Verification - Example 1: Stress variation around the cylindrical tunnel

Problem Description

This verification compares radial and tangential stresses with analytical solution in a horizontal direction. It assumes the tunnel exists in an infinite domain.

Model Information

- The tunnel's radius is a = 2.5 m.
- A constant 10MPa field stress in domain is assumed.
- Host rock material property:
 - E = 2000 MPa, v=0.25

Analytical Solution

$$\begin{split} \sigma_{rr} &= \frac{P}{2} \{ (1+k)(1-\beta^2) + (1-k)(1-4\beta^2+3\beta^4)cos2\theta \} \\ \sigma_{\theta\theta} &= \frac{P}{2} \{ (1+k)(1+\beta^2) + (1-k)(1+3\beta^4)cos2\theta \} \\ \sigma_{r\theta} &= \frac{P}{2} \{ (1-k)(1+2\beta^2-3\beta^4)sin2\theta \} \end{split}$$

Here $\beta = \frac{a}{r}$ and θ is the angel with horizontal direction.

Results

Results are calculated from the surface of tunnel to the distance of 15.0m (a < r < 15.0m)

Radial Stress

Tangential Stress

Total Displacement

References

Brady, B.H.G and Brown, E.T (1985) Rock Mechanics for Underground Mining, Chapman & Hall, London.

Data Files

The data input file(s) and file for the finished model can be found in the EX3 installation folder.