

CPillar

Crown Pillar Stability Analysis

Verification Manual

© 2019 Copyright Rocscience Inc.

Table of Contents

CPillai	gid Analysis Verification1				
1.	CPillar Verification Problem #1	2			
Refe	ences				

CPillar Rigid Analysis Verification

This document presents several examples, which have been used as verification problems for *CPillar*. *CPillar* is an engineering analysis program for assessing the stability of surface or underground crown pillars, and laminated roof beds, produced by Rocscience Inc. of Toronto, Canada.

The results produced by *CPillar* agree very well with the documented examples and confirm the reliability of *CPillar* results.

1. CPillar Verification Problem #1

[CPillar Build 5.001]

1.1. Problem Description

In this verification example, the Rigid analysis results of a rectangular pillar in *CPillar* are verified against the sensitivity analysis conducted in the paper, "A Limit Equilibrium Analysis of Surface Crown Pillar Stability", by Hoek (1989). The Rigid analysis method in *CPillar* uses the same equations as Hoek (1989), whereby only shear failure (sliding) along the abutments are considered. The computations should yield identical results.

1.2. Analytical Solution

The model geometry, lateral stress and strength parameters are from Hoek (1989).

Geometry and Material Properties

Table 1-1: Pillar Geometry and Materials

Geometry Input Data				
Pillar Length (m)	7			
Pillar Width (m)	20			
Pillar Height (m)	5			
Rock Unit Weight (MN/m³)	0.027			
Overburden Unit Weight (MN/m³)	0			
Water Unit Weight (MN/m³)	0.01			
Pillar Permeable	Yes			

Lateral Stress

Table 1-2: Lateral Stress

Lateral Stress Input Data					
Stress Type	Gravity				
Water Height (m)	5				
Overburden Height (m)	0				
Locked In Stress (MPa)	0				
Horizontal/Vertical Kx	0.5				
Horizontal/Vertical Ky	0.5				

Strength

Table 1-3: Strength Criterion

Strength Input Data				
Strength Type	Hoek-Brown			
Intact UCS (MPa)	60			
Rock Mass Rating RMR	40			
Material Constant m_i	10			
Rock Mass m Value*	0.1376			
Rock Mass s Value*	4.54×10 ⁻⁵			

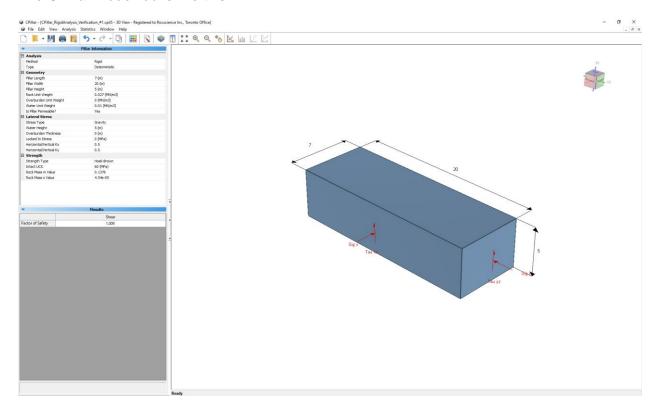
* See equations below for computation.

Rock mass m value is calculated from m_i and RMR using:

$$m = m_i \exp\left(\frac{RMR - 100}{14}\right) = (10) \exp\left(\frac{40 - 100}{14}\right) = 0.1376$$

Rock mass s value is calculated from RMR using:

$$s = \exp\left(\frac{RMR - 100}{6}\right) = 4.54 \times 10^{-5}$$


1.3. CPillar Analysis

Deterministic Analysis

Set the Analysis Method in CPillar to Rigid and Analysis Type to Deterministic.

Enter the input values from Table 1-1, Table 1-2, and Table 1-3 into CPillar.

The CPillar model looks like this:

Sensitivity Analysis

A sensitivity analysis is performed in *CPillar* to see how sensitive the Factor of Safety is to changing parameters. The following parameters were varied:

Table 1-4: Sensitivity Ranges

Sanaitivity Baramatar	Range	
Sensitivity Parameter	Minimum	Maximum
Rock Mass Rating RMR	1	80
Horizontal/Vertical Stress Ratio $K(K_x = K_y)$	0.1	5
Water Height Z_w (m)	0	5
Pillar Height Z (m) ($Z_w = Z$)	0.1	30
Material Constant m_i	5	30
Intact UCS (MPa)	20	100

Note:

When varying the Horizontal-to-Vertical Stress Ratio (K), both K_x and K_y are changed simultaneously in *CPillar*.

When varying Pillar Height (Z), Water Height is changed simultaneously in *CPillar* to reflect a fully wetted pillar.

When varying Rock Mass Rating (RMR) or Material Constant m_i , the *CPillar* inputs for m and s are calculated based on the equations in Section 1.2.

1.4. Results

Deterministic Analysis

The deterministic inputs were calibrated by Hoek (1989) to give a Factor of Safety of approximately 1. The Factor of Safety computed by *CPillar* using the deterministic inputs is $1.009 \approx 1$.

Sensitivity Analysis

By comparing the sensitivity results of Hoek (1989) and *CPillar*, it can be seen that they produce identical results, with the exception of the first data point in Factor of Safety vs. K plot. This discrepancy is due to the fact that *CPillar* will set a very small effective lateral stress limit (close to 0) when the water pressure exceeds the total lateral stress. This ensures that the effective lateral stress used to compute the shear strength is never less than zero.

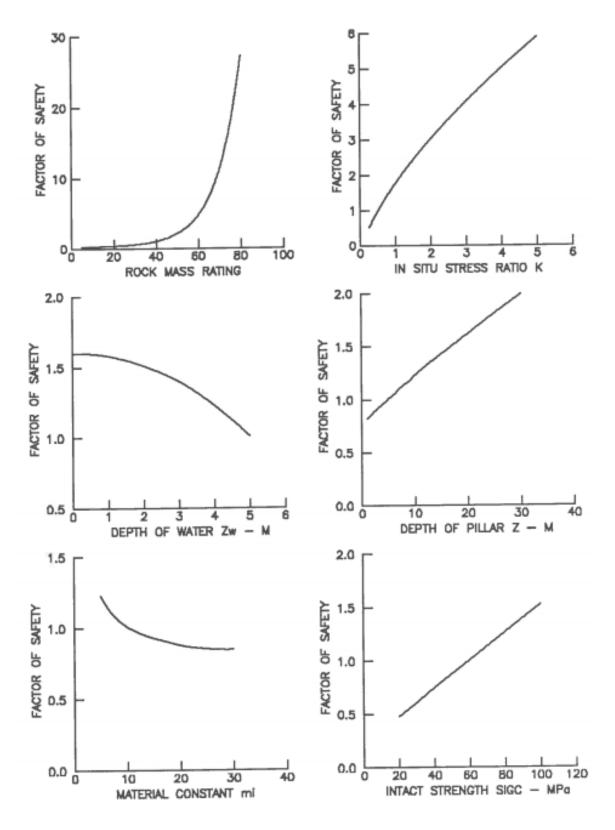


Figure 1-1: Sensitivity Plots Provided by Hoek (1989)

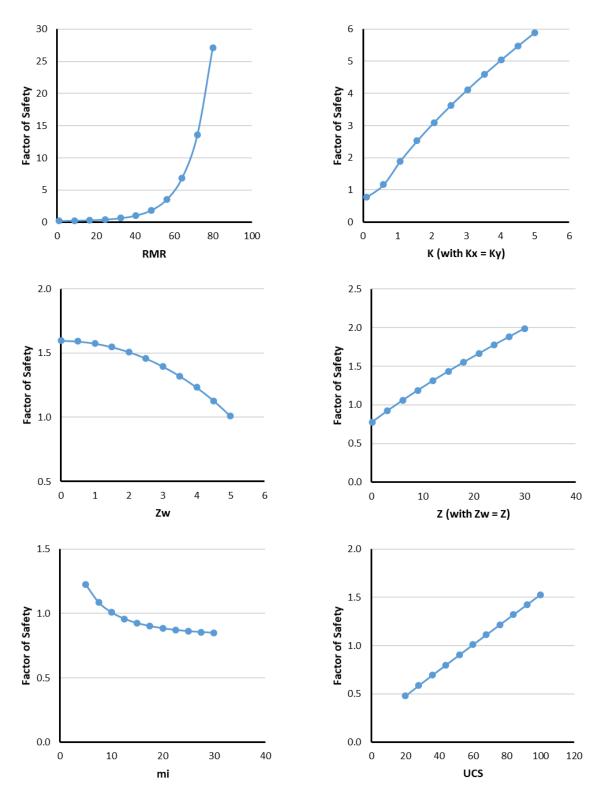


Figure 1-2: CPillar Sensitivity Analysis Results

Therefore, CPillar's results have been verified with Hoek's results.

References

1. Hoek, E. (1989) A Limit Equilibrium Analysis of Surface Crown Pillar Stability. Proc. Int. Conf. on Surface Crown Pillars Active & Abandoned Metal Mines Timmins, pp. 3-13.