜎𝜎𝑙𝑙𝑙𝑙  is the horizontal confining stress 

𝐿𝐿𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙  is the span of the pillar  

𝑥𝑥  is the pillar length 

𝑦𝑦  is the pillar width 

𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are the principal horizontal stresses 

 
If the lateral stresses are very low, the elastic buckling safety factor will be very high.  

𝐹𝐹𝐺𝐺𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏 =
𝐸𝐸𝐸𝐸𝑙𝑙𝑒𝑒𝑒𝑒 𝑏𝑏𝐸𝐸𝑐𝑐𝑏𝑏𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏 𝑠𝑠𝑡𝑡𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠

ℎ𝑙𝑙𝑒𝑒𝑖𝑖𝑧𝑧𝑙𝑙𝑛𝑛𝑡𝑡𝑎𝑎𝑙𝑙 𝑐𝑐𝑙𝑙𝑛𝑛𝑐𝑐𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑏𝑏 𝑠𝑠𝑡𝑡𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠
=
�𝜋𝜋

2𝐸𝐸𝑟𝑟𝑚𝑚𝑧𝑧2
3𝐿𝐿𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙2 

�

𝜎𝜎𝑙𝑙
 

(26) 

Where: 

𝐹𝐹𝐺𝐺𝑠𝑠ℎ𝑙𝑙𝑎𝑎𝑟𝑟  is the shear factor of safety 

𝐸𝐸𝑟𝑟𝑚𝑚  is the rock modulus 

𝑧𝑧  is the pillar height  

𝐿𝐿  is the span of the pillar  

𝜎𝜎𝑙𝑙  is the horizontal confining stress 

 

There is a high degree of uncertainty in computing elastic buckling factor of safety for rock material. 
Therefore, span-to-depth ratios more than 3 are not recommended for an ELASTIC analysis. 
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