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1- Introduction  

Numerical simulations of problems involving liquefaction are increasingly implemented in earthquake 

engineering practice. Different Constitutive models have been used fort this purpose with different level of 

complexities such as model base on the framework of bounding surface plasticity, kinematic hardening, 

etc. Dafalias and Manzari model is an example of such models that was previously developed for RS2. 

Each constitutive model has certain advantages and limitations that can be illustrated for potential users by 

documents showing the constitutive response of the model in element tests that cover a broad range of the 

conditions that may be important to various applications.  

The PM4Sand (version 3.1) plasticity model for geotechnical earthquake engineering applications is 

developed in RS2 based on the work by Boulanger and Ziotopoulou (2017). The detailed formulation will 

be presented here. Verifications will be provided that compare the simulations results from RS2 and the 

results obtained from the original code developed by Boulanger and Ziotopoulou (2017). The model that 

is coded as a dynamic link library (DLL) for use with the commercial program FLAC 8.0 (Itasca 2016) 

along with the verification model files are available in https://pm4sand.engr.ucdavis.edu/pm4sand-files. 

 

2- Model Formulation  

The PM4Sand plasticity model follows the basic framework of the stress-ratio controlled, critical state 

compatible, bounding-surface plasticity model for sand presented by Dafalias and Manzari (2004). The 

model is presented in its multi-axial formulation, along with the original framework of the Dafalias-Manzari 

model for comparison.  

 

2.1- Basic stress and strain terms  

The basic stress and strain terms for the model are as follows. The model is based on effective stresses, 

with the conventional prime symbol dropped from the stress terms for convenience because all stresses 

are effective for the model. The stresses are represented by the tensor , the principal effective stresses 

1, 2, and 3, the mean effective stress p, the deviatoric stress tensor s, and the deviatoric stress ratio 

tensor r. The present implementation was further simplified by casting the various equations and 

relationships in terms of the in-plane stresses only. This limits the implementation to plane-strain 

applications and is not correct for general cases, but it has the advantage of simplifying the implementation 

and improving computational speed by reducing the number of operations. The relationships between the 

various stress terms can be summarized as follows: 

 

𝝈 = (
𝜎𝑥𝑥 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦𝑦
) 

𝑝 =
𝜎𝑥𝑥 + 𝜎𝑦𝑦

2
 

𝒔 = 𝝈 − 𝑝𝑰 = (
𝑆𝑥𝑥 𝑆𝑥𝑦

𝑆𝑥𝑦 𝑆𝑦𝑦
) = (

𝜎𝑥𝑥 − 𝑝 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦𝑦 − 𝑝) 

(2.1) 

(2.2) 

(2.3) 



 
 

 4  rocscience.com 

𝒓 =
𝒔

𝑝
= (

𝑟𝑥𝑥 𝑟𝑥𝑦

𝑟𝑥𝑦 𝑟𝑦𝑦
) = (

𝜎𝑥𝑥 − 𝑝

𝑝

𝜎𝑥𝑦

𝑝
𝜎𝑥𝑦

𝑝

𝜎𝑦𝑦 − 𝑝

𝑝

) 

Note that the deviatoric stress and deviatoric stress ratio tensors are symmetric and traceless, and that I is 

the identity matrix.  

The model strains are represented by a tensor , which can be separated into the volumetric strain v and 

the deviatoric strain tensor e. The volumetric strain in plane strain is, 

𝜀𝑣 = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 

and the deviatoric strain tensor is, 

𝒆 = 𝜀 −
𝜀𝑣

3
𝐼 = (

𝜀𝑥𝑥 −
𝜀𝑣

3
𝜀𝑥𝑦

𝜀𝑥𝑦 𝜀𝑦𝑦 −
𝜀𝑣

3

) 

In incremental form, the deviatoric and volumetric strain terms are decomposed into an elastic and a plastic 

part, 

𝑑𝒆 = 𝑑𝒆𝑒𝑙 + 𝑑𝒆𝑝𝑙 

𝑑𝜀𝑣 = 𝑑𝜀𝑣
𝑒𝑙 + 𝑑𝜀𝑣

𝑝𝑙 

 

Where superscripts el and pl stand for elastic and plastic respectively. 

 

2.2- Critical state  

Dafalias and Manzari (2004) used a power relationship to approximate the curving of the critical state line 

that occurs over a broad range of confining stresses, 

𝑒𝑐𝑠 = 𝑒𝑜 −  (
𝑝𝑐𝑠

𝑝𝐴
)


 

where pcs = mean stress at critical state, ecs = critical state void ratio, and eo, , and  are parameters 

controlling the position and shape of the critical state line. The state of the sand was then described using 

the state parameter (Been and Jefferies 1985), which is the difference between the current void ratio (e) 

and the critical state void ratio (ecs) at the same mean effective stress (pcs).  

The PM4Sand (Boulanger and Ziotopoulou, 2017) instead uses the relative state parameter index (R). 

The relative state parameter is the state parameter normalized by the difference between the maximum 

void ratio (emax) and minimum void ratio (emin) values that are used to define relative density (DR). The 

relative state parameter "index" is just the relative state parameter defined using an empirical relationship 

for the critical state line.  


𝑅

= 𝐷𝑅,𝑐𝑠 − 𝐷𝑅 

𝐷𝑅,𝑐𝑠 =
𝑅

𝑄 − ln (100
𝑝

𝑝𝐴
)
 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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where DR,cs = relative density at critical state for the current mean effective stress. The parameters Q and 

R are about 10 and 1.0, respectively, for quartzitic sands.  

 

2.3- Bounding, dilatancy, and critical surfaces  

The model incorporates bounding, dilatancy, and critical surfaces following the form of Dafalias and Manzari 

(2004). The present model simplifies the surfaces by removing the Lode angle dependency (e.g., friction 

angles are the same for compression or extension loading) that was included in the Dafalias-Manzari model, 

such that the bounding (Mb) and dilatancy (Md) ratios can be related to the critical stress (M) ratio by the 

following simpler expressions. 

𝑀𝑏 = 𝑀 ∙ 𝑒𝑥𝑝(−𝑛𝑏
𝑅

) 

𝑀𝑑 = 𝑀 ∙ 𝑒𝑥𝑝(𝑛𝑑
𝑅

) 

where nb and nd are parameters determining the values of Mb and Md, respectively. For the 

present implementation, the mean normal stress p is taken as the average of the in-plane normal stresses 

(Equation 2.2), q is the difference in the major and minor principal in-plane stresses, and the relationship 

for M is therefore reduced to  

𝑀 = 2 ∙ sin(
𝑐𝑣

) 

where cv is the constant volume or critical state effective friction angle. The three surfaces can, for the 

simplifying assumptions described above, be conveniently visualized as linear lines on a q-p plot (where 

q=1-3) as shown in Figure 2.1 or as circular surfaces on a stress-ratio graph of ryy versus rxy as shown in 

Figure 2.2.  

 

 

Figure 2.1. Schematic of yield, critical, dilatancy, and bounding lines in q-p space  

(after Dafalias & Manzari 2004)  

(2.12) 

(2.13) 

(2.14) 
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Figure 2.2. Schematic of the bounding, dilatancy, and yield surfaces on the ryy-rxy stress-ratio plane with 

the yield surface, normal tensor, dilatancy back stress ratio, and bounding back stress ratio 

 

As the model is sheared toward critical state (R = 0), the values of Mb and Md will both approach the value 

of M. Thus the bounding and dilatancy surfaces move together during shearing until they coincide with the 

critical state surface when the soil has reached critical state.  

 

2.4- Yield surface and image back-stress ratio tensors  

The yield surface and back-stress ratio tensor () follow those of the Dafalias-Manzari model, although their 

final form is considerably simplified by eliminating the dependency on Lode angle. The yield surface is a 

small cone in stress space, and is defined in stress terms by the following expression: 

𝑓 = [(𝒔 − 𝑝𝜶): (𝒔 − 𝑝𝜶)]
1
2⁄ − √1

2⁄ 𝑝𝑚 = 0 

The back-stress ratio tensor  defines the center of the yield surface, and the parameter m 

defines the radius of the cone in terms of stress ratio. The yield function can be rewritten to emphasize the 

role of stress ratio terms as follows,  

𝑓 = √(𝒓 − 𝜶): (𝒓 − 𝜶) − √1
2⁄ 𝑚 = 0 

The yield function can then be visualized as related to the distance between the stress ratio r and the back-

stress ratio , as illustrated in Figure 2.2. 

The bounding surface formulation now requires that bounding and dilatancy stress ratio tensors be defined. 

Dafalias and Manzari (2004) showed that it is more convenient to track back-stress ratios and to similarly 

(2.15) 

(2.16) 
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define bounding and dilatancy surfaces in terms of back-stress ratios. An image back-stress ratio tensor for 

the bounding surface (b) is defined as, 

𝜶𝑏 = √1
2⁄ [𝑀𝑏 − 𝑚]𝒏 

where the tensor n is normal to the yield surface. An image back-stress ratio tensor for the dilatancy surface 

(d) is similarly defined as, 

𝜶𝑑 = √1
2⁄ [𝑀𝑑 − 𝑚]𝒏 

The computation of constitutive responses can now be more conveniently expressed in terms 

of back-stress ratios rather than in terms of stress ratios, as noted by Dafalias and Manzari (2004). 

 

2.5- Stress reversal and initial back-stress ratio tensors  

The bounding surface formulation keeps track of the initial back-stress ratio (in) and uses it in the 

computation of the plastic modulus Kp. This tracking of one instance in loading history is essentially a first-

order method for tracking loading history. A reversal in loading direction is then identified, following 

traditional bounding surface practice, whenever  

(𝛼 − 𝑎𝑖𝑛): 𝒏 < 0 

A reversal causes the current stress ratio to become the initial stress ratio for subsequent 

loading. Small cycles of load reversal can reset the initial stress ratio and cause the plastic modulus Kp to 

increase accordingly, in which case the stress-strain response becomes overly stiff after a small load 

reversal. This is a well-known problem in bounding surface formulations for which various approaches offer 

different advantages and disadvantages.  

The model presented herein tracks an initial back-stress ratio and a previous initial back-stress ratio (in
p), 

as illustrated in Figure 2.3a. When a reversal occurs, the previous initial back-stress ratio is updated to the 

initial back stress ratio, and the initial back-stress ratio is updated to the current back-stress ratio. 

In addition, the model tracks an apparent initial back-stress ratio tensor (αin
app) as schematically illustrated 

in Figure 2.3b. The schematic in Figure 2.3b is similar to that of Figure 2.3a, except that the most recent 

loading reversals correspond to a small unload-reload cycle on an otherwise positive loading branch. The 

components of αin
app are taken as: (i) for positive loading directions, the minimum value they have ever had, 

but no smaller than zero, and (ii) for negative loading directions, the maximum value they have ever had, 

but no greater than zero. The use of αin
app helps avoid the over-stiffening of the stress-strain response 

following small unload-reload cycles along an otherwise monotonically increasing branch of loading, without 

having to track the loading history through many cycles of load reversals.  

The computation of Kp utilizes the values of αin
app, αin

true, and αin
p, as defined in Figure 2.3b, to better 

approximate the stress-strain response during an unload-reload cycle. For the last positive loading branch 

in this figure, the value of Kp is initially most strongly controlled (inversely) by the distance (α - αin
true):n, such 

that the stiffness is initially large. As positive loading continues, the progressive reduction in Kp becomes 

increasingly dependent on αin
app as well. Once the positive loading exceeds the previous reversal point, the 

value of Kp becomes solely dependent on the distance (α - αin
app):n. Thus, the computation of Kp has the 

following dependencies:  

 

(2.17) 

(2.18) 

(2.19) 
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𝑖𝑓(𝜶 − 𝜶𝑖𝑛
𝑝 ): 𝒏 < 0 ⟹ 𝐾𝑝 = 𝑓(𝜶𝑖𝑛

𝑡𝑟𝑢𝑒 , 𝜶𝑖𝑛
𝑎𝑝𝑝) 

𝑒𝑙𝑠𝑒                  ⟹  𝐾𝑝 = 𝑓(𝜶𝑖𝑛
𝑎𝑝𝑝)  

The equations relating Kp to these back-stress ratios are given later in section 2.7.   

 

 

 

 

 

      

 

 

                  (a)                                                                                (b) 

Figure 2.3. Schematic showing definitions of back-stress ratio tensors on the 𝛼yy-𝛼xy plane for: (a) a 

loading history with reversals in the sign of the shear stress ratios, and (b) a loading history with a recent 

loading reversal that does not involve reversal of the sign of  the shear stress ratios 

The impact of the above logic for defining αin on stress-strain responses is demonstrated in Figure 2.4 

showing αxy versus shear strain  computed for two different drained DSS loading simulations. For these 

two examples, the reloading stiffness of the current loading branch (green line) is initially large because Kp 

is initially computed based on αin = αin
true. As the loading exceeds αin

p, the loading stiffness becomes much 

softer because Kp is now computed based on αin = αin
app.  

 

 

 

 

 

        (a)                                                                          (b) 

Figure 2.4. Drained DSS simulations showing αxy versus 𝛾 with the points corresponding to the current 

back-stress ratio α, the apparent initial back-stress ratio αinapp, the true initial back-stress ratio αintrue, and 

the previous initial back-stress ratio αinp for: (a) monotonic shearing with one intermediate unload-reload 

cycle, and (b) a more general sequence of cyclic loading. 

 

2.6- Elastic strains and moduli  

The elastic deviatoric strain and elastic volumetric strain increments are computed as:  

𝑑𝒆𝑒𝑙 =
𝑑𝐬

2𝐺
 

(2.20) 

(2.21) 
(2.22) 
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𝑑𝜀𝑣
𝑒𝑙 =

𝑑𝑝

𝐾
 

where G is the elastic shear modulus and K is the elastic bulk modulus. The elastic shear modulus in the 

model presented herein is dependent on the mean effective stress according to, 

𝐺 = 𝐺𝑜𝑝𝐴 (
𝑝

𝑝𝐴
)

1
2⁄

𝐶𝑆𝑅 

where Go is a constant, pA is the atmospheric pressure (101.3 kPa), and CSR is factor that accounts for 

stress ratio effects.  

Dafalias and Manzari (2004) had included the dependence of G on void ratio. This aspect was not included 

in PM4ANS model because: (1) the effects of void ratio changes on G are small relative to those of confining 

stress, (2) the value of Go is more strongly affected by environmental factors such as cementation and 

ageing, and (3) the calibration of G to in-situ shear wave velocity data requires only one constant (Go) rather 

than two (Go and e). 

Yu and Richart (1984) showed that the small-strain elastic shear modulus of sand is dependent on the 

stress ratio and stress ratio history. The effect of stress ratio was shown to generally be less than about 

10% when the ratio of major to minor principal effective stresses is less than about 2.5, but to also increase 

to about 20-30% at higher principal stress ratios. They also showed that stress ratio history caused a 

reduction in the small-strain elastic shear modulus when the maximum previous stress ratio was greater 

than the current stress ratio. The effect of stress ratio and stress ratio history on the elastic shear modulus 

was approximately accounted for in the present model by the factor CSR. The following equation for CSR is 

similar in form to that used by Yu and Richart (1984) to represent stress ratio effects, except that it uses 

stress ratio terms consistent with the present model, 

𝐶𝑆𝑅 = 1 − 𝐶𝑆𝑅,𝑜 ∙ (
𝑀

𝑀𝑏
)

𝑚𝑆𝑅

 

The above equation approximates Yu and Richart's (1984) results for stress ratio effects when 

CSR,0 = 0.3 and mSR = 2. The effects of stress ratio history would cause further reductions, and is more 

complicated to represent. The calibration examples presented later in this report worked well with CSR,0 = 

0.5 and mSR = 4, which keeps the effect of stress ratio on elastic modulus small at small stress ratios, but 

lets the effect increase to a 60% reduction when the stress ratio is on the bounding surface.  

The elastic bulk modulus is related to the shear modulus through the Poisson's ratio as,  

𝐾 =
2(1 + 𝑣)

3(1 − 2𝑣)
𝐺 

as was done by Dafalias and Manzari (2004).  

 

2.7- Plastic components without fabric effects  

Loading index  

The loading index (L) is used to compute the plastic component of the volumetric strain increment and the 

plastic deviatoric strain increment tensor as,  

𝑑𝜀𝑣
𝑝𝑙

= 〈𝐿〉𝐷 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 
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𝑑𝒆𝑝𝑙 = 〈𝐿〉𝑹′ 

where D is the dilatancy, R is the direction of dpl, R is the deviatoric component of R, and <> are 

MacCauley brackets that set negative values to zero [i.e.,<L> = L if L ≥ 0, and <L> = 0 if L < 0]. The tensor 

R for the assumption of no Lode angle dependency is,   

𝑹 = 𝒏 +
1

3
𝐷𝑰 

where n is the unit normal to the yield surface (Figure 2.2). Note that the assumption of no Lode angle 

dependency also means that R = n. The dilatancy D relates the incremental plastic volumetric strain to the 

incremental plastic deviatoric strain,  

𝐷 =
𝑑𝜀𝑣

𝑝𝑙

|𝑑𝒆𝑝𝑙|
 

The dilatancy D can be also related to the conventional engineering shear strain in this plane strain 

approximation, as   

𝐷 =
𝑑𝜀𝑣

𝑝𝑙

√1
2⁄ |𝑑𝑝𝑙|

 

The loading index, as derived in Dafalias and Manzari (2004) is,  

𝐿 =
1

𝐾𝑝

𝜕𝑓

𝜕𝝈
: 𝑑𝝈 =

1

𝐾𝑝

[𝒏: 𝑑𝒔 − 𝒏: 𝒓𝑑𝑝] 

𝐿 =
2𝐺𝒏: 𝑑𝒆 − 𝒏: 𝒓𝐾𝑑𝜀𝑣

𝐾𝑝 + 2𝐺 − 𝐾𝐷𝒏: 𝒓
 

The stress increment for an imposed strain increment can then be computed as,   

𝑑𝜎 = 2𝐺𝑑𝒆 + 𝐾𝑑𝜀𝑣𝑰 − 〈𝐿〉(2𝐺𝒏 + 𝐾𝐷𝑰) 

 

Hardening and the update of the back-stress ratio  

Updating of the back-stress ratio is dependent on the hardening aspects of the model. Dafalias and Manzari 

(2004) updated the back-stress ratio according to bounding surface practice as,  

𝑑𝜶 = 〈𝐿〉 (
2

3
) ℎ(𝜶𝑏 − 𝜶) 

where h is the hardening coefficient. The factor of 2/3 was included for convenience so that model constants 

would be the same in triaxial and multi-axial derivations. They subsequently showed that the consistency 

condition f=0 was satisfied when the plastic modulus Kp was related to the hardening coefficient as,   

𝐾𝑝 =
2

3
𝑝 ∙ ℎ ∙ (𝜶𝑏 − 𝜶): 𝒏 

This expression can be rearranged so as to show that the consistency equation can be satisfied 

by expressing the hardening coefficient as, 

ℎ =
3

2
∙

𝐾𝑝

𝑝 ∙ (𝜶𝑏 − 𝜶): 𝒏
 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 
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The relationship for the plastic modulus can subsequently take a range of forms, provided that the 

hardening coefficient and updating of the back-stress ratio follow the above expressions.  

 

Plastic modulus  

The plastic modulus in the multi-axial generalized form of Dafalias and Manzari (2004), after substituting in 

their expression for the hardening coefficient, can be expressed as,  

𝐾𝑝 =
2

3
𝐺 ∙ ℎ𝑜 ∙ [

1 + 𝑒

(2.97 − 𝑒)2
∙ (1 − 𝐶ℎ𝑒)] ∙

(𝜶𝑏 − 𝜶): 𝒏

(𝜶 − 𝜶𝑖𝑛): 𝒏
 

where ho and Ch are scalar parameters and e is the void ratio. Setting aside the secondary 

influence of void ratio, this form illustrates that Kp is proportional to G, proportional to the distance of the 

backstress ratio to the bounding back-stress ratio, and inversely proportional to the distance of the 

backstress ratio from the initial back-stress ratio.  

The plastic modulus relationship was revised in the model presented herein to provide an improved 

approximation of empirical relationships for secant shear modulus and equivalent damping ratios during 

drained strain-controlled cyclic loading. The plastic modulus is computed as, 

𝐾𝑝 = 𝐺 ∙ ℎ𝑜 ∙
[(𝜶𝑏 − 𝜶): 𝒏]0.5

[𝑒𝑥𝑝[(𝜶 − 𝜶𝑖𝑛
𝑎𝑝𝑝): 𝒏] − 1] + 𝐶1

𝐶𝑟𝑒𝑣 

𝐶𝑟𝑒𝑣 =
(𝜶 − 𝜶𝑖𝑛

𝑎𝑝𝑝): 𝒏

(𝜶 − 𝜶𝑖𝑛
𝑡𝑟𝑢𝑒): 𝒏

  𝑓𝑜𝑟  (𝜶 − 𝜶𝑖𝑛
𝑝 ): 𝒏 ≤ 𝟎 

= 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The factor Crev accounts for the effect of unload-reload cycles as discussed in Section 2.5 and illustrated in 

Figure 2.4. The constant C1 in the denominator serves to avoid division by zero and has a slight effect on 

the nonlinearity and damping at small shear strains. If C1 = 0, then the value of Kp will be infinite at the start 

of a loading cycle because (-in):n will also be zero. In that case, nonlinearity will become noticeable only 

after (-in):n becomes large enough to reduce Kp closer to the value of G (e.g., Kp/G closer to 100 or 200). 

Setting the value of C1 = ho/200 produces a reasonable response as will be demonstrated later with 

examples of modulus reduction and equivalent damping ratios. For stress ratios outside the bounding 

surface [i.e., loose-of-critical states with (b -):n < 0], the plastic modulus is set to zero rather than allowing 

for negative values. This restriction on the plastic modulus improved numerical stability while having little 

effect on computed stress-strain responses. The plastic modulus is further modified for the effects of fabric 

and fabric history, as described in a later section.   

 

Plastic volumetric strains - Dilation  

Plastic volumetric strains are related to plastic deviatoric strains through the dilatancy D (Equations 2.29 

and 2.30), which is computed in the Dafalias and Manzari (2004) model and the base component of the 

model presented herein (with additional fabric effects described in a later section) as, 

𝐷 = 𝐴𝑑𝑜 ∙ [(𝜶𝜃
𝑑 − 𝜶): 𝒏] 

 

(2.36) 

(2.37) 

(2.38) 

(2.39) 
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Note that dilation (increasing void ratio) occurs whenever the term (d-):n is less than zero whereas 

contraction (decreasing void ratio) occurs when it is positive.   

The constant Ado in this relationship can be related to the dilatancy relationship proposed by Bolton (1986), 

which follows from the work of Rowe (1962), through the following sequence of steps. Bolton showed that 

the difference between peak and constant volume friction angles could be approximated as,   


𝑝𝑘

 − 
𝑐𝑣

 = −0.8 

with 

 = tan−1 (
𝑑𝜀𝑣

𝑝𝑙

|𝑑𝑝𝑙|
) 

Since  ≈ tan() for  less than about 0.35 radians (20 degrees), the difference between peak and constant 

volume friction angles (in radians) can be approximated as,  


𝑝𝑘

 − 
𝑐𝑣

= −0.8
𝑑𝜀𝑣

𝑝𝑙

|𝑑𝑝𝑙|
= −0.8√

1

2
𝐷 

The peak friction angle is mobilized at the bounding surface, so this can be written as, 


𝑝𝑘

 − 
𝑐𝑣

= −0.8√
1

2
𝐴𝑑𝑜 ∙ [(𝜶𝑑 − 𝜶): 𝒏] 


𝑝𝑘

 − 
𝑐𝑣

= −0.8√
1

2
𝐴𝑑𝑜 ∙ [(

𝑀𝑑

√2
𝒏 −

𝑀𝑏

√2
𝒏) : 𝒏] 

The term n:n is equal to unity, and the values of pk and cv (again in radians) can be replaced with 

expressions in terms of Mb and M as,   

sin−1 (
𝑀𝑏

2
) − sin−1 (

𝑀

2
) = 0.4𝐴𝑑𝑜 ∙ [𝑀𝑏 − 𝑀𝑑] 

This expression can then be rearranged to solve for Ado as, 

𝐴𝑑𝑜 =
1

0.4

sin−1 (
𝑀𝑏

2 ) − sin−1 (
𝑀
2 )

𝑀𝑏 − 𝑀𝑑
 

where the angles returned by the sin-1 functions are in radians.   

The parameter Ado should thus be chosen to be consistent with the nd and nb terms that control Mb, and Md. 

For example, setting the parameters nb and nd equal to 0.5 and 0.1, respectively, results in Ado varying from 

1.26 for ξR = -0.1 to 1.45 for ξR = -0.7. A default value for Ado is computed based on the above expression 

using the conditions at the time of model initialization in FLAC (as described in a later section). If an 

alternative value for Ado is manually input as a property of the model, then the default value will be 

deactivated.   

Alternatively, the stress ratio terms can be replaced with friction angles (in radians) as follows, 


𝑝𝑘

 − 
𝑐𝑣

= 0.4𝐴𝑑𝑜 ∙ [𝑀𝑏 − 𝑀𝑑] 


𝑝𝑘

 − 
𝑐𝑣

= 0.4𝐴𝑑𝑜 ∙ [𝑀𝑒𝑥𝑝(−𝑛𝑏
𝑅

) − 𝑀𝑒𝑥𝑝(𝑛𝑑
𝑅

)] 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 
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
𝑝𝑘

 − 
𝑐𝑣

= 0.4𝐴𝑑𝑜 ∙ [2 sin (
𝑝𝑘

) − 2 sin(
𝑑

)] 


𝑝𝑘

 − 
𝑐𝑣

= 0.8𝐴𝑑𝑜 ∙ [sin (
𝑝𝑘

) − sin(
𝑑

)] 

The sine terms can be replaced with Taylor series, which are quite accurate with just the first two terms as,  

sin() =
()3

3!
 

Substituting the Taylor series in the above equation gives,   


𝑝𝑘

 − 
𝑐𝑣

= 0.8𝐴𝑑𝑜 ∙ [(
𝑝𝑘

−
(

𝑝𝑘
)

3

3!
) − (

𝑑
−

(
𝑑

)
3

3!
)] 

The parameter Ado can then be solved for as,  

𝐴𝑑𝑜 =


𝑝𝑘
 − 

𝑐𝑣

0.8 [
𝑝𝑘

− 
𝑑

−
(

𝑝𝑘
)

3

− (
𝑑

)
3

6
]

 

where the friction angles in the above expression are in radians. This expression provides an alternative 

view of how the parameter Ado relates to friction angles for a given set of nb and nd terms that control pk 

and d, respectively. For example, consider the case with the parameters nb and nd equal to 0.5 and 0.1, 

respectively, and assuming cv = 33 degrees. For ξR = -0.1, we would obtain d = 32.6 degrees, pk =  

degrees, and Ado = 1.26. For ξR = -0.7, we would obtain d = 30.5 degrees, pk = 50.6 degrees, and Ado = 

1.45. 

 

Plastic volumetric strains - Contraction  

Plastic volumetric strains during contraction (i.e., whenever (d-):n is greater than zero) are computed in 

the Dafalias and Manzari (2004) model using the same expression as used for dilatancy,  

𝐷 = 𝐴𝑑𝑜 ∙ [(𝜶𝜃
𝑑 − 𝜶): 𝒏] 

The use of this expression was found to limit the ability of the model to approximate a number 

of important loading responses; e.g., it greatly overestimated the slope of the cyclic resistance ratio (CRR) 

versus number of equivalent uniform loading cycles for undrained cyclic element tests. 

Plastic volumetric strains during contraction for the model presented herein are computed using the 

following expression, 

𝐷 = A𝑑𝑐 ∙ [(𝜶 − 𝜶𝒊𝒏
𝒂𝒑𝒑): 𝒏 + 𝐶𝑖𝑛]

2 (𝜶𝑑 − 𝜶): 𝒏

(𝜶𝑑 − 𝜶): 𝒏 + 𝐶𝐷
 

𝐴𝑑𝑐 =
A𝑑𝑜

ℎ𝑝
 

The various forms in the above relationships were developed to improve different aspects of the calibrated 

model's performance. The value of D was set proportional to the square of ((-in):n + Cin) to improve the 

slope of the relationship between CRR and number of uniform loading cycles. The Cin term depends on 

fabric and is described in a later section along with other modifications to the above expression for the 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 
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effects of fabric and fabric history. The inclusion of the term Cin improves the stress paths for undrained 

cyclic loading and the volumetric strain response during drained cyclic loading; Inclusion of this constant 

enables some volumetric strain to develop early in the unloading from a point outside the dilatancy surface 

(as described later). The remaining terms on the right hand side of the equation were chosen to be close 

to unity over most of the loading range, while ensuring that D smoothly goes to zero as  approaches d; 

reasonable results were obtained using a CD value of 0.10.   

The parameter Adc for contraction was related to the value of Ado for dilation by dividing it by a parameter 

hp that can be varied during the calibration process to obtain desired cyclic resistance ratios. The effect of 

confining stress on cyclic loading behavior was then conveniently incorporated by making hp depend on R, 

with the following form chosen so that the model produces results consistent with the design K 

relationships.  

ℎ𝑝 = ℎ𝑝𝑜  𝑒𝑥𝑝 (−0.7 + 7.0(0.5 − 
𝑅

)
2
)  𝑓𝑜𝑟  

𝑅
≤ 0.5 

ℎ𝑝 = ℎ𝑝𝑜  𝑒𝑥𝑝(−0.7)  𝑓𝑜𝑟  
𝑅

> 0.5 

Thus, the scalar constant hpo provides a linear scaling of contraction rates while the functional form of the 

remaining portion in Equations (2.53) and (2.54) is what controls the effect of overburden stress on CRR. 

Once the other input parameters have been selected, the constant hpo can be calibrated to arrive at a 

desired cyclic resistance ratio.   

A upper limit was imposed on the contraction rate, with the limiting value computed as, 

𝐷 ≤ 1.5 ∙ 𝐴𝑑𝑜

(𝜶𝑑 − 𝜶): 𝒏

(𝜶𝑑 − 𝜶): 𝒏 + 𝐶𝐷
 

This limit prevented numerical issues that were encountered with excessively large contraction rates. It 

does not appear to have limited the ability of the model to recreate realistic contraction rates as illustrated 

in the calibration examples shown later.  

 

2.8- Fabric effects  

Dafalias and Manzari (2004) introduced a fabric-dilatancy tensor (z) that could be used to account for the 

effects of prior straining. Their fabric tensor (z) evolved in response to plastic volumetric dilation strains, 

according to, 

𝑑𝑧 = −𝑐𝑧〈−𝑑𝜀𝑣
𝑝𝑙〉(𝑧𝑚𝑎𝑥𝒏 + 𝒛) 

where the parameter cz controls the rate of evolution and zmax is the maximum value that z 

can attain.  

The fabric-dilatancy tensor was modified for the present model as,  

𝑑𝑧 =
𝑐𝑧

1 + 〈
𝑧𝑐𝑢𝑚

2𝑧𝑚𝑎𝑥
− 1〉

〈−𝑑𝜀𝑣
𝑝𝑙〉

𝐷
(𝑧𝑚𝑎𝑥𝒏 + 𝒛) 

In this expression, the tensor z evolves in response to plastic deviatoric strains that occur during dilation 

only (i.e., dividing the plastic volumetric strain by the dilatancy gives plastic shear strain). In addition, the 

evolution of fabric is restricted to only occur when (d –):n < 0; this additional constraint precludes fabric 

evolution during dilation above the rotated dilatancy surface (introduced later) but below the non-rotated 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 
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dilatancy surface. The parameter zcum is the cumulative value of absolute changes in z computed according 

to,  

𝑑𝑧𝑐𝑢𝑚 = |𝑑𝒛| 

The rate of evolution for z therefore decreases with increasing values of zcum, which enables the undrained 

cyclic stress-strain response to progressively accumulate shear strains rather than lock-up into a repeating 

stress-strain loop. In addition, the greatest past peak value (scalar amplitude) for z during its loading history 

is also tracked,  

𝑧𝑝𝑒𝑎𝑘 = 𝑚𝑎𝑥 (√
𝒛: 𝒛

2
, 𝑧𝑝𝑒𝑎𝑘) 

The values of z, zpeak, and zcum are later used to facilitate the accumulation of shear strains under symmetric 

loading through their effects on the plastic modulus and dilatancy relationships.  

 

Additional memory of fabric formation history  

Memory of the fabric formation history was included in the model presented herein to improve the ability of 

the model to account for the effects of sustained static shear stresses and account for differences in fabric 

effects for various drained versus undrained loading conditions.  

The initial fabric tensor (zin) at the start of the current loading path is determined whenever a stress ratio 

reversal occurs, and thus correspond to the same times that the initial back-stress ratio and previous initial 

back-stress ratio are updated. The zin tracks the immediate history terms without any consideration of 

whether an earlier loading cycle had produced greater degrees of fabric (i.e., the logic is different from that 

adopted for the updating of back-stress ratio history terms). This history term is used for describing the 

degree of stress rotation and its effects on plastic modulus, as described later.  

Another aspect of the fabric history that is tracked is the mean stress at which the fabric is formed. This 

aspect of fabric history is tracked by tracking the product of z and p, and defining pzp as the mean stress at 

the time that this product achieves its greatest peak value. The pzp is used in addressing a couple of issues, 

including the issue of how fabric that is formed during liquefaction may be erased during reconsolidation. 

For example, saturated sand that develops cyclic mobility behavior during undrained cyclic loading clearly 

remembers its history of plastic deviatoric strains and then subsequently forgets (to a large extent) this prior 

strain history when it reconsolidates back to its pre-earthquake confining stress. As another example, the 

memory of prior strains during undrained cyclic loading is very different than the memory of prior strains 

during drained cyclic loading. This memory conceptually could be related to the history of plastic and total 

volumetric strains, but a simpler method to account 30 for this effect is to consider how the mean stress p 

relates to the value of pzp. Conceptually, it appears that prior strain history (or fabric) is most strongly 

remembered when the soil is operating under mean stresses that are smaller than those that existed when 

the fabric was formed (i.e., p << pzp) and then largely forgotten when they are of the same order (i.e., p  

pzp). This attribute will be used in the relationships described later for describing the effects of fabric on 

dilatancy.  

 

Effect of fabric on plastic modulus 

 An effect of fabric on the plastic modulus was added to the model presented herein by reducing the plastic 

modulus as the fabric tensor increased in peak amplitude, as follows:  

(2.58) 

(2.59) 
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𝐾𝑝 = 𝐺 ∙ ℎ𝑜 ∙
[(𝜶𝑏 − 𝒂): 𝒏]0.5

[𝑒𝑥𝑝 ((𝜶 − 𝒂𝑖𝑛
𝑎𝑝𝑝): 𝒏) − 1] + 𝐶1

𝐶𝑟𝑒𝑣 ∙
𝐶k

1 + 𝐶𝐾𝑝
(

𝑧𝑝𝑒𝑎𝑘

𝑧𝑚𝑎𝑥
) 〈(𝜶𝑏 − 𝒂): 𝒏〉√1 − 𝐶𝑧𝑝𝑘2

 

where, 

𝐶k = 1 +
𝐶k𝑓

1 + (2.5 ∙ 〈(𝜶 − 𝒂𝑖𝑛
𝑡𝑟𝑢𝑒): 𝒏〉)2

∙ 𝐶𝑝𝑧𝑝2 ∙ 𝐶𝑧𝑝𝑘1 

𝐶𝑧𝑝𝑘1 =
𝑧𝑝𝑒𝑎𝑘

𝑧𝑐𝑢𝑚 +
𝑧𝑚𝑎𝑥

5

 

𝐶𝑧𝑝𝑘2 =
𝑧𝑝𝑒𝑎𝑘

𝑧𝑐𝑢𝑚 +
𝑧𝑚𝑎𝑥

100

 

𝐶𝑝𝑧𝑝2 =
−〈−(𝑝𝑧𝑝 − 𝑝)〉

−〈−(𝑝𝑧𝑝 − 𝑝)〉 + 𝑝𝑚𝑖𝑛

 

The above expressions produce a reduction in plastic modulus when fabric is favorable (z:n ≥ 0) and with 

increasing plastic shear strains (which conceptually would break down any cementation). This reduces both 

the plastic modulus and the hysteretic damping at larger shear strains (note that zpeak = 0 unless the soil 

has been loaded strongly enough to pass outside the dilatancy surface), improves the volumetric strains 

that develop in drained cyclic loading, and improves the path in undrained cyclic loading.    

The CKα and square root of (1-Czpk2) terms both serve to increase Kp during non-reversal loading by amounts 

that depend on the fabric and stress history. During reversal loading, the (1-Czpk2) term approaches unity 

and Kp evolves as it previously had. The roles of each of the other terms are discussed below.  

Czpk1 and Czpk2 are terms that start from zero and grow to be unity for uni-directional growth of fabric which 

is the case during non-reversing loading conditions. These two terms differ by the rate under which they 

approach unity by the use of the constant zmax /5 or zmax /100 with these respective values chosen for their 

ability to better approximate the engineering behaviors of interest and correlations that are shown later in 

the paper. For full reversal loading where the fabric alternates between positive and negative values, these 

terms will both go to zero.  

Cpzp2 starts initially at zero and stays equal to zero until fabric is formed. After fabric is formed, this term 

quickly transitions to unity for values of mean effective stress p that are less than the value that p had when 

the maximum fabric was formed (pzp). If p increases beyond the value of pzp the term will return to zero 

according to the MacCauley brackets.  

The values for the calibration parameters CKp and CKαf were chosen for their ability to reasonably 

approximate the targeted behaviors, as discussed later. Setting CKp to a default value of 2.0 was found to 

produce reasonable responses with particular emphasis on improving (reducing) the equivalent damping 

ratios at shear strains of 1 to 3% in drained cyclic loading. The parameter CKαf is particularly useful for 

adjusting the undrained cyclic loading response with sustained static shear stresses; a default calibration 

which depends on DR is presented later.  

The cumulative effect of the above parameters can be understood as follows. If a soil is strongly loaded in 

uni-directional loading and forms significant amount of fabric and is then unloaded, then upon subsequent 

reloading the terms Cpzp2 and Czpk1 will be unity and CKα will become large. If the loads are increased to 

where the soil is being sheared and forming fabric at even higher stresses (higher values of p than fabric 

was previously formed at) then CKα will be unity (Cpzp2 = 0). In this way, an element that has developed 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

(2.64) 
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strong fabric under monotonic or cyclic loading without reversal of the total shear stress direction (e.g., an 

element within a steep slope where the static shear stresses are greater than the cyclic shear stresses) 

will, when unloaded and reloaded, be initially much stiffer (increased Kp) followed by a softening (smaller 

Kp) if the soil is loaded into virgin territory.  

 

Effect of fabric on plastic volumetric dilation  

A rotated dilatancy surface with slope MdR which evolves with the history of the fabric tensor z was added 

to the framework of the model to facilitate earlier dilation at low stress ratios under certain loading paths 

(Ziotopoulou 2014). The rotated surface is equal to the original dilatancy surface scaled-down by a factor 

Crot1:  

𝑀𝑑𝑅 =
𝑀𝑑

𝐶𝑟𝑜𝑡1
 

𝐶𝑟𝑜𝑡1 = 1 +
2 ∙ 〈−𝑧: 𝒏〉

√2𝑧𝑚𝑎𝑥

∙ (1 − 𝐶𝑧𝑖𝑛1) ≥ 1 

where Md is the slope of the unrotated dilatancy surface. Experimental results (Ziotopoulou 2014) indicate 

that the loading history, the loading direction and the loading pattern play important roles in the response 

of the soil to irregular cyclic loading. Thus the scaling factor that defines the rotated dilatancy surface was 

made dependent on whether fabric is favorable (z : n > 0) or unfavorable (z : n < 0) and on the factor Czin1 

which is an indirect measure of whether there are reversals or not: 

𝐶𝑧𝑖𝑛1 = 〈1 − 𝑒𝑥𝑝 (−2.0 |
𝑧𝑖𝑛: 𝒏 − 𝑧: 𝒏

𝑧𝑚𝑎𝑥
|)〉 

where zin is the fabric tensor at the beginning of the current loading branch. Czin1 can take values ranging 

from 0, when there are no reversals, to 1, when there are reversals. The rotated dilatancy surface is 

operating only for loading with an unfavorable fabric since the factor Crot1 becomes 1 when the fabric is 

favorable (i.e., −z : n = 0).  

A back-stress ratio tensor for the rotated dilatancy surface (αdR) was introduced as:  

α𝑑𝑅 =
1

√2
∙ (𝑀𝑑𝑅 − 𝑚)𝒏 

Dilation occurs whenever the term (αdR − α) : n is negative whereas contraction occurs when it is positive. 

The calculation of D is still treated separately during dilation and contraction.  

D during dilation is now computed according to the following expressions. First, a value for D is computed 

from the rotated dilatancy surface:  

𝐷𝑟𝑜𝑡 = 𝐴𝑑 ∙
〈−𝑧: 𝒏〉

√2𝑧𝑚𝑎𝑥

∙
(α𝑑𝑅 − α): 𝒏

𝐶𝐷𝑅
 

where the CDR factor is applied to reduce the rate under which dilatancy is increasing and is discussed 

further below. Second, another value for D is computed that would be obtained from the non-rotated 

dilatancy surface:  

𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 = 𝐴𝑑 ∙ (−〈−(α𝑑 − α): 𝒏〉) 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 
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The Macaulay brackets in the above expression ensure that Dnon-rot is equal to zero whenever (αd − α) : n 

> 0 while (αdR − α) : n < 0. Lastly, the operating value of D is selected from the above two values based on:  

𝑖𝑓  𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 < 𝐷𝑟𝑜𝑡 ⟹  𝐷 = 𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 

𝑒𝑙𝑠𝑒  𝐷 = 𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 + (𝐷𝑟𝑜𝑡 − 𝐷𝑛𝑜𝑛−𝑟𝑜𝑡) ∙
〈𝑀𝑏 − 𝑀𝑐𝑢𝑟〉

〈𝑀𝑏 − 𝑀𝑐𝑢𝑟 + 0.01〉
 

The above logic is illustrated in Figure 2.5 where D is plotted for a half cycle of loading that goes from 

contraction to dilation. This figure shows that Dnon-rot is used whenever it is smaller (more negative) than 

Drot. For cases where Drot is smaller than Dnon-rot, the value of D is interpolated based on the additional term 

on the right that multiplies the difference between Drot and Dnon-rot. This interpolation term is close to unity 

for stress ratios away from the bounding surface (Mcur < Mb), such that D will be equal to Drot as illustrated 

in the figure. However, this term will also go smoothly to zero as the stress ratio gets close to the bounding 

surface, so that dilatancy smoothly goes to zero as a soil approaches the critical state where M = Md = Mb. 

The constant of 0.01 in the denominator controls the rate under which D goes to zero as the stress ratio 

nears the bounding surface and was found to provide reasonable results in trial simulations.  

The factor CDR in the denominator of the expression for Drot is applied so that the D computed based on the 

rotated dilatancy surface is consistent with experimental observations. Its value, for the default calibration 

described later, has been made dependent on the initial DR of the soil.  

 

 

Figure 2.5. Schematic of the dilatancy D calculation based on the stress state with regards to the 

 rotated dilatancy (MdR), dilatancy (Md) and bounding (Mb) surfaces during a  

half-cycle of loading that goes from contraction to dilation 

 

Lastly, the parameter Ad in the expressions for both Drot and Dnon-rot is expressed as,  

𝐴𝑑 =
𝐴𝑑𝑜(𝐶𝑧𝑖𝑛2)

(
𝑧𝑐𝑢𝑚

2

𝑧𝑚𝑎𝑥
) (1 −

〈−𝑧: 𝒏〉

√2 ∙ 𝑧𝑝𝑒𝑎𝑘

)

3

(𝐶𝜀)2(𝐶𝑝𝑧𝑝)(𝐶𝑝𝑚𝑖𝑛)(𝐶𝑧𝑖𝑛1) + 1

 

𝐶𝑝𝑧𝑝 =
1

1 + (
2.5𝑝

𝑝𝑧𝑝
⁄ )

5 

(2.71) 

(2.73) 

(2.72) 
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𝐶𝑝𝑚𝑖𝑛 =
1

1 + (
𝑝𝑚𝑖𝑛2

𝑝⁄ )
2 

𝐶𝑧𝑖𝑛1 = 1.0 − 𝑒𝑥𝑝 (−2.0 |
𝒛𝑖𝑛: 𝒏 − 𝒛: 𝒏

𝑧𝑚𝑎𝑥
|) 

𝐶𝑧𝑖𝑛2 =
1 + 𝐶𝑧𝑖𝑛1

𝑧𝑐𝑢𝑚 − 𝑧𝑝𝑒𝑎𝑘

3𝑧𝑚𝑎𝑥

1 + 3 ∙ 𝐶𝑧𝑖𝑛1

𝑧𝑐𝑢𝑚 − 𝑧𝑝𝑒𝑎𝑘

3𝑧𝑚𝑎𝑥

 

Consider the six terms added to the denominator of the expression for Ad. The first term [zcum
2/zmax] 

facilitates the progressive growth of strains under symmetric loading by reducing the dilatancy that occurs 

when a liquefied soil has been sheared through many cycles of loading; note that this term progressively 

increases with subsequent cycles of loading. The second term facilitates strain-hardening when the plastic 

shear strain reaches the prior peak value, wherein the term approaches zero (i.e., when z:n approaches 

zpeak√2) and the dilation rate consequently rapidly approaches the virgin loading value of Ado. The third term 

C is a calibration constant that can be used to modify the rate of plastic shear strain accumulation. The 

fourth term Cpzp causes the effects of fabric on dilation to be diminished (erased) whenever the current 

value of p is near the value of pzp; this term enables the model to provide reasonable predictions of 

responses to large numbers of either drained or undrained loading cycles. The fifth term Cpmin provides a 

minimum amount of shear resistance for a soil after it has temporarily reached an excess pore pressure 

ratio of 100%; This term is almost zero when p'=0, such that the soil will initially dilate until some minimum 

p' has developed, after which the term quickly approaches 1.0. The parameter pmin2 is currently set to 

become equal to 5% of the value of p' at consolidation (which is the value that exists when the flag FirstCall 

–see Section 3– was last set equal to 0), with the minimum value of pmin2 being 10 times the minimum value 

of p' (i.e., pmin = 1/200 times the larger of pA or the value of p' at consolidation). The sixth term Czin1 facilitates 

strain-hardening when stress reversals are not causing fabric changes; i.e., when the initial and current 

fabric terms are close to equal, the term Czin1 goes to zero. Lastly, the second term in the numerator, Czin2, 

causes the dilatancy to be decreased by up to a factor of 3 under conditions of large strains and full stress 

(and fabric) reversals, which improves the prediction of cyclic strain accumulation during undrained cyclic 

loading.   

An additional constraint is placed on D during dilation at very low effective stresses. For p < 2pmin, the value 

of D cannot be smaller in magnitude than computed by the following expression: 

𝐷 = −3.5𝐴𝑑𝑜〈𝑀𝑏 − 𝑀𝑑〉
2𝑝𝑚𝑖𝑛 − 𝑝

𝑝𝑚𝑖𝑛
   𝑓𝑜𝑟   𝑝𝑚𝑖𝑛 ≤ 𝑝 ≤ 2𝑝𝑚𝑖𝑛 

This expression ensures that the model will, for dense of critical soils (i.e., Mb > Md), be dilative when p falls 

below 2pmin.  

 

Effect of fabric on plastic volumetric contraction  

Dafalias and Manzari (2004) used the fabric tensor to modify the dilatancy during contraction (D > 0) as 

follows, 

𝐷 = 𝐴𝑑 ∙ [(𝜶𝑑 − 𝜶): 𝒏](1 + 〈𝑧: 𝒏〉) 

This relationship enhances the volumetric contraction whenever the fabric is favorable (z:n ≥ 

0), based on the term 1+<z:n> as recommended by Dafalias and Manzari (2004).  

(2.75) 

(2.74) 

(2.76) 

(2.77) 

(2.78) 
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The effect of fabric on dilatancy during contraction was modified for the present model as, 

𝐷 = A𝑑𝑐 ∙ [(𝜶 − 𝜶𝒊𝒏
𝒂𝒑𝒑): 𝒏 + 𝐶𝑖𝑛]

2 (𝜶𝑑 − 𝜶): 𝒏

(𝜶𝑑 − 𝜶): 𝒏 + 𝐶𝐷
𝐶𝑝𝑚𝑖𝑛2 

𝐴𝑑𝑐 =
A𝑑𝑜(1 + 〈𝒛: 𝒏〉)

ℎ𝑝𝐶𝑑𝑧
 

𝐶𝐷 = 0.1 

𝐶𝑖𝑛 =
2 ∙ 〈𝒛: 𝒏〉

√2𝑧𝑚𝑎𝑥

 

𝐶𝑑𝑧 = (1 − 𝐶𝑟𝑜𝑡2 ∙
√2𝑧𝑝𝑒𝑎𝑘

𝑧𝑚𝑎𝑥
) ∙ (

𝑧𝑚𝑎𝑥

𝑧𝑚𝑎𝑥 + 𝐶𝑟𝑜𝑡2 ∙ 𝑧𝑐𝑢𝑚
) ≥

1

1 +
𝑧𝑚𝑎𝑥

2

 

𝐶𝑟𝑜𝑡2 = 1 −
𝑧𝑝𝑒𝑎𝑘

𝑧𝑐𝑢𝑚 +
𝑧𝑚𝑎𝑥

100

(= 1 − 𝐶𝑧𝑝𝑘2) 

𝐶𝑝𝑚𝑖𝑛2 = 0   𝑓𝑜𝑟   𝑝 ≤ 2𝑝𝑚𝑖𝑛 

𝐶𝑝𝑚𝑖𝑛2 = 1   𝑓𝑜𝑟   𝑝 ≥ 18𝑝𝑚𝑖𝑛 

𝐶𝑝𝑚𝑖𝑛2 =
𝑝 − 2𝑝𝑚𝑖𝑛

16𝑝𝑚𝑖𝑛
   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The factor Cin in the expression for D has been modified so it now depends on fabric; C in is zero for 

unfavorable fabric, and increases with increasing z:n for favorable fabric to enhance the contraction rate at 

the start of an unloading cycle (note that D would be zero at the start of an unloading cycle if C in was zero).   

The term Cdz in the denominator of the expression for Adc serves to increase the rate of contraction as zpeak 

nears zmax or as a large amount of cumulative fabric formation/destruction has taken place. This term was 

developed for improved modeling of the cyclic strength of denser sands, for which the value of hp can be 

on the order of 100. The degrading of the denominator as zpeak or zcum increases enables the generation of 

high excess pore pressures at higher loading levels, and controls the slope of the CRR versus number of 

uniform loading cycles relationship obtained for undrained element loading. Note that the denominator 

degrades whether fabric is favorable or not, but that the overall rate of contraction is more enhanced if the 

fabric is favorable (z:n ≥ 0). The factor Crot2 was introduced into the factor Cdz to provide better control over 

the rate of contraction as zpeak nears zmax or as a large amount of cumulative fabric formation/destruction 

has taken place. The factor Crot2 takes values that range from 1 for loading with zero fabric or cyclic loading 

that causes reversals of fabric (since zcum will become much larger than zpeak), to 0 for loading that causes 

fabric to grow monotonically in one direction such as in non-reversal cyclic loading (since zcum will equal 

zpeak ). Lastly, the limit on the minimum value of Cdz is required for avoiding division by zero and to avoid 

over-estimating contraction rates (i.e., small values of hp and large values of zpeak or zcum).  

The term Cpmin2 slows the rate of contraction when p is approaching its minimum allowable value, and stops 

further contraction when p is less than twice the minimum allowable p.  

 

Effect of fabric on the elastic modulus  

The elastic shear modulus and elastic bulk modulus may degrade with increasing values of cumulative 

plastic deviator strain term, zcum. This component of the model was added to account for the progressive 

destruction, with increasing plastic shear strains, of any minor cementation bonds or other ageing- or strain 

(2.84) 

(2.83) 

(2.82) 

(2.81) 

(2.79) 

(2.85) 

(2.80) 
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history-related phenomena that produced an increase in small-strain shear modulus. The destruction of 

minor cementation by plastic shear strains is evidenced in the field by measurements of shear wave 

velocities in sand that are lower after earthquake shaking than before earthquake shaking (e.g., Arai 2006). 

The degradation of the elastic shear modulus is computed as, 

𝐺 = 𝐺𝑜𝑝𝐴 (
𝑝

𝑝𝐴
)

1
2⁄

𝐶𝑆𝑅 (
1 +

𝑧𝑐𝑢𝑚

𝑧𝑚𝑎𝑥

1 +
𝑧𝑐𝑢𝑚

𝑧𝑚𝑎𝑥
𝐶𝐺𝐷

) 

where CGD is the factor by which the shear modulus is degraded (divided) at very large values of zcum. This 

change in the elastic shear modulus G causes the bulk modulus K to progressively decrease with increasing 

zcum. The change in K improves the model's ability to track the stress-strain response of liquefying sand. In 

particular, decreasing K with increasing zcum reduces the rate of strain-hardening after phase transformation 

at larger shear strain levels, and improves the ability to approximate the hysteretic stress-strain response 

of a soil as it liquefies.  

 

Effect of fabric on peak mobilized friction angles in drained and undrained loading  

Kutter and Chen (1997) showed that plastic dilation rates are different in drained and undrained loading of 

the same clean sand, with the consequence being that the peak mobilized friction angles are also different 

for drained and undrained loading. This aspect of behavior would appear to be contradictory to having a 

bounding surface that is only dependent on the relative state of the sand (i.e., through the parameter nb) if 

the mobilized friction angles for drained and undrained loading paths are both controlled by the bounding 

surface. The model presented herein produces the same peak mobilized friction angles for drained and 

undrained loading because both conditions become limited by the same bounding surface. This aspect of 

behavior deserves closer examination in future efforts.  

 

2.9- Post-shaking reconsolidation 

Volumetric strains that develop during post-liquefaction reconsolidation of sand are difficult to numerically 

model using the conventional constitutive separation of strains into elastic and plastic components since a 

large portion of the post-liquefaction reconsolidation strains are due to sedimentation effects which are not 

easily incorporated into either the elastic or plastic components of behavior. Single element simulations 

using various constitutive models show that they generally predict post-liquefaction reconsolidation strains 

that are an order of magnitude smaller than observed in various experimental studies (e.g., Ziotopoulou 

and Boulanger 2013b, Howell et al. 2014). 

The present model was modified to provide more realistic estimates of reconsolidation strains during the 

post-shaking portion of a numerical simulation. The modification involved the pragmatic approach of 

reducing the post-shaking elastic shear modulus G (and hence elastic bulk modulus K) which increases 

reconsolidation strains, thereby compensating for the sedimentation strains which are not explicitly 

modeled. The user may activate this feature after the end of strong shaking, such that post-liquefaction 

reconsolidation strains are better approximated in the remainder of the simulation. This feature should not 

be activated for the strong shaking portion of a simulation.  

The post-shaking elastic moduli are determined by multiplying the conventional elastic moduli (computed 

using the expressions described earlier) by a reduction factor Fsed as, 

(2.86) 
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𝐺𝑝𝑜𝑠𝑡−𝑠ℎ𝑎𝑘𝑖𝑛𝑔 = 𝐹𝑠𝑒𝑑𝐺 

𝐾𝑝𝑜𝑠𝑡−𝑠ℎ𝑎𝑘𝑖𝑛𝑔 = 𝐹𝑠𝑒𝑑𝐾 

The Fsed value is computed as, 

𝐹𝑠𝑒𝑑 = 𝐹𝑠𝑒𝑑 ,𝑚𝑖𝑛 + (1 − 𝐹𝑠𝑒𝑑 ,𝑚𝑖𝑛) (
𝑝′

20𝑝′𝑠𝑒𝑑
) ≤ 1 

𝑝′𝑠𝑒𝑑 = 𝑝′𝑠𝑒𝑑𝑜
(

𝑧𝑐𝑢𝑚

𝑧𝑐𝑢𝑚 + 𝑧𝑚𝑎𝑥
) 〈1 −

𝑀𝑐𝑢𝑟

𝑀𝑑
〉0.25 

𝐹𝑠𝑒𝑑 ,𝑚𝑖𝑛 = 0.03 ∙ 𝑒𝑥𝑝(2.6 ∙ 𝐷𝑅) ≤ 0.99 

𝑝′𝑠𝑒𝑑𝑜
= −

𝑃𝑎𝑡𝑚

5
 

where the constant value Fsed,min represents the smallest value that Fsed can attain and is dependent on the 

initial relative density, and the parameter p'sed,o is the mean effective stress up to which reconsolidation 

strains are enhanced. The value of Fsed progressively reduces from unity toward the value of Fsed,min as zcum 

progressively increases and provided that Mcur is less than Md . Setting Fsed,min = 0.04 was found to produce 

reasonable responses as shown later. The user can select values for p'sed,o and Fsed,min.  

 

2.10- Summary of constitutive equations  

The constitutive equations for the model presented herein are summarized in Table 2.1 along with the 

equations for the Dafalias-Manzari (2004) model. 

 

Dafalias-Manzari (2004) model Present model 

Critical state line 

𝑒𝑐𝑠 = 𝑒𝑜 −  (
𝑝𝑐𝑠

𝑝𝐴
)


  

Critical state line 


𝑅

=
𝑅

𝑄−ln(100
𝑝

𝑝𝐴
)

− 𝐷𝑅  

Elastic deviatoric strain increment 

𝑑𝒆𝑒𝑙 =
𝑑𝐬

2𝐺
  

𝐺 = 𝐺𝑜𝑝𝐴
(2.97−𝑒)2

1+𝑒
(

𝑝

𝑝𝐴
)

1
2⁄

  

Elastic deviatoric strain increment 

𝑑𝒆𝑒𝑙 =
𝑑𝐬

2𝐺
  

𝐺 = 𝐺𝑜𝑝𝐴 (
𝑝

𝑝𝐴
)

1
2⁄

𝐶𝑆𝑅 (
1+

𝑧𝑐𝑢𝑚
𝑧𝑚𝑎𝑥

1+
𝑧𝑐𝑢𝑚
𝑧𝑚𝑎𝑥

𝐶𝐺𝐷
)  

𝐶𝑆𝑅 = 1 − 𝐶𝑆𝑅,𝑜 ∙ (
𝑀

𝑀𝑏)
𝑚𝑆𝑅

  

𝐶𝑆𝑅,𝑜 = 0.5  

𝑚𝑆𝑅 = 4  

 

Elastic volumetric strain increment 

𝑑𝜀𝑣
𝑒𝑙 =

𝑑𝑝

𝐾
  

Elastic volumetric strain increment 

𝑑𝜀𝑣
𝑒𝑙 =

𝑑𝑝

𝐾
  

(2.90) 

(2.89) 

(2.88) 

(2.87) 

(2.91) 

(2.92) 
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𝐾 =
2(1+𝑣)

3(1−2𝑣)
𝐺  𝐾 =

2(1+𝑣)

3(1−2𝑣)
𝐺  

Yield surface 

𝑓 = [(𝒔 − 𝑝𝜶): (𝒔 − 𝑝𝜶)]
1
2⁄ − √2

3⁄ 𝑝𝑚 = 0  

Yield surface 

𝑓 = [(𝒔 − 𝑝𝜶): (𝒔 − 𝑝𝜶)]
1
2⁄ − √1

2⁄ 𝑝𝑚 = 0  

Plastic deviatoric strain increment 

𝑑𝒆𝑝𝑙 = 〈𝐿〉𝑹′  

𝑹 = 𝐵𝒏 − 𝐶 (𝒏2 −
1

3
𝑰) +

1

3
𝐷𝑰  

𝐵 = 1 +
3

2

1−𝑐

𝑐
𝑔(𝜃, 𝑐) cos(𝜃)  

𝐶 = 3√
3

2

1−𝑐

𝑐
𝑔(𝜃, 𝑐)  

𝑐 =
𝑄𝑒𝑥𝑡

𝑄𝑐𝑜𝑚𝑝𝑟
  

𝑔(𝜃, 𝑐) =
2𝑐

(1+𝑐)−(1−𝑐) cos(3𝜃)
  

𝑀𝑏 = 𝑀 ∙ 𝑒𝑥𝑝(−𝑛𝑏
𝑅

)  

𝜶𝜃
𝑏 = √2

3⁄ [𝑔(𝜃, 𝑐)𝑀𝑏 − 𝑚]𝒏  

𝐾𝑝 =
2

3
𝐺 ∙ ℎ𝑜 ∙

(𝜶𝜃
𝑏−𝜶):𝒏

(𝜶−𝜶𝑖𝑛):𝒏
  

 

Plastic deviatoric strain increment 

𝑑𝒆𝑝𝑙 = 〈𝐿〉𝑹′  

𝑹 = 𝑹′ +
1

3
𝐷𝑰 = 𝒏 +

1

3
𝐷𝑰  

𝑀𝑏 = 𝑀 ∙ 𝑒𝑥𝑝(−𝑛𝑏
𝑅

)  

𝑀 = 2 ∙ sin(
𝑐𝑣

)  

𝜶𝑏 = √1
2⁄ [𝑀𝑏 − 𝑚]𝒏  

𝐾𝑝 = 𝐺 ∙ ℎ𝑜 ∙
[(𝜶𝑏−𝒂):𝒏]

0.5

[𝑒𝑥𝑝((𝜶−𝒂𝑖𝑛
𝑎𝑝𝑝

):𝒏)−1]+𝐶1
𝐶𝑟𝑒𝑣 ∙

𝐶k

1+𝐶𝐾𝑝(
𝑧𝑝𝑒𝑎𝑘
𝑧𝑚𝑎𝑥

)〈(𝜶𝑏−𝒂):𝒏〉√1−𝐶𝑧𝑝𝑘2

  

𝐶𝑟𝑒𝑣 =
(𝜶−𝜶𝑖𝑛

𝑎𝑝𝑝
):𝒏

(𝜶−𝜶𝑖𝑛
𝑡𝑟𝑢𝑒):𝒏

  𝑓𝑜𝑟  (𝜶 − 𝜶𝑖𝑛
𝑝 ): 𝒏 ≤ 𝟎  

         = 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

𝐶k = 1 +
𝐶k𝑓

1+(2.5∙〈(𝜶−𝒂𝑖𝑛
𝑡𝑟𝑢𝑒):𝒏〉)

2 ∙ 𝐶𝑝𝑧𝑝2 ∙ 𝐶𝑧𝑝𝑘1  

𝐶𝑧𝑝𝑘1 =
𝑧𝑝𝑒𝑎𝑘

𝑧𝑐𝑢𝑚+
𝑧𝑚𝑎𝑥

5

  

𝐶𝑧𝑝𝑘2 =
𝑧𝑝𝑒𝑎𝑘

𝑧𝑐𝑢𝑚+
𝑧𝑚𝑎𝑥

100

  

𝐶𝑝𝑧𝑝2 =
−〈−(𝑝𝑧𝑝−𝑝)〉

−〈−(𝑝𝑧𝑝−𝑝)〉+𝑝𝑚𝑖𝑛
  

𝐶𝛾1 =
ℎ𝑜

200
  

𝐶𝐾𝑝 = 2  

 

Plastic volumetric strain increment 

𝑑𝜀𝑣
𝑝𝑙

= 〈𝐿〉𝐷  

𝑀𝑑 = 𝑀 ∙ 𝑒𝑥𝑝(𝑛𝑑
𝑅

)  

𝜶𝜃
𝑑 = √2

3⁄ [𝑔(𝜃, 𝑐)𝑀𝑑 − 𝑚]𝒏  

𝐷 = 𝐴𝑑𝑜 ∙ [(𝜶𝜃
𝑑 − 𝜶): 𝒏]  

Plastic volumetric strain increment 
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𝐴𝑑 = A𝑜(1 + 〈𝒛: 𝒏〉)  

 

𝑑𝜀𝑣
𝑝𝑙

= 〈𝐿〉𝐷  

𝑀𝑑 = 𝑀 ∙ 𝑒𝑥𝑝(𝑛𝑑
𝑅

)  

𝑀𝑑𝑅 =
𝑀𝑑

𝐶𝑟𝑜𝑡1
  

𝐶𝑟𝑜𝑡1 = 1 +
2∙〈−𝑧:𝒏〉

√2𝑧𝑚𝑎𝑥
∙ (1 − 𝐶𝑧𝑖𝑛1) ≥ 1  

𝐶𝑧𝑖𝑛1 = 〈1 − 𝑒𝑥𝑝 (−2.0 |
𝑧𝑖𝑛:𝒏−𝑧:𝒏

𝑧𝑚𝑎𝑥
|)〉  

α𝑑 =
1

√2
∙ (𝑀𝑑 − 𝑚)𝒏  

α𝑑𝑅 =
1

√2
∙ (𝑀𝑑𝑅 − 𝑚)𝒏  

𝐼𝑓 𝑑𝑖𝑙𝑎𝑡𝑖𝑛𝑔 (𝐷 < 0):  

𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 = 𝐴𝑑 ∙ [(𝜶𝑑 − 𝜶): 𝒏]  

𝐷𝑟𝑜𝑡 = 𝐴𝑑 ∙
〈−𝑧:𝒏〉

√2𝑧𝑚𝑎𝑥
∙

(α𝑑𝑅−α):𝒏

𝐶𝐷𝑅
  

𝑖𝑓  𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 < 𝐷𝑟𝑜𝑡 ⟹  𝐷 = 𝐷𝑛𝑜𝑛−𝑟𝑜𝑡  

𝑒𝑙𝑠𝑒  𝐷 = 𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 + (𝐷𝑟𝑜𝑡 − 𝐷𝑛𝑜𝑛−𝑟𝑜𝑡) ∙

〈𝑀𝑏−𝑀𝑐𝑢𝑟〉

〈𝑀𝑏−𝑀𝑐𝑢𝑟+0.01〉
  

𝐴𝑑 =
𝐴𝑑𝑜(𝐶𝑧𝑖𝑛2)

(
𝑧𝑐𝑢𝑚2

𝑧𝑚𝑎𝑥
)(1−

〈−𝑧:𝒏〉

√2∙𝑧𝑝𝑒𝑎𝑘
)

3

(𝐶𝜀)2(𝐶𝑝𝑧𝑝)(𝐶𝑝𝑚𝑖𝑛)(𝐶𝑧𝑖𝑛1)+1

  

𝐴𝑑𝑜 =
1

0.4
∙

[sin−1(
𝑀𝑏

2
)−sin−1(

𝑀

2
)]

𝑀𝑏−𝑀𝑑   

𝐶𝑝𝑧𝑝 =
1

1+(
2.5𝑝

𝑝𝑧𝑝⁄ )
5  

𝐶𝑝𝑚𝑖𝑛 =
1

1+(
𝑝𝑚𝑖𝑛2

𝑝⁄ )
2  

𝐶𝑧𝑖𝑛1 = 1.0 − 𝑒𝑥𝑝 (−2.0 |
𝒛𝑖𝑛:𝒏−𝒛:𝒏

𝑧𝑚𝑎𝑥
|)  

𝐶𝑧𝑖𝑛2 =
1+𝐶𝑧𝑖𝑛1

𝑧𝑐𝑢𝑚−𝑧𝑝𝑒𝑎𝑘
3𝑧𝑚𝑎𝑥

1+3∙𝐶𝑧𝑖𝑛1

𝑧𝑐𝑢𝑚−𝑧𝑝𝑒𝑎𝑘
3𝑧𝑚𝑎𝑥

  

𝐼𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 (𝐷 ≥ 0)  

𝐷 = A𝑑𝑐 ∙ [(𝜶 − 𝜶𝒊𝒏
𝒂𝒑𝒑): 𝒏 + 𝐶𝑖𝑛]

2 (𝜶𝑑−𝜶):𝒏

(𝜶𝑑−𝜶):𝒏+𝐶𝐷
≤ 1.5 ∙

𝐴𝑑𝑜
(𝜶𝑑−𝜶):𝒏

(𝜶𝑑−𝜶):𝒏+𝐶𝐷
  

𝐴𝑑𝑐 =
A𝑑𝑜(1+〈𝒛:𝒏〉)

ℎ𝑝𝐶𝑑𝑧
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𝐶𝑖𝑛 =
2 〈𝒛:𝒏〉

√2𝑧𝑚𝑎𝑥
   

𝐶𝑑𝑧 = (1 − 𝐶𝑟𝑜𝑡2 ∙
√2𝑧𝑝𝑒𝑎𝑘

𝑧𝑚𝑎𝑥
) ∙ (

𝑧𝑚𝑎𝑥

𝑧𝑚𝑎𝑥+𝐶𝑟𝑜𝑡2𝑧𝑐𝑢𝑚
) ≥

1

1+
𝑧𝑚𝑎𝑥

2

  

𝐶𝑟𝑜𝑡2 = 1 −
𝑧𝑝𝑒𝑎𝑘

𝑧𝑐𝑢𝑚+
𝑧𝑚𝑎𝑥

100

(= 1 − 𝐶𝑧𝑝𝑘2)  

𝐶𝐷 = 0.1  

ℎ𝑝 = ℎ𝑝𝑜  𝑒𝑥𝑝 (−0.7 + 7.0(0.5 − 
𝑅

)
2
)  𝑓𝑜𝑟  

𝑅
≤ 0.5  

ℎ𝑝 = ℎ𝑝𝑜  𝑒𝑥𝑝(−0.7)  𝑓𝑜𝑟  
𝑅

> 0.5  

 

Fabric-dilatancy tensor update 

𝑑𝑧 = −𝑐𝑧〈−𝑑𝜀𝑣
𝑝𝑙〉(𝑧𝑚𝑎𝑥𝒏 + 𝒛)  

 

Fabric-dilatancy tensor update 𝒊𝒇 (d –):n < 0 

𝑑𝑧 =
𝑐𝑧

1+〈
𝑧𝑐𝑢𝑚

2𝑧𝑚𝑎𝑥
−1〉

〈−𝑑𝜀𝑣
𝑝𝑙

〉

𝐷
(𝑧𝑚𝑎𝑥𝒏 + 𝒛)  

𝑑𝑧𝑐𝑢𝑚 = |𝑑𝒛|  

 

Stress increment  

𝐿 =
2𝐺𝒏:𝑑𝒆−𝒏:𝒓𝐾𝑑𝜀𝑣

𝐾𝑝+2𝐺(𝐵−𝐶∙𝑡𝑟𝒏3)−𝐾𝐷𝒏:𝒓
  

𝑑𝝈 = 2𝐺𝑑𝒆 + 𝐾𝑑𝜀𝑣𝑰 − 〈𝐿〉 (2𝐺 [𝐵𝒏 (𝒏2 −
1

3
) 𝑰] +

𝐾𝐷𝑰)  

 

Stress increment  

𝐿 =
2𝐺𝒏:𝑑𝒆−𝒏:𝒓𝐾𝑑𝜀𝑣

𝐾𝑝+2𝐺−𝐾𝐷𝒏:𝒓
  

𝑑𝝈 = 2𝐺𝑑𝒆 + 𝐾𝑑𝜀𝑣𝑰 − 〈𝐿〉(2𝐺𝒏 + 𝐾𝐷𝑰)  

 

 Post-shaking reconsolidation 

𝐺𝑝𝑜𝑠𝑡−𝑠ℎ𝑎𝑘𝑖𝑛𝑔 = 𝐹𝑠𝑒𝑑𝐺  

𝐾𝑝𝑜𝑠𝑡−𝑠ℎ𝑎𝑘𝑖𝑛𝑔 = 𝐹𝑠𝑒𝑑𝐾  

𝐹𝑠𝑒𝑑 = 𝐹𝑠𝑒𝑑 ,𝑚𝑖𝑛 + (1 − 𝐹𝑠𝑒𝑑 ,𝑚𝑖𝑛) (
𝑝′

20𝑝′𝑠𝑒𝑑
) ≤ 1  

𝑝′𝑠𝑒𝑑 = 𝑝′𝑠𝑒𝑑𝑜
(

𝑧𝑐𝑢𝑚

𝑧𝑐𝑢𝑚+𝑧𝑚𝑎𝑥
) 〈1 −

𝑀𝑐𝑢𝑟

𝑀𝑑
〉0.25  

𝐹𝑠𝑒𝑑 ,𝑚𝑖𝑛 = 0.03 ∙ 𝑒𝑥𝑝(2.6 ∙ 𝐷𝑅) ≤ 0.99  

𝑝′𝑠𝑒𝑑𝑜
= −

𝑃𝑎𝑡𝑚

5
  

 

Table 2.1. Comparison of constitutive equations 
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3- Examples and Verifications  

The PM4Sand primary model parameters consists of three main properties, the atmospheric pressure and 

two flags. The rest of model parameters have default values that automatically can be assigned to or 

calculated for them. In RS2 the later set of parameters have their default values in their dialog field or have 

“Auto Calculate” option. The users have the option of choosing the default values for these variables or 

change them as they would see fit.  

The three primary input properties are the relative density (𝐷𝑅) of sand, the shear modulus coefficient (𝐺𝑜), 

and the contraction rate parameter (ℎ𝑝𝑜).  

For the purpose of verification series of simulations are considered that include Drained Direct Simple Shear 

Test, Undrained Direct Simple Shear Test and Undrained Cyclic Direct Simple Shear Tests.  The primary 

parameters of the loos, medium dense and dense sands are presented in table 3.1. The RS2 results are 

compared mainly with the results from FLAC and PLAXIS. The FLAC results are obtained using the 

constitutive model dll file and FLAC model and FISH files from the original work by Boulanger, R. W., and 

Ziotopoulou, K. (https://pm4sand.engr.ucdavis.edu/pm4sand-files). 

 

 

 

 

 

 

Table 3.1. Input parameters for PM4Sand model verifications 

 

3.1- Drained Monotonic Direct Simple Shear Tests  

The response for drained monotonic direct simple shear tests (DSS plane-strain) for sand at DR of 35%, 

55%, and 75% with properties listed in Table 3.1, under vertical confining stresses of 0.25, 1, 4, and 16 

atmospheric pressure are presented shown in Figures 3.1 to 3.5.  

All the simulations are done under strain control loading and there is a good agreement between the results 

generated by the three software.  

3.2- Undrained Monotonic Direct Simple Shear Tests  

The response for undrained monotonic direct simple shear tests (DSS plane-strain) for sand at DR of 35%, 

55%, and 75% with properties listed in Table 3.1, under vertical confining stresses of 0.25, 1, 4, and 16 

atmospheric pressure are presented shown in Figures 3.6 to 3.10.  

All the simulations are done under strain control loading and there is a good agreement between the results 

generated by the three software.  

𝐷𝑅 𝐺𝑜 ℎ𝑝𝑜 

0.35 476 0.53 

0.55 677 0.40 

0.75 890 0.63 

https://pm4sand.engr.ucdavis.edu/pm4sand-files
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3.3- Undrained Cyclic Direct Simple Shear Tests  

The response for undrained cyclic direct simple shear tests (DSS plane-strain) for sand at DR of 35%, 55%, 

and 75% with properties listed in Table 3.1, under vertical confining stress of 1atmospheric pressure are 

presented shown in Figures 3.11 to 3.16. for each relative density of sand 2 different levels of maximum 

shear stress to initial effective vertical stress is considered. The simulations in FLAC are strain controlled 

and the loading direction changes when the shear stress reaches to the maximum/minimum values. Since 

the strains increments are small the maximum and minimum values of shear stress match the assigned 

values with an acceptable accuracy. This minor error could accumulate when the number of cycles 

increase, and the results might deviate form an ideal stress path with fixed minimum and maximum shear 

stresses. The loading in RS2 and PLAXIS is stress controlled and the accuracy of the maximum and 

minimum shear stresses are controlled by the tolerance defined for the convergence of the solution in these 

tools.  Due to the difference in the loading, being strain or stress controlled, and the acceptable tolerance 

for the convergency of solution there are minor differences between the results. This is more pronounced 

in Figures 3.11 and 3.12 where the stress path predicted by FLAC shows a decrease in shear stress with 

increasing shear strain. Both RS2 and PLAXIS in this case do not show the decrease in the shear stress, 

as the simulations are stress controlled, but they show a big jump in the value of shear strain. Other than 

this difference that is expected there is a good agreement between the results generated by the three 

software.  
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(c) 

Figure 3.1. Monotonic Drained Simple Shear Test loading responses for (a) DR = 35% (b) DR =55, and (c) 

DR=75% with vertical effective stress of ¼ Patm, and Ko=0.5 
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(c) 

Figure 3.2. Monotonic Drained Simple Shear Test loading responses for (a) DR = 35% (b) DR =55, and (c) 

DR=75% with vertical effective stress of 1 Patm, and Ko=0.5 
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(c) 

Figure 3.3. Monotonic Drained Simple Shear Test loading responses for (a) DR = 35% (b) DR =55, and (c) 

DR=75% with vertical effective stress of 4 Patm, and Ko=0.5 
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(c) 

Figure 3.4. Monotonic Drained Simple Shear Test loading responses for (a) DR = 35% (b) DR =55, and (c) 

DR=75% with vertical effective stress of 16 Patm, and Ko=0.5 
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(c) 

Figure 3.5. Monotonic Drained Simple Shear Test loading responses for (a) DR = 35% (b) DR =55, and (c) 

DR=75% with vertical effective stress of 64 Patm, and Ko=0.5 
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(c) 

Figure 3.6. Monotonic Undrained Simple Shear Test loading responses for (a) DR = 35% (b) DR =55, and 

(c) DR=75% with vertical effective stress of ¼Patm, and Ko=0.5 
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(c) 

Figure 3.7. Monotonic Undrained Simple Shear Test loading responses for (a) DR = 35% (b) DR =55, and 

(c) DR=75% with vertical effective stress of 1 Patm, and Ko=0.5 
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(c) 

Figure 3.8. Monotonic Undrained Simple Shear Test loading responses for (a) DR = 35% (b) DR =55, and 

(c) DR=75% with vertical effective stress of 4 Patm, and Ko=0.5 
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(c) 

Figure 3.9. Monotonic Undrained Simple Shear Test loading responses for (a) DR = 35% (b) DR =55, and 

(c) DR=75% with vertical effective stress of 16 Patm, and Ko=0.5 
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(c) 

Figure 3.10. Monotonic Undrained Simple Shear Test loading responses for (a) DR = 35% (b) DR =55, and 

(c) DR=75% with vertical effective stress of 64 Patm, and Ko=0.5 
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Figure 3.11. Cyclic Undrained Simple Shear Test loading responses for DR = 35% under vertical effective 

stress of 1 Patm, and Ko=0.5 with maximum loading ratio of 0.147; (a) variation of share stress with shear 

strain and (b) effective stress path 
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Figure 3.12. Cyclic Undrained Simple Shear Test loading responses for DR = 35% under vertical effective 

stress of 1 Patm, and Ko=0.5 with maximum loading ratio of 0.147*1.6; (a) variation of share stress with 

shear strain and (b) effective stress path 
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Figure 3.13. Cyclic Undrained Simple Shear Test loading responses for DR = 55% under vertical effective 

stress of 1 Patm, and Ko=0.5 with maximum loading ratio of 0.147; (a) variation of share stress with shear 

strain and (b) effective stress path 
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Figure 3.14. Cyclic Undrained Simple Shear Test loading responses for DR = 55% under vertical effective 

stress of 1 Patm, and Ko=0.5 with maximum loading ratio of 0.147*1.6; (a) variation of share stress with 

shear strain and (b) effective stress path 
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Figure 3.15. Cyclic Undrained Simple Shear Test loading responses for DR = 55% under vertical effective 

stress of 1 Patm, and Ko=0.5 with maximum loading ratio of 0.1476; (a) variation of share stress with shear 

strain and (b) effective stress path 

 

-20

-15

-10

-5

0

5

10

15

20

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04

Sh
ea

r 
St

re
ss

 (
kP

a)

Shear Strain (%)

RS2

RS2-Dynamic

FLAC

PLAXIS

-20

-15

-10

-5

0

5

10

15

20

70 75 80 85 90 95 100 105

Sh
ea

r 
St

re
ss

 (
kP

a)

Effective Vertical Stress (kPa)



 
 

 43  rocscience.com 

 

Figure 3.16. Cyclic Undrained Simple Shear Test loading responses for DR = 55% under vertical effective 

stress of 1 Patm, and Ko=0.5 with maximum loading ratio of 0.147*3.2; (a) variation of share stress with 

shear strain and (b) effective stress path 
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