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The problem is represented in Figure 1la. We want to model a composite section
using beam or liner elements in FLAC or Phase2. We consider a stretch of 1 meter
of composite section. The section is composed of regularly spaced elements ‘1’
(e.g., steel sets) and regularly spaced elements ‘2’ (e.g., shotcrete). There are
elements ‘1’ and ‘2’ in a meter of section —this is equivalent to saying that the
spacing between elementssis= 1.0/n. Each element has a Young's modulus

E, a cross-sectional are& and a moment of inertid. So each element ‘1’ is
characterized by parametdrs, A; andl; and each element ‘2’is characterized by
parameters,, A, and/o.

The elements ‘1’ and ‘2’ in the composite section are considered to be rigidly
attached to each other, so that the elements will deform uniformly in the axial
direction, if a thrustV is imposed on the composite section, and the elements will
rotate uniformly, if a bending momem is imposed on the composite section —see
lower sketch in Figure l1a.

To model the problem in FLAC or Phase2 we smear the geometrical and mechanical
properties of the elements in the composite section into an equivalent rectangular
element of width 1 meter, and height, —see Figure 1b. Furthermore, we consider
that the equivalent rectangular section has a Young's modijusiVe compute the
values ofi,, andE,, as follows:
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By solving the problem in terms of the equivalent section (Figure 1b), we get from
FLAC or Phase?2 théotal values of thrustv and bending momen¥. We need

to re-distribute then these values into each element ‘1’ and ‘2’ in the section (see
Figure 2). This is done as follows.

The thrustN that acts in each element ‘1’ and ‘2’, is, respectively
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The momentM that acts in each element ‘1’ and ‘2’, is, respectively
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Normally, each elementin the composite section will have to be be verified/designed
to sustain the stresses induced by the values of thiNistdr element ‘1’ andN»
for element ‘2’) and bending momen¥ for element ‘1’ andV, for element ‘2)
using classical equations of strength of materials.
Note also that cases in which elements ‘2’ do not exist can be accounted for with
these expressions —this case would correspond, for example, to the case in which
regularly spaced steel sets are installed without shotcrete. To consider this situation,
we simply makeE, = 0 in the equations above.

Demonstration of equations 1 through 8

We analyze first the behavior of the elements ‘1'and ‘2’in the axial direction. Under
the application of thrust, the axial strain that these elements undergo is
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Equilibrium and compatibility of axial deformation conditions can be written as
follows,
N = n(N1 + Ny) (11)

&1 =¢&2 (12)

Solving for N1 and N, from the set of equations (9) through (12), we get the
equations (5) and (6).

Considering the equivalent sectionin Figure 1b, a similar relationship as in equations
(9) and (10) can be constructed using the total tNisite.,
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Then, in view that the axial deformatiagnof the equivalent section must also be
equal to the deformation of each individual element (equations 9 and 10), and that
the relationship between the axial force in each element and the total axial force in
the equivalent section is given by equations (5) and (6), one gets,

Aeq Eeq =n (AlEl + AZEZ) (14)
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A similar analysis as done above for axial deformation induced by thrust, can be
done for rotation induced by bending moment, using the following relations
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Then, one gets,

qu Eeq =n (IlEl + IZEZ) (18)

For the rectangular equivalent section represented in Figure 1b, the cross-sectional
aread,, and the moment of inertia,, are,

Aeg = hegx1.0m (19)
3
ly = 73>x10m (20)

The expressions fak,, and E,, given by equations (1) and (2) are the ones that
satisfy both, the conditions given by equations (14) and (18), with cross-sectional
area and moment of inertia computed as in equations (19) and (20).



a)

b)

E: Young’s modulus
A: Cross-sectional area
1 : Moment of inertia

- Each element 1’ has properties E; ,A; and I;
- Each element ‘2’ has properties E, , A, and 1,

n: number of full elements per meter of section (in the figure n=2)
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N and M act over the equivalent section ‘eq’,

that has properties Eoq, Aeq and Iy
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Figure 1: Problem statement.
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Figure 2: Distribution of thrust and bending moment to each section.



