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1- Introduction 

Nonlinear seismic deformation analyses in geotechnical practice require approximating the stress-strain 

responses of a broad range of soil types and consistencies. Soil types can span from clearly sand-like to 

clearly clay-like, with a broad range of intermediate soil types that are more difficult to characterize. Soil 

consistency can range from loose or soft to dense or hard in natural deposits or man-made fills. The 

choice of engineering procedures for characterizing a soil's properties depends on its type and 

consistency, along with a number of project specific considerations. The choice of a constitutive model for 

representing a specific soil in a nonlinear dynamic analysis similarly depends on the soil type, its 

consistency, and a number of project-specific considerations.  

The PM4Silt (version 1) plasticity model for representing low-plasticity silts and clays in geotechnical 

earthquake engineering applications is presented herein. The PM4Silt model builds on the framework of 

the stress-ratio controlled, critical state compatible, bounding surface plasticity PM4Sand model (version 

3) described in Boulanger and Ziotopoulou (2015) and Ziotopoulou and Boulanger (2016). Modifications 

to the model were developed and implemented to improve its ability to approximate undrained monotonic 

and cyclic loading responses of low-plasticity silts and clays, as opposed to those for purely nonplastic 

silts or sands.  

 

 

2- Model Formulation  

The PM4Silt model presented herein follows the basic framework of the stress-ratio controlled, critical 

state compatible, bounding-surface plasticity PM4Sand (version 3) model presented by Boulanger and 

Ziotopoulou (2015) and Ziotopoulou and Boulanger (2016). The PM4Sand model was built on the 

framework provided by Dafalias and Manzari (2004). 

 

2.1- Basic stress and strain terms  

The basic stress and strain terms for the model are as follows. The model is based on effective stresses, 

with the conventional prime symbol dropped from the stress terms for convenience because all stresses 

are effective for the model. The stresses are represented by the tensor , the principal effective stresses 

1, 2, and 3, the mean effective stress p, the deviatoric stress tensor s, and the deviatoric stress ratio 

tensor r. The present implementation was simplified by casting the various equations and relationships in 

terms of the in-plane stresses only. This limits the present implementation to plane-strain applications and 

is not correct for general cases, but it has the advantage of simplifying the implementation and improving 

computational speed by reducing the number of operations. Consequently, the relationships between the 

various stress terms can be summarized as follows:  

𝝈 = (
𝜎𝑥𝑥 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦𝑦
) 

𝑝 =
𝜎𝑥𝑥 + 𝜎𝑦𝑦

2
 

(2.1) 

(2.2) 
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𝒔 = 𝝈 − 𝑝𝑰 = (
𝑠𝑥𝑥 𝑠𝑥𝑦

𝑠𝑥𝑦 𝑠𝑦𝑦
) = (

𝜎𝑥𝑥 − 𝑝 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦𝑦 − 𝑝) 

𝒓 =
𝒔

𝑝
= (

𝑟𝑥𝑥 𝑟𝑥𝑦

𝑟𝑥𝑦 𝑟𝑦𝑦
) = (

𝜎𝑥𝑥 − 𝑝

𝑝

𝜎𝑥𝑦

𝑝
𝜎𝑥𝑦

𝑝

𝜎𝑦𝑦 − 𝑝

𝑝

) 

Note that the deviatoric stress and deviatoric stress ratio tensors are symmetric with rxx=-ryy and sxx=-syy 

(meaning a zero trace), and that I is the identity matrix.  

The model strains are represented by a tensor , which can be separated into the volumetric strain v and 

the deviatoric strain tensor e. The volumetric strain is, 

𝜀𝑣 = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 

and the deviatoric strain tensor is,  

𝒆 = 𝜺 −
𝜀𝑣

3
𝐼 = (

𝜀𝑥𝑥 −
𝜀𝑣

3
𝜀𝑥𝑦

𝜀𝑥𝑦 𝜀𝑦𝑦 −
𝜀𝑣

3

) 

In incremental form, the deviatoric and volumetric strain terms are decomposed into an elastic and a 

plastic part, 

𝑑𝒆 = 𝑑𝒆𝑒𝑙 + 𝑑𝒆𝑝𝑙 

𝑑𝜀𝑣 = 𝑑𝜀𝑣
𝑒𝑙 + 𝑑𝜀𝑣

𝑝𝑙 

where 

𝑑𝒆𝑒𝑙 = elastic deviatoric strain increment tensor  

𝑑𝒆𝑝𝑙 = plastic deviatoric strain increment tensor 

𝑑𝜀𝑣
𝑒𝑙 = elastic volumetric strain increment 

𝑑𝜀𝑣
𝑝𝑙 = plastic volumetric strain increment  

 

2.2- Critical state  

The PM4Silt model uses the state parameter () (Been and Jefferies 1985), which is the difference 

between the current void ratio (e) and the critical state void ratio (ecs) at the same mean effective stress 

(p). The critical state line is approximated as linear in void ratio versus natural logarithm of mean effective 

stress space, with a slope  and intercept  when p' = 1 kPa. Thus, void ratio at critical state (ecs) is 

related to the mean effective stress at critical state (pcs) by the following expression.  

𝑒𝑐𝑠 =  −  ln (
𝑝

1𝑘𝑃𝑎
) 

 = 𝑒 − 𝑒𝑐𝑠 

For silts and clays with sufficient plasticity to exhibit stress history normalization of strengths, 

the slope of the critical state line is often approximately parallel to the slope of the virgin consolidation line 

(Cc). The value of Cc is generally taken as the slope in void ratio versus logarithm (base 10) of mean 

effective stress space, and thus Cc and  are related as:  

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.8) 

(2.7) 

(2.9) 

(2.10) 
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 =
log(10)

ln(10)
𝐶𝐶 = 0.434 ∙ 𝐶𝐶 

 

2.3- Bounding, dilatancy, and critical surfaces  

The model incorporates bounding, dilatancy, and critical stress ratio surfaces. The bounding and 

dilatancy surfaces are functions of the state parameter, and collapse to the critical stress ratio surface 

when the state parameter is zero. Lode angle dependency was removed to simplify the model.  

The dilatancy (Md) ratio is related to the critical stress ratio (M) by the expression,  

𝑀𝑑 = 𝑀 ∙ 𝑒𝑥𝑝 (𝑛𝑑



) 

where the model parameter nd is a positive number so that Md is smaller than M for dense of critical states 

and greater than M for loose of critical states. For the present implementation, the mean normal stress p 

is taken as the average of the in-plane normal stresses (Equation 2.2), q is the difference in the major and 

minor principal in-plane stresses, and the relationship for M is reduced to  

𝑀 = 2 ∙ sin(
𝑐𝑣

) 

where cv is the constant volume or critical state effective friction angle.  

The bounding (Mb ) ratio has different forms for dense versus loose of critical states. For loose of critical 

states (i.e., the "wet" side), Mb is related to M by the expression,  

𝑀𝑏 = 𝑀 ∙ 𝑒𝑥𝑝 (−𝑛𝑏,𝑤𝑒𝑡



) 

where the model parameter nb,wet is a positive number so that Mb is smaller than M on the wet side. For 

dense of critical states (i.e., the "dry" side), Mb is related to M by the expression, 

𝑀𝑏 = 𝑀 ∙ (
1 + 𝐶𝑀𝑏

𝑝
𝑝𝑐𝑠

+ 𝐶𝑀𝑏

)

𝑛𝑏,𝑑𝑟𝑦

 

𝐶𝑀𝑏 =
1

(
𝑀𝑏,𝑚𝑎𝑥

𝑀 )

1
𝑛𝑏,𝑑𝑟𝑦⁄

− 1

 

𝑀𝑏,𝑚𝑎𝑥 = 2 ∙ sin(
𝑚𝑎𝑥

) 

The above expression produces Mb values that smoothly vary from equal to M at critical state (i.e., p/pcs = 

1) to a maximum value Mb,max at the origin (i.e., p = 0). The value of Mb,max corresponds to the maximum 

friction angle than can be mobilized near the origin, max.  

For a fixed value of state parameter (with corresponding fixed values for p/pcs, Md, and Mb), the bounding, 

dilatancy, and critical stress ratio surfaces can be visualized as linear lines on a q-p plot (where q=1-3) 

as shown in Figure 2.1 or as circular surfaces on a stress-ratio graph of ryy versus rxy as shown in Figure 

2.2. As the model is sheared toward critical state ( = 0, p/pcs = 1), the values of Mb and Md will both 

approach the value of M. Thus, the bounding and dilatancy surfaces move together during shearing until 

they coincide with the critical state surface when the soil has reached critical state.  

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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For soil at a fixed void ratio, the locus of points on the bounding surface in a q-p plot will be curved 

because changes in p will correspond to changes in state parameter and Mb. This is illustrated in Figure 

2.3 showing q/pcs versus p/pcs for points on the bounding surface for soil at a fixed void ratio. For loose of 

critical states (i.e., p/pcs > 1), the locus of q-p points on the bounding surface becomes flat for nb,wet = 1.0 

and becomes steeper with decreasing values of nb,wet until it follows M at the limit of nb,wet = 0.0. For dense 

of critical states (i.e., p/pcs < 1), the concave locus of q-p points on the bounding surface is stretched 

outward for larger values of nb,dry and pulls closer to M with decreasing values of nb,dry. The functional 

forms for the bounding stress ratio, as illustrated in this figure, are later shown (Section 4.2) to be 

important for controlling undrained (i.e., constant void ratio) behaviors in monotonic and cyclic loading. 

 

 

Figure 2.2. Schematic of yield, critical, dilatancy, and bounding lines in q-p space for a fixed value of state 

parameter (after Dafalias & Manzari 2004).  

 

Figure 2.2. Schematic of the bounding, dilatancy, and yield surfaces on the ryy-rxy stress-ratio plane 
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Figure 2.3. Schematic of the bounding lines and critical state line in q-p space for  

a fixed value of void ratio and a range of nb,dry values (for dense of critical state conditions) 

 and nb,wet values (for loose of critical state conditions). 

 

2.4- Yield surface and image back-stress ratio tensors  

The yield surface and back-stress ratio tensor () follow those of the Dafalias-Manzari model, although 

their final form is considerably simplified by the prior assumption of removing any Lode angle 

dependency. The yield surface is a small cone in stress space, and is defined in stress terms by the 

following expression:  

𝑓 = [(𝒔 − 𝑝𝜶): (𝒔 − 𝑝𝜶)]
1
2⁄ − √1

2⁄ 𝑝𝑚 = 0 

The back-stress ratio tensor  defines the center of the yield surface, and the parameter m defines the 

radius of the cone in terms of stress ratio. The parameter m is assigned a default value of 0.01 based on 

results showing it provides reasonable modeling and numerical stability. The yield function can be 

rewritten to emphasize the role of stress ratio terms as follows,   

𝑓 = √(𝒓 − 𝜶): (𝒓 − 𝜶) − √1
2⁄ 𝑚 = 0 

The yield function can then be visualized as related to the distance between the stress ratio r and the 

back-stress ratio , as illustrated in Figure 2.2.  

The bounding surface formulation now requires that bounding and dilatancy stress ratio tensors be 

defined. Dafalias and Manzari (2004) showed that it is more convenient to track back-stress ratios and to 

similarly define bounding and dilatancy surfaces in terms of back-stress ratios. An image back-stress ratio 

tensor for the bounding surface (b) is defined as, 

𝜶𝑏 = √1
2⁄ [𝑀𝑏 − 𝑚]𝒏 

where the tensor n is normal to the yield surface. An image back-stress ratio tensor for the dilatancy 

surface (d) is similarly defined as, 

𝜶𝑑 = √1
2⁄ [𝑀𝑑 − 𝑚]𝒏 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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The computation of constitutive responses can now be more conveniently expressed in terms of back-

stress ratios rather than in terms of stress ratios, as noted by Dafalias and Manzari (2004). 

 

2.5- Stress reversal and initial back-stress ratio tensors 

The bounding surface formulation, as presented by Dafalias and Manzari (2004), keeps track of the initial 

back-stress ratio (in) and uses it in the computation of the plastic modulus Kp. This tracking of one 

instance in loading history is essentially a first-order method for tracking loading history. A reversal in 

loading direction is then identified, following traditional bounding surface practice, whenever 

(𝜶 − 𝒂𝑖𝑛): 𝒏 < 0 

A reversal causes the current stress ratio to become the initial stress ratio for subsequent loading. Small 

cycles of load reversal can reset the initial stress ratio and cause the plastic modulus Kp to increase 

accordingly, in which case the stress-strain response becomes overly stiff after a small load reversal. This 

is a well-known problem in bounding surface formulations for which various approaches offer different 

advantages and disadvantages.  

The model presented herein tracks an initial back-stress ratio and a previous initial back-stress ratio (in
p), 

as illustrated in Figure 2.4a. When a reversal occurs, the previous initial back-stress ratio is updated to 

the initial back stress ratio, and the initial back-stress ratio is updated to the current back-stress ratio.  

In addition, the model tracks an apparent initial back-stress ratio tensor (αin
app) as schematically illustrated 

in Figure 2.4b. The schematic in Figure 2.4b is similar to that of Figure 2.4a, except that the most recent 

loading reversals correspond to a small unload-reload cycle on an otherwise positive loading branch. The 

components of αin
app are taken as: (i) for positive loading directions, the minimum value they have ever 

had, but no smaller than zero, and (ii) for negative loading directions, the maximum value they have ever 

had, but no greater than zero. These minimum and maximum past back-stress ratios are stored for each 

component individually and for the entire loading history. The use of αin
app helps avoid the over-stiffening 

of the stress-strain response following small unload-reload cycles along an otherwise monotonically 

increasing branch of loading, without having to track the loading history through many cycles of load 

reversals.  

The computation of Kp utilizes the values of αin
app, αin

true, and αin
p , as defined in Figure 2.4b, to better 

approximate the stress-strain response during an unload-reload cycle. For the last positive loading branch 

in this figure, the value of Kp is initially most strongly controlled (inversely) by the distance (α - αin
true):n, 

such that the stiffness is initially large. As positive loading continues, the progressive reduction in Kp 

becomes increasingly dependent on αin
app as well. Once the positive loading exceeds the previous 

reversal point, the value of Kp becomes solely dependent on the distance (α - αin
app):n. Thus, the 

computation of Kp has the following dependencies:  

𝑖𝑓(𝜶 − 𝜶𝑖𝑛
𝑝 ): 𝒏 < 0 ⟹ 𝐾𝑝 = 𝑓(𝜶𝑖𝑛

𝑡𝑟𝑢𝑒 , 𝜶𝑖𝑛
𝑎𝑝𝑝) 

𝑒𝑙𝑠𝑒                  ⟹  𝐾𝑝 = 𝑓(𝜶𝑖𝑛
𝑎𝑝𝑝)  

(2.22) 

(2.23) 
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Figure 2.5. Schematic showing definitions of back-stress ratio tensors on the αyy-αxy plane for: (a) a 

loading history with reversals in the sign of the shear stress ratios, and (b) a loading history with a recent 

loading reversal that does not involve reversal of the sign of the shear stress ratios. 

The equations relating Kp to these back-stress ratios are given later in section 2.7.  

The impact of the above logic for defining αin on stress-strain responses is demonstrated in Figure 2.5 

showing αxy versus shear strain  computed for two different drained DSS loading simulations. For these 

two examples, the reloading stiffness of the current loading branch (green line) is initially large because 

Kp is initially computed based on αin = αin
true. As the loading exceeds αin

p , the loading stiffness becomes 

much softer because Kp is now computed based on αin = αin
app. 

    

 

 

 

   

                   (a)                                                                                      (b) 

Figure 2.5. Drained DSS simulations showing αxy versus γ with the points corresponding to the current 

back-stress ratio α, the apparent initial back-stress ratio αin
app, the true initial back-stress ratio αin

true , and 

the previous initial back-stress ratio αin
p  for: (a) monotonic shearing with one intermediate unload-reload 

cycle, and (b) a more general sequence of cyclic loading 

 

2.6- Elastic strains and moduli  

The elastic deviatoric strain and elastic volumetric strain increments are computed as: 

𝑑𝒆𝑒𝑙 =
𝑑𝐬

2𝐺
 

𝑑𝜀𝑣
𝑒𝑙 =

𝑑𝑝

𝐾
 

(2.24) 

(2.25) 
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where G is the elastic shear modulus and K is the elastic bulk modulus. The elastic shear modulus in the 

model presented herein is dependent on the mean effective stress according to, 

𝐺 = 𝐺𝑜𝑝𝐴 (
𝑝

𝑝𝐴
)

𝑛𝐺

𝐶𝑆𝑅 

where Go and nG are constants, pA is the atmospheric pressure (101.3 kPa), and CSR is factor that 

accounts for stress ratio effects (described below).  

Dafalias and Manzari (2004) had included dependence of G on void. This aspect was not included in the 

model herein because: (1) the effects of void ratio changes on G are small relative to those of confining 

stress, (2) the value of Go is more strongly affected by environmental factors such as cementation and 

ageing, and (3) the calibration of G to in-situ shear wave velocity data is simplified by not including e.  

The CSR factor to account for stress ratio effects was included in the PM4Sand model and retained 

herein for the PM4Silt model. The effect of stress ratio was shown to generally be less than about 10% 

when the ratio of major to minor principal effective stresses is less than about 2.5, but to also increase to 

about 20-30% at higher principal stress ratios. They also showed that stress ratio history caused a 

reduction in the small-strain elastic shear modulus when the maximum previous stress ratio was greater 

than the current stress ratio. The effect of stress ratio and stress ratio history on the elastic shear modulus 

was approximately accounted for in the PM4Sand model by the factor CSR. The following equation for CSR 

represents stress ratio effects, except that it uses stress ratio terms consistent with the present model,  

 

𝐶𝑆𝑅 = 1 − 𝐶𝑆𝑅,𝑜 ∙ (
𝑀

𝑀𝑏
)

𝑚𝑆𝑅

 

 

The above equation approximates Yu and Richart's (1984) results for stress ratio effects when 

 CSR,o = 0.3 and mSR = 2. The effects of stress ratio history would cause further reductions, and is more 

complicated to represent. The calibration examples for PM4Sand worked well with CSR,0 = 0.5 and mSR = 

4, which keeps the effect of stress ratio on elastic modulus small at small stress ratios, but lets the effect 

increase to a 60% reduction when the stress ratio is on the bounding surface. The same default 

parameters are retained for PM4Silt, although the experimental basis for extending this relationship to 

low-plasticity silts and clays is lacking. 

The elastic bulk modulus is related to the shear modulus through the Poisson's ratio as, 

𝐾 =
2(1 + 𝑣)

3(1 − 2𝑣)
𝐺 

as was done by Dafalias and Manzari (2004).  

 

2.7- Plastic components without fabric effects  

Loading index  

The loading index (L) is used to compute the plastic component of the volumetric strain increment and the 

plastic deviatoric strain increment tensor as,  

𝑑𝜀𝑣
𝑝𝑙

= 〈𝐿〉𝐷 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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𝑑𝒆𝑝𝑙 = 〈𝐿〉𝑹′ 

where D is the dilatancy, R is the direction of dpl, R is the deviatoric component of R, and <> 

are MacCauley brackets that set negative values to zero [i.e., <L>= L if L ≥ 0, and <L>= 0 if L < 0]. The 

tensor R for the assumption of no Lode angle dependency is, 

𝑹 = 𝒏 +
1

3
𝐷𝑰 

where n is the unit normal to the yield surface (Figure 2.2). Note that the assumption of no Lode angle 

dependency also means that R = n. The dilatancy D relates the incremental plastic volumetric strain to 

the absolute value of the incremental plastic deviatoric strain, 

𝐷 =
𝑑𝜀𝑣

𝑝𝑙

|𝑑𝒆𝑝𝑙|
 

The dilatancy D can be also related to the conventional engineering shear strain in this plane strain 

approximation, as 

𝐷 =
𝑑𝜀𝑣

𝑝𝑙

√1
2⁄ |𝑑𝑝𝑙|

 

The loading index, as derived in Dafalias and Manzari (2004) is, 

𝐿 =
1

𝐾𝑝

𝜕𝑓

𝜕𝝈
: 𝑑𝝈 =

1

𝐾𝑝

[𝒏: 𝑑𝒔 − 𝒏: 𝒓𝑑𝑝] 

𝐿 =
2𝐺𝒏: 𝑑𝒆 − 𝒏: 𝒓𝐾𝑑𝜀𝑣

𝐾𝑝 + 2𝐺 − 𝐾𝐷𝒏: 𝒓
 

The stress increment for an imposed strain increment can then be computed as, 

𝑑𝜎 = 2𝐺𝑑𝒆 + 𝐾𝑑𝜀𝑣𝑰 − 〈𝐿〉(2𝐺𝒏 + 𝐾𝐷𝑰) 

 

Hardening and the update of the back-stress ratio  

Updating of the back-stress ratio is dependent on the hardening aspects of the model. Dafalias and 

Manzari (2004) updated the back-stress ratio according to bounding surface practice as, 

𝑑𝜶 = 〈𝐿〉 (
2

3
) ℎ(𝜶𝑏 − 𝜶) 

where h is the hardening coefficient. The factor of 2/3 was included for convenience so that model 

constants would be the same in triaxial and multi-axial derivations. They subsequently showed that the 

consistency condition f=0 was satisfied when the plastic modulus Kp was related to the hardening 

coefficient as, 

𝐾𝑝 =
2

3
𝑝 ∙ ℎ ∙ (𝜶𝑏 − 𝜶): 𝒏 

This expression can be rearranged so as to show that the consistency equation can be satisfied by 

expressing the hardening coefficient as, 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.36) 

(2.35) 

(2.37) 
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ℎ =
3

2
∙

𝐾𝑝

𝑝 ∙ (𝜶𝑏 − 𝜶): 𝒏
 

The relationship for the plastic modulus can subsequently take a range of forms, provided that the 

hardening coefficient and updating of the back-stress ratio follow the above expressions.  

 

Plastic modulus  

The plastic modulus in the multi-axial generalized form of Dafalias and Manzari (2004), after substituting 

in their expression for the hardening coefficient, can be expressed as, 

𝐾𝑝 =
2

3
𝐺 ∙ ℎ𝑜 ∙ [

1 + 𝑒

(2.97 − 𝑒)2
∙ (1 − 𝐶ℎ𝑒)] ∙

(𝜶𝑏 − 𝜶): 𝒏

(𝜶 − 𝜶𝑖𝑛): 𝒏
 

where ho and Ch are scalar parameters and e is the void ratio. Setting aside the secondary influence of 

void ratio, this form illustrates that Kp is proportional to G, proportional to the distance of the back-stress 

ratio to the bounding back-stress ratio, and inversely proportional to the distance of the back-stress ratio 

from the initial back-stress ratio.  

The plastic modulus relationship was revised in the model presented herein to provide an improved 

approximation of empirical relationships for secant shear modulus and equivalent damping ratios during 

drained strain-controlled cyclic loading. The plastic modulus is computed as, 

𝐾𝑝 = 𝐺 ∙ ℎ𝑜 ∙
[(𝜶𝑏 − 𝜶): 𝒏]0.5

[𝑒𝑥𝑝[(𝜶 − 𝜶𝑖𝑛
𝑎𝑝𝑝): 𝒏] − 1] + 𝐶1

𝐶𝑟𝑒𝑣 

𝐶𝑟𝑒𝑣 =
(𝜶 − 𝜶𝑖𝑛

𝑎𝑝𝑝): 𝒏

(𝜶 − 𝜶𝑖𝑛
𝑡𝑟𝑢𝑒): 𝒏

  𝑓𝑜𝑟  (𝜶 − 𝜶𝑖𝑛
𝑝 ): 𝒏 ≤ 𝟎 

= 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The factor Crev accounts for the effect of unload-reload cycles as discussed in Section 2.5 and illustrated 

in Figure 2.5. The constant C1 in the denominator serves to avoid division by zero and has a slight effect 

on the nonlinearity and damping at small shear strains. If C1 = 0, then the value of Kp will be infinite at the 

start of a loading cycle because (-in):n will also be zero. In that case, nonlinearity will become 

noticeable only after (-in):n becomes large enough to reduce Kp closer to the value of G (e.g., Kp/G 

closer to 100 or 200). Setting the value of C1 = ho/200 produces a reasonable response as will be 

demonstrated later with examples of modulus reduction and equivalent damping ratios. The stress ratio is 

precluded from being outside the bounding surface in the present implementation. The plastic modulus is 

further modified for the effects of fabric and fabric history, as described in a later section.  

 

Plastic volumetric strains - Dilation  

Plastic volumetric strains are related to plastic deviatoric strains through the dilatancy D (Equations 2.29 

and 2.30), which is computed in the Dafalias and Manzari (2004) model and the base component of the 

model presented herein (with additional fabric effects described in a later section) as, 

𝐷 = 𝐴𝑑𝑜 ∙ [(𝜶𝜃
𝑑 − 𝜶): 𝒏] 

Note that dilation (increasing void ratio) occurs whenever the term (d-):n is less than zero 

whereas contraction (decreasing void ratio) occurs when it is positive.  

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 
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For sands, the constant Ado in this relationship can be related to the dilatancy relationship proposed by 

Bolton (1986), which follows from the work of Rowe (1962), through the following sequence of steps. 

Bolton showed that the difference between peak and constant volume friction angles in sands could be 

approximated as, 


𝑝𝑘

 − 
𝑐𝑣

 = −0.8 

with 

 = tan−1 (
𝑑𝜀𝑣

𝑝𝑙

|𝑑𝑝𝑙|
) 

Since  ≈ tan() for  less than about 0.35 radians (20 degrees), the difference between peak and 

constant volume friction angles (in radians) can be approximated as, 


𝑝𝑘

 − 
𝑐𝑣

= −0.8
𝑑𝜀𝑣

𝑝𝑙

|𝑑𝑝𝑙|
= −0.8√

1

2
𝐷 

The peak friction angle is mobilized at the bounding surface, so this can be written as, 


𝑝𝑘

 − 
𝑐𝑣

= −0.8√
1

2
𝐴𝑑𝑜 ∙ [(𝜶𝑑 − 𝜶): 𝒏] 


𝑝𝑘

 − 
𝑐𝑣

= −0.8√
1

2
𝐴𝑑𝑜 ∙ [(

𝑀𝑑

√2
𝒏 −

𝑀𝑏

√2
𝒏) : 𝒏] 

The term n:n is equal to unity, and the values of pk and cv (again in radians) can be replaced with 

expressions in terms of Mb and M as, 

sin−1 (
𝑀𝑏

2
) − sin−1 (

𝑀

2
) = 0.4𝐴𝑑𝑜 ∙ [𝑀𝑏 − 𝑀𝑑] 

This expression can then be rearranged to solve for Ado as, 

𝐴𝑑𝑜 =
1

0.4

sin−1 (
𝑀𝑏

2
) − sin−1 (

𝑀
2

)

𝑀𝑏 − 𝑀𝑑
 

where the angles returned by the sin-1 functions are in radians.  

The parameter Ado should thus be chosen to be consistent with the relationships that control Mb and Md. 

For sands, the value for Ado ranged from 1.26 to 1.45 for a range of relative states and the functions used 

in the PM4Sand model (Boulanger and Ziotopoulou 2015). If these stress-dilatancy relationships are 

considered applicable for low plasticity silts and clays, then the above expression produces Ado values 

ranging from 0.8 to 1.2 for the Mb and Md functions described herein with a wide range of values for nb,dry, 

nd , , and . A default value for Ado of 0.8 is adopted in the PM4Silt model based on the other default 

parameters summarized in a later section, although an alternative value for Ado can be specified by the 

user.  

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.48) 

(2.47) 
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Plastic volumetric strains - Contraction  

Plastic volumetric strains during contraction (i.e., whenever (d-):n is greater than zero) are computed in 

the Dafalias and Manzari (2004) model using the same expression as used for dilatancy,  

𝐷 = 𝐴𝑑𝑜 ∙ [(𝜶𝜃
𝑑 − 𝜶): 𝒏] 

The use of this expression was found to limit the ability of the model to approximate a number 

of important loading responses; e.g., it overestimated the slope of the cyclic resistance ratio (CRR) versus 

number of equivalent uniform loading cycles for undrained cyclic element tests (e.g., Ziotopoulou and 

Boulanger 2012).  

Plastic volumetric strains during contraction for the model presented herein are computed using the 

following expression, 

𝐷 = A𝑑𝑐 ∙ [(𝜶 − 𝜶𝒊𝒏
𝒂𝒑𝒑): 𝒏 + 𝐶𝑖𝑛]

2 (𝜶𝑑 − 𝜶): 𝒏

(𝜶𝑑 − 𝜶): 𝒏 + 𝐶𝐷
 

𝐴𝑑𝑐 =
A𝑑𝑜

ℎ𝑝
 

The various forms in the above relationships were initially developed to improve different aspects of the 

calibrated model's performance for sands. The value of D was set proportional to the square of ((-in):n 

+ Cin) to improve the slope of the relationship between CRR and number of uniform loading cycles. The 

Cin term depends on fabric and is described in a later section along with other modifications to the above 

expression for the effects of fabric and fabric history. The inclusion of the term C in improves the stress 

paths for undrained cyclic loading and the volumetric strain response during drained cyclic loading of 

sand; Inclusion of this constant enables some volumetric strain to develop early in the unloading from a 

point outside the dilatancy surface (as described later). The remaining terms on the right hand side of the 

equation were chosen to be close to unity over most of the loading range, while ensuring that D smoothly 

goes to zero as  approaches d ; reasonable results were obtained using a CD value of 0.10.  

The parameter Adc for contraction was related to the value of Ado for dilation by dividing it by a parameter 

hp that can be varied during the calibration process to obtain desired cyclic resistance ratios. The effect of 

varying states on cyclic loading behavior was then conveniently incorporated by making hp depend on  

as follows. 

ℎ𝑝 = ℎ𝑝𝑜  ∙ 𝑒𝑥𝑝 (−0.7 + 0.2 〈3 −



〉2) 

Thus, the scalar constant hpo provides a linear scaling of contraction rates while the functional 

form of the remaining portion of this expression provides for stronger variations with state (which helps 

with calibration of the hpo values). Once the other input parameters have been selected, the constant hpo 

can be calibrated to arrive at a desired cyclic resistance ratio.  

An upper limit was imposed on the contraction rate, with the limiting value computed as, 

𝐷 ≤ 𝐴𝑑𝑜

(𝜶𝑑 − 𝜶): 𝒏

(𝜶𝑑 − 𝜶): 𝒏 + 𝐶𝐷
 

A similar limit was used in PM4Sand to prevent numerical issues that can be encountered with 

excessively large contraction rates with some combinations of input parameters. For most calibrations of 

PM4Silt, this limit does not appear to control contraction rates.  

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 
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2.8- Fabric effects 

Dafalias and Manzari (2004) introduced a fabric-dilatancy tensor (z) that could be used to account for the 

effects of prior straining in sand. Their fabric tensor (z) evolved in response to plastic volumetric dilation 

strains, according to,  

𝑑𝑧 = −𝑐𝑧〈−𝑑𝜀𝑣
𝑝𝑙〉(𝑧𝑚𝑎𝑥𝒏 + 𝒛) 

where the parameter cz controls the rate of evolution and zmax is the maximum value that z 

can attain. 

The fabric-dilatancy tensor was modified for the present model as,  

𝑑𝑧 = −
𝑐𝑧

1 + 〈
𝑧𝑐𝑢𝑚

2𝑧𝑚𝑎𝑥
− 1〉

〈−𝑑𝜀𝑣
𝑝𝑙〉

𝐷
(𝑧𝑚𝑎𝑥𝒏 + 𝒛) 

In this expression, the tensor z evolves in response to plastic deviatoric strains that occur during dilation 

only (i.e., dividing the plastic volumetric strain by the dilatancy gives plastic shear strain). In addition, the 

evolution of fabric is restricted to only occur when (d –):n < 0; this additional constraint precludes fabric 

evolution during dilation above the rotated dilatancy surface (introduced later) but below the non-rotated 

dilatancy surface. The parameter zcum is the cumulative value of absolute changes in z computed 

according to, 

𝑑𝑧𝑐𝑢𝑚 = |𝑑𝒛| 

The rate of evolution for z therefore decreases with increasing values of zcum, which enables 

the undrained cyclic stress-strain response to progressively accumulate shear strains rather than lock-up 

into a repeating stress-strain loop. In addition, the greatest past peak value (scalar amplitude) for z during 

its loading history is also tracked, 

𝑧𝑝𝑒𝑎𝑘 = 𝑚𝑎𝑥 (√
𝒛: 𝒛

2
, 𝑧𝑝𝑒𝑎𝑘) 

The values of z, zpeak, and zcum are later used to facilitate the accumulation of shear strains under 

symmetric loading through their effects on the plastic modulus and dilatancy relationships. 

 

Additional memory of fabric formation history  

Memory of the fabric formation history was included in the model presented herein to improve the ability 

of the model to account for the effects of sustained static shear stresses and account for differences in 

fabric effects for various drained versus undrained loading conditions.  

The initial fabric tensor (zin) at the start of the current loading path is determined whenever a stress ratio 

reversal occurs, and thus correspond to the same times that the initial back-stress ratio and previous 

initial back-stress ratio are updated. The zin tracks the immediate history terms without any consideration 

of whether an earlier loading cycle had produced greater degrees of fabric (i.e., the logic is different from 

that adopted for the updating of back-stress ratio history terms). This history term is used for describing 

the degree of stress rotation and its effects on plastic modulus, as described later.  

Another aspect of the fabric history that is tracked is the mean stress at which the fabric is formed. This 

aspect of fabric history is tracked by tracking the product of z and p, and defining pzp as the mean stress 

at the time that this product achieves its greatest peak value. The pzp is used in addressing a couple of 

(2.54) 

(2.55) 

(2.56) 

(2.57) 
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issues, including the issue of how fabric that is formed during cyclic loading may be erased during 

reconsolidation. For example, saturated soils that develops cyclic mobility behavior during undrained 

cyclic loading clearly remembers its history of plastic deviatoric strains and then subsequently forgets (to 

a large extent) this prior strain history when it reconsolidates back to its pre-earthquake confining stress. 

As another example, the memory of prior strains during undrained cyclic loading is very different than the 

memory of prior strains during drained cyclic loading. This memory conceptually could be related to the 

history of plastic and total volumetric strains, but a simpler method to account for this effect is to consider 

how the mean stress p relates to the value of pzp. Conceptually, it appears that prior strain history (or 

fabric) is most strongly remembered when the soil is operating under mean stresses that are smaller than 

those that existed when the fabric was formed (i.e., p << pzp) and then largely forgotten when they are of 

the same order (i.e., p  pzp). This attribute will be used in the relationships described later for describing 

the effects of fabric on dilatancy.  

 

Effect of fabric on plastic modulus  

An effect of fabric on the plastic modulus was added to the model presented herein by reducing the 

plastic modulus as the fabric tensor increased in peak amplitude, as follows: 

𝐾𝑝 = 𝐺 ∙ ℎ𝑜 ∙
[(𝜶𝑏 − 𝒂): 𝒏]0.5

[𝑒𝑥𝑝 ((𝜶 − 𝒂𝑖𝑛
𝑎𝑝𝑝): 𝒏) − 1] + 𝐶1

𝐶𝑟𝑒𝑣 ∙
𝐶k

1 + 𝐶𝐾𝑝
(

𝑧𝑝𝑒𝑎𝑘

𝑧𝑚𝑎𝑥
) 〈(𝜶𝑏 − 𝒂): 𝒏〉√1 − 𝐶𝑧𝑝𝑘2

 

where, 

𝐶k = 1 +
𝐶k𝑓

1 + (2.5 ∙ 〈(𝜶 − 𝒂𝑖𝑛
𝑡𝑟𝑢𝑒): 𝒏〉)2

∙ 𝐶𝑝𝑧𝑝2 ∙ 𝐶𝑧𝑝𝑘1 

𝐶𝑧𝑝𝑘1 =
𝑧𝑝𝑒𝑎𝑘

𝑧𝑐𝑢𝑚 +
𝑧𝑚𝑎𝑥

5

 

𝐶𝑧𝑝𝑘2 =
𝑧𝑝𝑒𝑎𝑘

𝑧𝑐𝑢𝑚 +
𝑧𝑚𝑎𝑥

100

 

𝐶𝑝𝑧𝑝2 =
−〈−(𝑝𝑧𝑝 − 𝑝)〉

−〈−(𝑝𝑧𝑝 − 𝑝)〉 + 𝑝𝑚𝑖𝑛

 

The above expressions produce a reduction in plastic modulus when fabric is favorable (z:n ≥ 0) and with 

increasing plastic shear strains (which conceptually would break down any cementation). This reduces 

both the plastic modulus and the hysteretic damping at larger shear strains (note that zpeak = 0 unless the 

soil has been loaded strongly enough to pass outside the dilatancy surface), improves the volumetric 

strains that develop in drained cyclic loading, and improves the path in undrained cyclic loading.  

The CKα and √1 − 𝐶𝑧𝑝𝑘2 terms both serve to increase Kp during non-reversal loading by amounts that 

depend on the fabric and stress history. During reversal loading, the √1 − 𝐶𝑧𝑝𝑘2 term approaches unity 

and Kp evolves as it previously had. The roles of each of the other terms are discussed below. 

Czpk1 and Czpk2 are terms that start from zero and grow to be unity for uni-directional growth of fabric which 

is the case during non-reversing loading conditions. These two terms differ by the rate under which they 

approach unity by the use of the constant zmax/5 or zmax/100 with these respective values chosen for their 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.58) 
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ability to better approximate the engineering behaviors of interest. For full reversal loading where the 

fabric alternates between positive and negative values, these terms will both go to zero.  

Cpzp2 starts initially at zero and stays equal to zero until fabric is formed. After fabric is formed, this term 

quickly transitions to unity for values of mean effective stress p that are less than the value that p had 

when the maximum fabric was formed (pzp). If p increases beyond the value of pzp the term will return to 

zero according to the MacCauley brackets.  

The values for the calibration parameters CKp and CKαf were chosen for their ability to reasonably 

approximate the targeted behaviors, as discussed later. Setting CKp to a default value of 2.0 was found to 

produce reasonable responses for sand with particular emphasis on improving (reducing) the equivalent 

damping ratios at shear strains of 1 to 3% in drained cyclic loading; the same default value for CKp was 

retained for PM4Silt. The parameter CKαf was useful for adjusting the undrained cyclic loading response 

with sustained static shear stresses for sands. For PM4Silt, the CKαf term has little effect on cyclic 

strengths for soils that are loose-of-critical, but does become more influential for denseof-critical soils. For 

the present implementation of PM4Silt, a default value of 4.0 was adopted regardless of initial state.  

The cumulative effect of the above parameters can be understood as follows. If a soil is strongly loaded in 

uni-directional loading and forms significant amount of fabric and is then unloaded, then upon subsequent 

reloading the terms Cpzp2 and Czpk1 will be unity and CKα will become large. If the loads are increased to 

where the soil is being sheared and forming fabric at even higher stresses (higher values of p than fabric 

was previously formed at) then CKα will be unity (Cpzp2 = 0). In this way, an element that has developed 

strong fabric under monotonic or cyclic loading without reversal of the total shear stress direction (e.g., an 

element within a steep slope where the static shear stresses are greater than the cyclic shear stresses) 

will, when unloaded and reloaded, be initially much stiffer (increased Kp) followed by a softening (smaller 

Kp) if the soil is loaded into virgin territory.  

 

Effect of fabric on plastic volumetric dilation  

A rotated dilatancy surface with slope MdR which evolves with the history of the fabric tensor z was added 

to the framework of the model to facilitate earlier dilation at low stress ratios under certain loading paths 

for sands (Ziotopoulou and Boulanger 2015). 

The rotated surface is equal to the original dilatancy surface scaled-down by a factor Crot1:  

𝑀𝑑𝑅 =
𝑀𝑑

𝐶𝑟𝑜𝑡1
 

𝐶𝑟𝑜𝑡1 = 1 +
2 ∙ 〈−𝑧: 𝒏〉

√2𝑧𝑚𝑎𝑥

∙ (1 − 𝐶𝑧𝑖𝑛1) ≥ 1 

where Md is the slope of the unrotated dilatancy surface. Experimental results (Ziotopoulou and 

Boulanger 2015) indicate that the loading history, the loading direction and the loading pattern play 

important roles in the response of sand to irregular cyclic loading. Thus the scaling factor that defines the 

rotated dilatancy surface was made dependent on whether fabric is favorable (z : n > 0) or unfavorable (z 

: n < 0) and on the factor Czin1 which is an indirect measure of whether there are reversals or not: 

𝐶𝑧𝑖𝑛1 = 〈1 − 𝑒𝑥𝑝 (−2.0 |
𝑧𝑖𝑛: 𝒏 − 𝑧: 𝒏

𝑧𝑚𝑎𝑥
|)〉 

(2.64) 

(2.63) 

(2.65) 
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where zin is the fabric tensor at the beginning of the current loading branch. Czin1 can take values ranging 

from 0, when there are no reversals, to 1, when there are reversals. The rotated dilatancy surface is 

operating only for loading with an unfavorable fabric since the factor Crot1 becomes 1 when the fabric is 

favorable (i.e., −z : n = 0). In the present model, rotation of the dilatancy surface was also restricted to 

the case where the soil is dense of critical state (i.e., Crot1 = 1 for  > 0).  

A back-stress ratio tensor for the rotated dilatancy surface (αdR) was introduced as:  

α𝑑𝑅 =
1

√2
∙ (𝑀𝑑𝑅 − 𝑚)𝒏 

Dilation occurs whenever the term (αdR − α) : n is negative whereas contraction occurs when it is positive. 

The calculation of D is still treated separately during dilation and contraction.  

D during dilation is now computed according to the following expressions. First, a value for D is computed 

from the rotated dilatancy surface:  

𝐷𝑟𝑜𝑡 = 𝐴𝑑 ∙
〈−𝑧: 𝒏〉

√2𝑧𝑚𝑎𝑥

∙
(α𝑑𝑅 − α): 𝒏

𝐶𝐷𝑅
 

where the CDR factor is applied to reduce the rate under which dilatancy is increasing and is discussed 

further below. Second, another value for D is computed that would be obtained from the non-rotated 

dilatancy surface:  

𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 = 𝐴𝑑 ∙ [(α𝑑 − α): 𝒏] 

The Macaulay brackets in the above expression ensure that Dnon-rot is equal to zero whenever 

(αd − α) : n > 0 while (αdR − α) : n < 0. Lastly, the operating value of D is selected from the above two 

values based on: 

𝑖𝑓  𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 < 𝐷𝑟𝑜𝑡 ⟹  𝐷 = 𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 

𝑒𝑙𝑠𝑒  𝐷 = 𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 + (𝐷𝑟𝑜𝑡 − 𝐷𝑛𝑜𝑛−𝑟𝑜𝑡) ∙
〈𝑀𝑏 − 𝑀𝑐𝑢𝑟〉

〈𝑀𝑏 − 𝑀𝑐𝑢𝑟 + 0.01〉
 

The above logic is illustrated in Figure 2.6 where D is plotted for a half cycle of loading that goes from 

contraction to dilation. This figure shows that Dnon-rot is used whenever it is smaller (more negative) than 

Drot. For cases where Drot is smaller than Dnon-rot, the value of D is interpolated based on the additional 

term on the right that multiplies the difference between Drot and Dnon-rot. This interpolation term is close to 

unity for stress ratios away from the bounding surface (Mcur < Mb), such that D will be equal to Drot as 

illustrated in the figure. However, this term will also go smoothly to zero as the stress ratio gets close to 

the bounding surface, so that dilatancy smoothly goes to zero as a soil approaches the critical state 

where M = Md = Mb . The constant of 0.01 in the denominator controls the rate under which D goes to 

zero as the stress ratio nears the bounding surface and was found to provide reasonable results in trial 

simulations.  

(2.66) 

(2.67) 

(2.68) 

(2.69) 
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Figure 2.6. Schematic of the dilatancy D calculation based on the stress state with regards to the 

 rotated dilatancy (MdR), dilatancy (Md) and bounding (Mb) surfaces during a  

half-cycle of loading that goes from contraction to dilation 

 

The factor CDR in the denominator of the expression for Drot is applied so that the D computed based on 

the rotated dilatancy surface is consistent with experimental observations. A value of 3.0 was used for the 

default calibration described later and found to provide reasonable results in trial simulations.  

Lastly, the parameter Ad in the expressions for both Drot and Dnon-rot is expressed as, 

𝐴𝑑 =
𝐴𝑑𝑜(𝐶𝑧𝑖𝑛2)

(
𝑧𝑐𝑢𝑚

2

𝑧𝑚𝑎𝑥
) (1 −

〈−𝑧: 𝒏〉

√2 ∙ 𝑧𝑝𝑒𝑎𝑘

)

3

(𝐶𝜀)2(𝐶𝑝𝑧𝑝)(𝐶𝑝𝑚𝑖𝑛)(𝐶𝑧𝑖𝑛1) + 1

 

𝐶𝑝𝑧𝑝 =
1

1 + (
2.5𝑝

𝑝𝑧𝑝
⁄ )

5 

 

𝐶𝑧𝑖𝑛1 = 1.0 − 𝑒𝑥𝑝 (−2.0 |
𝒛𝑖𝑛: 𝒏 − 𝒛: 𝒏

𝑧𝑚𝑎𝑥
|) 

𝐶𝑧𝑖𝑛2 =
1 + 𝐶𝑧𝑖𝑛1

𝑧𝑐𝑢𝑚 − 𝑧𝑝𝑒𝑎𝑘

3𝑧𝑚𝑎𝑥

1 + 3 ∙ 𝐶𝑧𝑖𝑛1

𝑧𝑐𝑢𝑚 − 𝑧𝑝𝑒𝑎𝑘

3𝑧𝑚𝑎𝑥

 

Consider the five terms added to the denominator of the expression for Ad. The first term [zcum
2/zmax] 

facilitates the progressive growth of strains under symmetric loading by reducing the dilatancy that occurs 

when a liquefied soil has been sheared through many cycles of loading; note that this term progressively 

increases with subsequent cycles of loading. The second term facilitates strain-hardening when the 

plastic shear strain reaches the prior peak value, wherein the term approaches zero (i.e., when z:n 

approaches zpeak√2) and the dilation rate consequently rapidly approaches the virgin loading value of Ado. 

The third term C is a calibration constant that can be used to modify the rate of plastic shear strain 

accumulation. The fourth term Cpzp causes the effects of fabric on dilation to be diminished (erased) 

whenever the current value of p is near the value of pzp; this term enables the model to provide 

(2.73) 

(2.71) 

(2.72) 

(2.70) 



 
 

 20  rocscience.com 

reasonable predictions of responses to large numbers of either drained or undrained loading cycles. The 

fifth term Czin1 facilitates strain-hardening when stress reversals are not causing fabric changes; i.e., when 

the initial and current fabric terms are close to equal, the term Czin1 goes to zero. Lastly, the second term 

in the numerator, Czin2, causes the dilatancy to be decreased by up to a factor of 3 under conditions of 

large strains and full stress (and fabric) reversals, which improves the prediction of cyclic strain 

accumulation during undrained cyclic loading.  

An additional constraint is placed on D during dilation at very low effective stresses. For p < 2pmin, the 

value of D cannot be smaller in magnitude than computed by the following expression: 

𝐷 = −3.5𝐴𝑑𝑜〈𝑀𝑏 − 𝑀𝑑〉
2𝑝𝑚𝑖𝑛 − 𝑝

𝑝𝑚𝑖𝑛
   𝑓𝑜𝑟   𝑝𝑚𝑖𝑛 ≤ 𝑝 ≤ 2𝑝𝑚𝑖𝑛 

This expression ensures that the model will, for dense of critical soils (i.e., Mb > Md), be 

dilative when p falls below 2pmin.  

The parameter pmin is set one of two ways. If the input parameter ru,max is specified, then pmin is computed 

from the value of p at the time of "consolidation" (i.e., the p value when the flag FirstCall – see Section 3 – 

was last set equal to 0) as:  

𝑝𝑚𝑖𝑛 = (1 − 𝑟𝑢,𝑚𝑎𝑥)
𝑝

2
 

The parameter ru,max is limited to a maximum value of 0.99 and a minimum value of zero. For 

example, setting ru,max equal to 0.95 results in pmin being 2.5% of the value of p at consolidation. If ru,max is 

not specified, pmin is set equal to pcs/8, where pcs is the value of p at critical state for the specified su. This 

default relation can be expressed as,  

𝑝𝑚𝑖𝑛 =
𝑝𝑐𝑠

8
=

2𝑠𝑢

8𝑀
 

The pmin value obtained using this latter expression is limited to be no greater than the pmin computed 

using ru,max = 0. For either case, pmin is further limited to be no smaller than 0.5 kPa.  

 

Effect of fabric on plastic volumetric contraction  

Dafalias and Manzari (2004) used the fabric tensor to modify the dilatancy during contraction (D > 0) as 

follows, 

𝐷 = 𝐴𝑑 ∙ [(𝜶𝑑 − 𝜶): 𝒏](1 + 〈𝑧: 𝒏〉) 

This relationship enhances the volumetric contraction whenever the fabric is favorable (z:n ≥ 

0), based on the term 1+<z:n> as recommended by Dafalias and Manzari (2004).  

The effect of fabric on dilatancy during contraction was modified for the present model as, 

𝐷 = A𝑑𝑐 ∙ [(𝜶 − 𝜶𝒊𝒏
𝒂𝒑𝒑): 𝒏 + 𝐶𝑖𝑛]

2 (𝜶𝑑 − 𝜶): 𝒏

(𝜶𝑑 − 𝜶): 𝒏 + 𝐶𝐷
𝐶𝑝𝑚𝑖𝑛2 

𝐴𝑑𝑐 =
A𝑑𝑜(1 + 〈𝒛: 𝒏〉)

ℎ𝑝𝐶𝑑𝑧𝐶𝑤𝑒𝑡
 

𝐶𝐷 = 0.1 

𝐶𝑖𝑛 =
2 ∙ 〈𝒛: 𝒏〉

√2𝑧𝑚𝑎𝑥

 

(2.74) 

(2.75) 

(2.77) 

(2.76) 

(2.78) 

(2.79) 

(2.80) 

(2.81) 
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𝐶𝑑𝑧 = (1 − 𝐶𝑟𝑜𝑡2 ∙
√2𝑧𝑝𝑒𝑎𝑘

𝑧𝑚𝑎𝑥
) ∙ (

𝑧𝑚𝑎𝑥

𝑧𝑚𝑎𝑥 + 𝐶𝑟𝑜𝑡2 ∙ 𝑧𝑐𝑢𝑚
) 

𝐶𝑟𝑜𝑡2 = 1 −
𝑧𝑝𝑒𝑎𝑘

𝑧𝑐𝑢𝑚 +
𝑧𝑚𝑎𝑥

100

(= 1 − 𝐶𝑧𝑝𝑘2) 

𝐶𝑤𝑒𝑡 =
1

1

1 + (
𝐶𝑤1

(𝛼𝑏 − 𝛼): 𝑛
)
4 +

1

1 + (




⁄

𝐶𝑤2
)

2

≤ 1 

𝐶𝑤1 = 0.02 

𝐶𝑤2 = 0.1 

𝐶𝑝𝑚𝑖𝑛2  = 0   𝑓𝑜𝑟   𝑝 < 2𝑝𝑚𝑖𝑛 

              = 1   𝑓𝑜𝑟   𝑝 > 8𝑝𝑚𝑖𝑛 

=
𝑝 − 2𝑝𝑚𝑖𝑛

6𝑝𝑚𝑖𝑛
   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The factor Cin in the expression for D has been modified so it now depends on fabric; Cin is zero for 

unfavorable fabric, and increases with increasing z:n for favorable fabric to enhance the contraction rate 

at the start of an unloading cycle (note that D would be zero at the start of an unloading cycle if C in was 

zero).  

The term Cdz in the denominator of the expression for Adc serves to increase the rate of contraction as 

zpeak nears zmax or as a large amount of cumulative fabric formation/destruction has taken place. This term 

was developed for improved modeling of the cyclic strength of denser sands, for which the value of hp can 

be on the order of 100 (Boulanger and Ziotopoulou 2015). The degrading of the denominator as zpeak or 

zcum increases enables the generation of high excess pore pressures at higher loading levels on stronger 

soils, and influences the slope of the CRR versus number of uniform loading cycles relationship obtained 

for undrained element loading. Note that the denominator degrades whether fabric is favorable or not, but 

that the overall rate of contraction is more enhanced if the fabric is favorable (z:n ≥ 0). The factor Crot2 

was introduced into the factor Cdz to provide better control over the rate of contraction as zpeak nears zmax 

or as a large amount of cumulative fabric formation/destruction has taken place. The factor Crot2 takes 

values that range from 1 for loading with zero fabric or cyclic loading that causes reversals of fabric (since 

zcum will become much larger than zpeak), to 0 for loading that causes fabric to grow monotonically in one 

direction such as in non-reversal cyclic loading (since zcum will equal zpeak).  

The term Cwet in the denominator of the expression for Adc serves to increase the rate of contraction when 

the stress state reaches the bounding surface for loose-of-critical state conditions. This term approaches 

zero for soils that are loose of critical and on the bounding surface, but increases to unity for soils that are 

sufficiently close to critical state (controlled by the constant Cw1) or sufficiently away from the bounding 

surface (controlled by the constant Cw2). The constants Cw1 and Cw2 were set to 0.02 and 0.1 because 

they produced reasonable responses for a range of calibrations.  

The last parameter Cpmin varies linearly with p between values of Cpmin = 0.0 for p ≤ 2pmin and Cpmin = 1.0 

for p ≥ 8pmin. This parameter provides the mechanism for limiting the maximum excess pore water 

(2.83) 

(2.82) 

(2.86) 

(2.85) 

(2.84) 

(2.87) 
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pressure ratio (or minimum effective stress) that develops during cyclic loading. When p reaches 2pmin, 

the contraction rate goes to zero such that further reductions in p will not occur during undrained loading.  

 

Effect of fabric on the elastic modulus 

The elastic shear modulus and elastic bulk modulus may degrade with increasing values of cumulative 

plastic deviator strain term, zcum. This component of the model was added to account for the progressive 

destruction, with increasing plastic shear strains, of any minor cementation bonds or other ageing- or 

strain history-related phenomena that produced an increase in small-strain shear modulus. The 

destruction of minor cementation by plastic shear strains is evidenced in the field by measurements of 

shear wave velocities in sand that are lower after earthquake shaking than before earthquake shaking 

(e.g., Arai 2006). The degradation of the elastic shear modulus is computed as, 

𝐺 = 𝐺𝑜𝑝𝐴 (
𝑝

𝑝𝐴
)

1
2⁄

𝐶𝑆𝑅 (
1 +

𝑧𝑐𝑢𝑚

𝑧𝑚𝑎𝑥

1 +
𝑧𝑐𝑢𝑚

𝑧𝑚𝑎𝑥
𝐶𝐺𝐷

) 

where CGD is the factor by which the shear modulus is degraded (divided) at very large values of zcum. 

This change in the elastic shear modulus G causes the bulk modulus K to progressively decrease with 

increasing zcum. The change in K improves the model's ability to track the stress-strain response of 

liquefying soils. In particular, decreasing K with increasing zcum reduces the rate of strain-hardening after 

phase transformation at larger shear strain levels, and improves the ability to approximate the hysteretic 

stress-strain response of a soil as it liquefies or cyclically softens.  

 

2.9- Post-shaking undrained shear strength  

The value of su that should be used for evaluating static stability after strong shaking is often smaller than 

used for evaluating dynamic responses for two primary reasons. First, the su of low plasticity silts and 

clays generally exhibit strain rate dependence, such that the value for post-shaking stability should 

correspond to the slower strain rate associated with static stability (i.e., su,static). Secondly, the su can be 

reduced by cyclic degradation or remolding that occurs during strong shaking.  

The ability to reduce su at a specific time during an analysis (e.g., after the end of strong shaking) was 

incorporated into PM4Silt as a pragmatic means for evaluating post-shaking static stability. After strong 

shaking has ended, the input parameter Fsu can be used to shift the critical state line leftward relative to 

its initial position by a factor of Fsu, thereby reducing the undrained shear strength at critical state (su,cs) by 

the same factor for the post-strong-shaking portion of the analysis. This shift in the critical state line can 

be expressed in the calculation of the state parameter as follows.  

 =  𝑒 − [ −  ∙ ln (
𝑝

𝐹𝑠𝑢 ∙ 1𝑘𝑃𝑎
)] 

The default value for Fsu is 1.0 (no shift in the critical state line), and the code does not require that a 

value for Fsu be specified during the analysis. The use of Fsu is discussed further in Section 4.  

 

(2.88) 

(2.89) 
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2.10- Post-shaking reconsolidation  

Volumetric strains that develop during reconsolidation of liquefied sands or cyclically-softened silts and 

clays are difficult to numerically model using the conventional constitutive separation of strains into elastic 

and plastic components, plus the present model is not formulated to model yielding along reconsolidation 

paths (e.g., constant Ko loading). The PM4Silt model retains the form of the PM4Sand model for better 

estimating reconsolidation strains during the post-shaking portion of a numerical simulation. The 

modification involved the pragmatic approach of reducing the post-shaking elastic shear modulus G (and 

hence elastic bulk modulus K) which increases reconsolidation strains, thereby compensating for 

limitations in the model formulation. The user may activate this feature after the end of strong shaking, 

such that post-liquefaction reconsolidation strains are better approximated in the remainder of the 

simulation. This feature should not be activated for the strong shaking portion of a simulation.  

The post-shaking elastic moduli are determined by multiplying the conventional elastic moduli (computed 

using the expressions described earlier) by a reduction factor Fconsol as, 

𝐺𝑝𝑜𝑠𝑡−𝑠ℎ𝑎𝑘𝑖𝑛𝑔 = 𝐹𝑐𝑜𝑛𝑠𝑜𝑙𝐺 

𝐾𝑝𝑜𝑠𝑡−𝑠ℎ𝑎𝑘𝑖𝑛𝑔 = 𝐹𝑐𝑜𝑛𝑠𝑜𝑙𝐾 

The Fconsol value is computed as, 

𝐺𝑐,𝑚𝑖𝑛 = (
8𝑝


) (

1

1 + (𝐶𝐺𝐶 − 1) (
𝑧𝑐𝑢𝑚

𝑧𝑐𝑢𝑚 + 𝑧𝑚𝑎𝑥
)

) 

𝐹𝑐𝑜𝑛𝑠𝑜𝑙 = 1 − (1 −
𝐺𝑐,𝑚𝑖𝑛

𝐺
) 〈1 −

𝑀𝑐𝑢𝑟

𝑀𝑑
〉0.25 

where the parameter CGC determines how much the elastic moduli will be degraded by if zcum becomes 

large. If zcum is small, the value of Gc,min corresponds to an elastic modulus consistent with the one 

dimensional recompression stiffness estimated based on p and . Lastly, the expression for Fconsol will 

return values close to Gc,min if the loading is well within the dilatancy surface (Mcur << Md) and close to G if 

the loading is near the dilatancy surface (Mcur  Md ).  

 

2.11- Summary of constitutive equations  

The constitutive equations for the model presented herein are summarized in Table 2.1.  

PM4Silt model 

Critical state line 

 =  𝑒 −  +  ∙ ln (
𝑝

𝐹𝑠𝑢∙1𝑘𝑃𝑎
)  

𝐹𝑠𝑢 = 1.0 𝑎𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  

 

Elastic deviatoric strain increment 

𝑑𝒆𝑒𝑙 =
𝑑𝐬

2𝐺
  

(2.90) 

(2.91) 

(2.93) 

(2.92) 
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𝐺 = 𝐺𝑜𝑝𝐴 (
𝑝

𝑝𝐴
)

1
2⁄

𝐶𝑆𝑅 (
1+

𝑧𝑐𝑢𝑚
𝑧𝑚𝑎𝑥

1+
𝑧𝑐𝑢𝑚
𝑧𝑚𝑎𝑥

𝐶𝐺𝐷
)  

𝐶𝑆𝑅 = 1 − 𝐶𝑆𝑅,𝑜 ∙ (
𝑀

𝑀𝑏)
𝑚𝑆𝑅

  

𝐶𝑆𝑅,𝑜 = 0.5  

𝑚𝑆𝑅 = 4  

 

Elastic volumetric strain increment 

𝑑𝜀𝑣
𝑒𝑙 =

𝑑𝑝

𝐾
  

𝐾 =
2(1+𝑣)

3(1−2𝑣)
𝐺  

 

Yield surface 

𝑓 = [(𝒔 − 𝑝𝜶): (𝒔 − 𝑝𝜶)]
1
2⁄ − √1

2⁄ 𝑝𝑚 = 0  

𝑚 = 0.01  

 

Plastic deviatoric strain increment 

𝑑𝒆𝑝𝑙 = 〈𝐿〉𝑹′  

𝑹 = 𝑹′ +
1

3
𝐷𝑰 = 𝒏 +

1

3
𝐷𝑰  

𝑀𝑏 = 𝑀 ∙ 𝑒𝑥𝑝 (−𝑛𝑏,𝑤𝑒𝑡 


)    𝑓𝑜𝑟  ≥ 0  

       = 𝑀 ∙ (
1+𝐶𝑀𝑏
𝑝

𝑝𝑐𝑠
+𝐶𝑀𝑏

)

𝑛𝑏,𝑑𝑟𝑦

   𝑓𝑜𝑟  < 0  

𝑀 = 2 ∙ sin(
𝑐𝑣

)  

𝐶𝑀𝑏 =
1

(
𝑀𝑏,𝑚𝑎𝑥

𝑀
)

1
𝑛𝑏,𝑑𝑟𝑦⁄

−1

  

𝑀𝑏,𝑚𝑎𝑥 = 2 ∙ sin(
𝑚𝑎𝑥

)  

𝜶𝑏 = √1
2⁄ [𝑀𝑏 − 𝑚]𝒏  

𝐾𝑝 = 𝐺 ∙ ℎ𝑜 ∙
[(𝜶𝑏−𝒂):𝒏]

0.5

[𝑒𝑥𝑝((𝜶−𝒂𝑖𝑛
𝑎𝑝𝑝

):𝒏)−1]+𝐶1
𝐶𝑟𝑒𝑣 ∙

𝐶k

1+𝐶𝐾𝑝(
𝑧𝑝𝑒𝑎𝑘
𝑧𝑚𝑎𝑥

)〈(𝜶𝑏−𝒂):𝒏〉√1−𝐶𝑧𝑝𝑘2

  

𝐶𝑟𝑒𝑣 =
(𝜶−𝜶𝑖𝑛

𝑎𝑝𝑝
):𝒏

(𝜶−𝜶𝑖𝑛
𝑡𝑟𝑢𝑒):𝒏

  𝑓𝑜𝑟  (𝜶 − 𝜶𝑖𝑛
𝑝 ): 𝒏 ≤ 𝟎  

         = 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
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𝐶k = 1 +
𝐶k𝑓

1+(2.5∙〈(𝜶−𝒂𝑖𝑛
𝑡𝑟𝑢𝑒):𝒏〉)

2 ∙ 𝐶𝑝𝑧𝑝2 ∙ 𝐶𝑧𝑝𝑘1  

𝐶𝑧𝑝𝑘1 =
𝑧𝑝𝑒𝑎𝑘

𝑧𝑐𝑢𝑚+
𝑧𝑚𝑎𝑥

5

  

𝐶𝑧𝑝𝑘2 =
𝑧𝑝𝑒𝑎𝑘

𝑧𝑐𝑢𝑚+
𝑧𝑚𝑎𝑥

100

  

𝐶𝑝𝑧𝑝2 =
−〈−(𝑝𝑧𝑝−𝑝)〉

−〈−(𝑝𝑧𝑝−𝑝)〉+𝑝𝑚𝑖𝑛
  

𝐶𝛾1 =
ℎ𝑜

200
  

𝐶𝐾𝑝 = 2  

 

Plastic volumetric strain increment 

𝑑𝜀𝑣
𝑝𝑙

= 〈𝐿〉D  

𝑀𝑑 = 𝑀 ∙ 𝑒𝑥𝑝 (𝑛𝑑 


)  

𝑀𝑑𝑅 =
𝑀𝑑

𝐶𝑟𝑜𝑡1
  

𝐶𝑟𝑜𝑡1 = 1 +
2∙〈−𝑧:𝒏〉

√2𝑧𝑚𝑎𝑥
∙ (1 − 𝐶𝑧𝑖𝑛1) ≥ 1  

𝐶𝑧𝑖𝑛1 = 〈1 − 𝑒𝑥𝑝 (−2.0 |
𝑧𝑖𝑛:𝒏−𝑧:𝒏

𝑧𝑚𝑎𝑥
|)〉  

α𝑑 =
1

√2
∙ (𝑀𝑑 − 𝑚)𝒏  

α𝑑𝑅 =
1

√2
∙ (𝑀𝑑𝑅 − 𝑚)𝒏  

𝐼𝑓 𝑑𝑖𝑙𝑎𝑡𝑖𝑛𝑔 (𝐷 < 0):  

𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 = 𝐴𝑑 ∙ [(α𝑑 − α): 𝒏]  

𝐷𝑟𝑜𝑡 = 𝐴𝑑 ∙
〈−𝑧:𝒏〉

√2𝑧𝑚𝑎𝑥
∙

(α𝑑𝑅−α):𝒏

𝐶𝐷𝑅
  

𝑖𝑓  𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 < 𝐷𝑟𝑜𝑡 ⟹  𝐷 = 𝐷𝑛𝑜𝑛−𝑟𝑜𝑡  

𝑒𝑙𝑠𝑒  𝐷 = 𝐷𝑛𝑜𝑛−𝑟𝑜𝑡 + (𝐷𝑟𝑜𝑡 − 𝐷𝑛𝑜𝑛−𝑟𝑜𝑡) ∙ 
〈𝑀𝑏−𝑀𝑐𝑢𝑟〉

〈𝑀𝑏−𝑀𝑐𝑢𝑟+0.01〉
  

𝐴𝑑 =
𝐴𝑑𝑜(𝐶𝑧𝑖𝑛2)

(
𝑧𝑐𝑢𝑚2

𝑧𝑚𝑎𝑥
)(1−

〈−𝑧:𝒏〉

√2∙𝑧𝑝𝑒𝑎𝑘
)

3

(𝐶𝜀)2(𝐶𝑝𝑧𝑝)(𝐶𝑝𝑚𝑖𝑛)(𝐶𝑧𝑖𝑛1)+1

  

𝐴𝑑𝑜 =
1

0.4
∙

[sin−1(
𝑀𝑏

2
)−sin−1(

𝑀

2
)]

𝑀𝑏−𝑀𝑑   

𝐶𝑝𝑧𝑝 =
1

1+(
2.5𝑝

𝑝𝑧𝑝⁄ )
5  
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𝐶𝑝𝑚𝑖𝑛 =
1

1+(
𝑝𝑚𝑖𝑛2

𝑝⁄ )
2  

𝐶𝑧𝑖𝑛1 = 1.0 − 𝑒𝑥𝑝 (−2.0 |
𝒛𝑖𝑛:𝒏−𝒛:𝒏

𝑧𝑚𝑎𝑥
|)  

𝐶𝑧𝑖𝑛2 =
1+𝐶𝑧𝑖𝑛1

𝑧𝑐𝑢𝑚−𝑧𝑝𝑒𝑎𝑘
3𝑧𝑚𝑎𝑥

1+3𝐶𝑧𝑖𝑛1

𝑧𝑐𝑢𝑚−𝑧𝑝𝑒𝑎𝑘
3𝑧𝑚𝑎𝑥

  

𝐶𝐷𝑅 = 3.0  

𝐼𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 (𝐷 ≥ 0)  

𝐷 = A𝑑𝑐 ∙ [(𝜶 − 𝜶𝒊𝒏
𝒂𝒑𝒑): 𝒏 + 𝐶𝑖𝑛]

2 (𝜶𝑑−𝜶):𝒏

(𝜶𝑑−𝜶):𝒏+𝐶𝐷
𝐶𝑝𝑚𝑖𝑛2 ≤ 𝐴𝑑𝑜

(𝜶𝑑−𝜶):𝒏

(𝜶𝑑−𝜶):𝒏+𝐶𝐷
𝐶𝑝𝑚𝑖𝑛2  

𝐴𝑑𝑐 =
A𝑑𝑜(1+〈𝒛:𝒏〉)

ℎ𝑝𝐶𝑑𝑧𝐶𝑤𝑒𝑡
  

𝐶𝑖𝑛 =
2∙〈𝒛:𝒏〉

√2𝑧𝑚𝑎𝑥
  

𝐶𝑑𝑧 = (1 − 𝐶𝑟𝑜𝑡2 ∙
√2𝑧𝑝𝑒𝑎𝑘

𝑧𝑚𝑎𝑥
) ∙ (

𝑧𝑚𝑎𝑥

𝑧𝑚𝑎𝑥+𝐶𝑟𝑜𝑡2∙𝑧𝑐𝑢𝑚
)  

𝐶𝑟𝑜𝑡2 = 1 −
𝑧𝑝𝑒𝑎𝑘

𝑧𝑐𝑢𝑚+
𝑧𝑚𝑎𝑥

100

(= 1 − 𝐶𝑧𝑝𝑘2)  

𝐶𝐷 = 0.1  

𝐶𝑤𝑒𝑡 =
1

1

1+(
𝐶𝑤1

(𝛼𝑏−𝛼):𝑛
)

4
+

1

1+(




⁄

𝐶𝑤2
)

2

≤ 1  

𝐶𝑤1 = 0.02  

𝐶𝑤2 = 0.1  

ℎ𝑝 = ℎ𝑝𝑜  ∙ 𝑒𝑥𝑝 (−0.7 + 0.2 〈3 −



〉2)   𝑓𝑜𝑟  




≤ 3  

ℎ𝑝 = ℎ𝑝𝑜  ∙ 𝑒𝑥𝑝(−0.7)  𝑓𝑜𝑟  



> 3    

𝐼𝑓  𝑝 < 2𝑝𝑚𝑖𝑛  

𝐷 = −3.5𝐴𝑑𝑜〈𝑀𝑏 − 𝑀𝑑〉
2𝑝𝑚𝑖𝑛−𝑝

𝑝𝑚𝑖𝑛
  

  

Fabric-dilatancy tensor update 𝒊𝒇 (d –):n < 0 

𝑑𝑧 = −
𝑐𝑧

1+〈
𝑧𝑐𝑢𝑚

2𝑧𝑚𝑎𝑥
−1〉

〈−𝑑𝜀𝑣
𝑝𝑙

〉

𝐷
(𝑧𝑚𝑎𝑥𝒏 + 𝒛)   

𝑑𝑧𝑐𝑢𝑚 = |𝑑𝒛|  

Stress increment  

𝐿 =
2𝐺𝒏:𝑑𝒆−𝒏:𝒓𝐾𝑑𝜀𝑣

𝐾𝑝+2𝐺−𝐾𝐷𝒏:𝒓
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𝑑𝝈 = 2𝐺𝑑𝒆 + 𝐾𝑑𝜀𝑣𝑰 − 〈𝐿〉(2𝐺𝒏 + 𝐾𝐷𝑰)  

 

Post-shaking reconsolidation 

𝐺𝑝𝑜𝑠𝑡−𝑠ℎ𝑎𝑘𝑖𝑛𝑔 = 𝐹𝑐𝑜𝑛𝑠𝑜𝑙𝐺  

𝐾𝑝𝑜𝑠𝑡−𝑠ℎ𝑎𝑘𝑖𝑛𝑔 = 𝐹𝑐𝑜𝑛𝑠𝑜𝑙𝐾  

𝐺𝑐,𝑚𝑖𝑛 = (
8𝑝


) (

1

1+(𝐶𝐺𝐶−1)(
𝑧𝑐𝑢𝑚

𝑧𝑐𝑢𝑚+𝑧𝑚𝑎𝑥
)
)  

𝐹𝑐𝑜𝑛𝑠𝑜𝑙 = 1 − (1 −
𝐺𝑐,𝑚𝑖𝑛

𝐺
) 〈1 −

𝑀𝑐𝑢𝑟

𝑀𝑑
〉0.25  
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3- Examples and Verifications  

The PM4Silt primary model parameters consists of four main properties. The rest of model parameters 

have default values that automatically can be assigned to or calculated for them. In RS2 the later set of 

parameters have their default values in their dialog field or have “Auto Calculate” option. The users have 

the option of choosing the default values for these variables or change them as they would see fit.  

The four primary input properties are the undrained shear strength at critical state (su)  or the corresponding 

undrained shear strength ratio (su/'vc), the shear modulus coefficient (𝐺𝑜), the contraction rate parameter 

(ℎ𝑝𝑜), and the post-shaking shear strength reduction factor (Fsu). The first three are required parameters, 

whereas the fourth is optional. 

For the purpose of verification series of simulations are considered that include Drained Direct Simple Shear 

Test, Undrained Direct Simple Shear Test and Undrained Cyclic Direct Simple Shear Tests.  The primary 

parameters of the loos, medium dense and dense sands are presented in table 3.1. The RS2 results are 

compared mainly with the results from FLAC and PLAXIS. The FLAC results are obtained using the 

constitutive model dll file and FLAC model and FISH files from the original work by Boulanger, R. W., and 

Ziotopoulou, K. (https://pm4silt.engr.ucdavis.edu/pm4silt-files). 

 

 

 

 

 

 

Table 3.1. Input parameters for PM4Silt model verifications 

 

 

3.1- Drained Monotonic Direct Simple Shear Tests  

The response for drained monotonic direct simple shear tests (DSS plane-strain) for soils with su/'vc  equal 

to 0.25, 0.50 and 0.75 with properties listed in Table 3.1, under vertical confining stresses of 0.25, 1, 4, and 

16 atmospheric pressure are presented shown in Figures 3.1 to 3.5.  

All the simulations are done under strain control loading and there is a good agreement between the results 

generated by the three software.  

 

3.2- Undrained Monotonic Direct Simple Shear Tests  

The response for undrained monotonic direct simple shear tests (DSS plane-strain) for soils with su/'vc  

equal to 0.25, 0.50 and 0.75 with properties listed in Table 3.1, under vertical confining stresses of 0.25, 1, 

4, and 16 atmospheric pressure are presented shown in Figures 3.6 to 3.10.  

su/'vc 𝐺𝑜 ℎ𝑝𝑜 

0.25 588 20 

0.50 776 50 

0.75 913 60 
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All the simulations are done under strain control loading and there is a good agreement between the results 

generated by the three software.  

 

3.3- Undrained Cyclic Direct Simple Shear Tests  

The response for undrained cyclic direct simple shear tests (DSS plane-strain) for soils with different  

properties as listed in Table 3.1, under vertical confining stress of 1 atmospheric pressure are presented 

shown in Figures 3.11 to 3.12. The simulations in FLAC are strain controlled and the loading direction 

changes when the shear stress reaches to the maximum/minimum values. Since the strains increments 

are small the maximum and minimum values of shear stress match the assigned values with an acceptable 

accuracy. This minor error could accumulate when the number of cycles increase, and the results might 

deviate form an ideal stress path with fixed minimum and maximum shear stresses. The loading in RS2 

and PLAXIS is stress controlled and the accuracy of the maximum and minimum shear stresses are 

controlled by the tolerance defined for the convergence of the solution in these tools.  Due to the difference 

in the loading, being strain or stress controlled, and the acceptable tolerance for the convergency of solution 

there are minor differences between the results, but overall, there is a good agreement between the results 

generated by the three software.  
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(a) 

     

(b) 

     

(c) 

Figure 3.1. Monotonic Drained Simple Shear Test loading responses for (a) su/'vc = 0.25 (b) su/'vc = 

0.50, and (c) su/'vc = 0.75 with vertical effective stress of ¼ Patm, and Ko=0.5 
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(b) 

         

(c) 

Figure 3.2. Monotonic Drained Simple Shear Test loading responses for (a) su/'vc = 0.25 (b) su/'vc = 

0.50, and (c) su/'vc = 0.75 with vertical effective stress of 1 Patm, and Ko=0.5 
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(b) 

         

(c) 

Figure 3.3. Monotonic Drained Simple Shear Test loading responses for (a) su/'vc = 0.25 (b) su/'vc = 

0.50, and (c) su/'vc = 0.75 with vertical effective stress of 2 Patm, and Ko=0.5 
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(b) 

        

(c) 

Figure 3.4. Monotonic Drained Simple Shear Test loading responses for (a) su/'vc = 0.25 (b) su/'vc = 

0.50, and (c) su/'vc = 0.75 with vertical effective stress of 4 Patm, and Ko=0.5 
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(b) 

         

(c) 

Figure 3.5. Monotonic Drained Simple Shear Test loading responses for (a) su/'vc = 0.25 (b) su/'vc = 

0.50, and (c) su/'vc = 0.75 with vertical effective stress of 16 Patm, and Ko=0.5 
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(b) 

         
(c) 

Figure 3.6. Monotonic Undrained Simple Shear Test loading responses for ((a) su/'vc = 0.25 (b) su/'vc = 

0.50, and (c) su/'vc = 0.75 with vertical effective stress of ¼ Patm, and Ko=0.5 
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(b) 

     
(c) 

Figure 3.7. Monotonic Undrained Simple Shear Test loading responses for ((a) su/'vc = 0.25 (b) su/'vc = 

0.50, and (c) su/'vc = 0.75 with vertical effective stress of 1 Patm, and Ko=0.5 
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(b) 

         
(c) 

Figure 3.8. . Monotonic Undrained Simple Shear Test loading responses for ((a) su/'vc = 0.25 (b) su/'vc = 

0.50, and (c) su/'vc = 0.75 with vertical effective stress of 2 Patm, and Ko=0.5 

 

 

 

 

 

          
(a) 

0

20

40

60

80

100

120

0 1 2 3 4

Sh
ea

r 
St

re
ss

 (
kP

a)

Shear Strain (%)

RS2

FLAC

PLAXIS

0

20

40

60

80

100

120

150 170 190 210

Sh
ea

r 
St

re
ss

 (
kP

a)

Effective Vertical Stress (kPa)

0

20

40

60

80

100

120

140

160

0 1 2 3 4

Sh
ea

r 
St

re
ss

 (
kP

a)

Shear Strain (%)

RS2

FLAC

PLAXIS

0

20

40

60

80

100

120

140

160

150 200 250 300

Sh
ea

r 
St

re
ss

 (
kP

a)

Effective Vertical Stress (kPa)

0

20

40

60

80

100

120

0 1 2 3 4

Sh
ea

r 
St

re
ss

 (
kP

a)

Shear Strain (%)

RS2

FLAC

PLAXIS

0

20

40

60

80

100

120

0 100 200 300 400 500

Sh
ea

r 
St

re
ss

 (
kP

a)

Effective Vertical Stress (kPa)



 
 

 38  rocscience.com 

     
(b) 

     
(c) 

Figure 3.9. Monotonic Undrained Simple Shear Test loading responses for ((a) su/'vc = 0.25 (b) su/'vc = 

0.50, and (c) su/'vc = 0.75 with vertical effective stress of 4 Patm, and Ko=0.5 
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(b) 

     
(c) 

Figure 3.10. Monotonic Undrained Simple Shear Test loading responses for ((a) su/'vc = 0.25 (b) su/'vc = 

0.50, and (c) su/'vc = 0.75 with vertical effective stress of 16 Patm, and Ko=0.5 
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Figure 3.11. Cyclic Undrained Simple Shear Test loading responses for ) su/'vc = 0.25 under vertical 

effective stress of 1 Patm, and Ko=0.5 with maximum loading ratio of 𝜏/ Patm = 0.2; (a) variation of share 

stress with shear strain and (b) effective stress path 
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