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               "Everything must be made as simple as possible. But not simpler." 

— Albert Einstein 

Introduction 
In order to develop a reliable design approach, one must use statistical methods to deal 
with the variability of the input parameters. However tools usually used in geomechanics, 
like stress analyses (e.g. Finite Element Analyses, FEM), are in essence deterministic (a 
single set of input parameters leads to a single answer). Also, these tools are often 
computing time intensive and are not well-suited for the multiple runs needed for 
systematic sensitivity analyses or statistical simulations (e.g. Monte-Carlo). That's the 
reason why the Center for Excellence in Mining Innovation (CEMI) recently contracted 
RocScience Inc. to introduce an alternate method, the Rosenblueth point-estimate method 
(PEM, Rosenblueth, 1975), a simple, computing efficient probabilistic method, into their 
FEM software Phase2 version 8.0. This paper presents the approach and discusses its 
applicability. 

Uncertainty, variability and heterogeneity  

When considering statistical distributions of input parameters in geomechanics problems, 
three different concepts must be considered: uncertainty, variability and heterogeneities. 
These three concepts must be treated separately as they have various impacts on the rock 
mass behaviour and, therefore, different approaches must be used to tackle them. 

Uncertainties arise from the difficulty in measuring key geomechanical properties like rock 
stresses, rock modulus or rock strength. Any of these measurements involves some error 
due to the sampling process, sample preparation or sensitivity and calibration of the 
measuring devices. This uncertainty is usually evaluated and reduced by acquiring 
repeated measurements during the 
development of a project (Fig. 1). 
Considering a given design criterion, the 
probability of failure is given by the gray 
areas on Fig.  1 which, when combined 
with the consequence of failure, allows 
the computation of the risk of a given 
design (taking the standard definition of 
risk being probability of occurrence times 
consequence) and therefore, an 
evaluation of whether this risk is 
acceptable.  

The PEM/FEM method presented in this 
paper is particularly suited to handle this 
kind of situation, i.e., it allows one to 
track how uncertainties in the input 
parameters are propagated through the 

 

Fig. 1 Illustration of the uncertainty reduction during 
the development of a project until the potential 
for failure is minimised to an acceptable level 
(after Hoek, 1992) 
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analyses and produce uncertainty in the design parameters. It allows the engineer to not 
limit the design to a single deterministic analysis with the most probable parameters (the 
mode of the distribution of Fig. 1), but to evaluate the reliability of the design by 
considering the dispersion of the design parameters. 

Variability is an inherent property of natural materials and rocks or rock masses are no 
exception. It arises from the various formation and transformation processes of rock and 
rock masses which have a local influence on their mechanical parameters and 
characteristics. Due to this variability, rock mass properties will vary, for example, within a 
rock unit along the trace of a tunnel. Thus, a failure mechanism will affect more or less 
severely various locations along this tunnel. Here again the PEM/FEM approach presented 
in this paper is well-suited and will, for example, allow the engineer to anticipate what 
percentage of a tunnel section will be affected by a failure mechanism for a given severity 
level. It will also allow for an evaluation of the range of severity of a given failure 
mechanism that should be anticipated and thereby permit the inclusion of flexibility in the 
design to handle the less probable but potentially more severe situation. Having an 
estimate of the distribution of the severity of a potential failure mechanism will also permit 
the optimisation of the support systems and allow a better estimation of the cost and thus 
the economical risk of a project.  

Heterogeneities need to be treated separately as they will influence the severity of a failure 
mechanism and, more importantly, change the behaviour of the rocks or rock masses. For 
example, increasing modulus heterogeneities in a rock will promote the development of 
local tensile stress even in an overall compressive field, which will affect the failure mode, 
e.g. change from a shear mechanism to a tensile dominated mechanism like spalling (e.g. 
Diederichs, 2007). The PEM/FEM approach proposed in this paper does not simulate the 
effect of heterogeneities. Heterogeneities must be handled differently, either by the use of a 
classification system, coupled with equivalent homogeneous properties (Hoek and Brown, 
1997) or by explicit modelling of the heterogeneities (e.g. Valley et al., 2010a). 

The PEM approach 
In the simplest case, when closed-form analytical solutions are available for an analysis 
and when the input parameters are independent and uncorrelated, the propagation of 
errors can be approximated by using a first order Taylor series. However, such an approach 
requires that it is possible to extract a partial derivative for the solution function. This is 
not always feasible and is obviously impossible when the solution to a problem is found by 
a numerical method like FEM. The point estimate method proposed by Rosenblueth 
(1975), allows one to propagate error even if no closed-form analytical solution is 
available. The principle of PEM is to compute solutions at various estimation points and to 
combine them with proper weighting in order to get an approximation of the distribution 
of the solution (see Fig. 2). The PEM implemented in Phase2 8.0 is the two-point estimate 
method for the first and second moment of uncorrelated variables. It needs 2n evaluations 
of the solution, where n is the number of random variables. The distribution of the solution 
for ),...,,( 21 nxxxfy   is given by: 
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Fig. 2 Illustration of the computation principle of an approximation of the output probabilistic variable using 
the point estimate method. In this example, the case with only two probabilistic input variables is 
assumed. 

where the weights w are given by 1/2n. fi are successive evaluations of f at the 2n possible 

combinations of the random variables at the point estimate locations, i.e. at 
nxnx   and 

nxnx  . In the solution presented here, all input and variable and output variables are 

assumed to follow a normal distribution given by their mean x  and standard deviation x .  

Example of application 
In order to illustrate how to use the PEM with FEM let's look at the following example: the 
stress distribution around a circular opening has to be evaluated, but the estimations of the 
far field stresses (S1 and S3) are uncertain. Let's assume that this uncertainty can be 
captured by a normal distribution, i.e., a mean and a standard deviation (see modelling 
properties given in Table 1). In order to evaluate the uncertainty associated with some 
design parameter (let's assume, for example, the maximum principal stress at the 
excavation boundary), four (22, because there are two random variables, S1 and S3) models 
(Fig. 3a to d) must be run, assuming the following combinations of input for the far field 
stresses: [S1=25 MPa; S3=13 MPa], [S1=25 MPa; S3=17 MPa], [S1=35 MPa; S3=13 MPa] and, 
[S1=35 MPa; S3=17 MPa]. These combinations consist of all possible combinations of the 
mean ± one standard deviation. The outputs of these models must then be combined using 
Equation (1) and Equation (2) in order to obtain the mean and standard deviation of the 
output design criteria (Fig. 3e and f). 

It is interesting to see that even in this simple case of elastic stresses around a circular 
opening, the pattern of uncertainty (see Fig. 3f) is quite complex and not intuitive. The 
highest uncertainty is located where S1 is maximum while an area of low uncertainty arises 
in the S1 far field direction at about one tunnel radius (darker area on Fig. 3f). 
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Table 1 Input parameters for modelling 

Input parameter Mean 
Standard 

deviation 

Max. far field principal stress 

S1 (horizontal) 
30 MPa 5 MPa 

Min. far field principal stress 

S3 (vertical) 
15 MPa 2 MPa 

Out of plane stress Sz 10 MPa - 
a
 

Young modulus E 20 GPa - 
a
 

Poisson ratio ν 0.25 - 
a
 

a – These variables are not considered as random variables and thus no 

standard deviation is defined for them. 

 

Figure 3 Example of PEM/FEM computation with parameters given in Table 1. a), b), c) and d) evaluation of 
the maximum principal stress S1 (FEM elastic models) at the four combinations of the estimation 
points; e) and f) probabilistic output (mean and standard deviation) for S1 obtained by combining the 
FEM results in the left with the PEM (Equations (1) and (2)); g) Probability density functions of the 
input (S1 and S3, dashed line and dotted line) and the output of the analyses where principal stress is 
maximum (S1max) (see black dot for location on e and f). 
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The example presented on Fig. 3 was selected for didactic purposes and is very simple. The 
implementation of the PEM in Phase2 8.0 permits inclusion of all the complexity that Phase2 
typically allows, including complex geometry, excavation stages, plasticity, etc. The Phase2 
8.0 interface facilitates the interpretation of the probabilistic output by offering the 
appropriate visualisation tools, including standard deviation contouring, coefficient of 
variation contouring, and line plots with error bars. 

When increasing the complexity of the model, one must however be aware of the 
limitations of the PEM. Particularly, in complex models, when multiple behaviours occur 
concomitantly, the actual output distribution can significantly differ from a normal 
distribution and thus the PEM may have difficulty in capturing it accurately. This may 
happen, for example, when looking at a location close to the fringe of a plasticity front 
where both mechanisms affect the output distribution. These effects were studied in detail 
by comparing PEM and Monte-Carlo output (Valley et al., 2010b) and the results are 
presented schematically on Fig. 4.  When all combinations of estimation points, as well as 
the major part of the input distributions, generate the same mechanism (Fig. 4a), the PEM 
approximation of the output distribution is accurate. However, when mixed behaviour 
modes occur (Fig. 4b and c), the PEM output can be inaccurate and cannot capture the 
presence of tails in the output distribution (Fig. 4b) or the overall output distribution 
shape (Fig. 4c). 

  

Fig. 4: Illustration of the effect of mixed behaviour on the accuracy of the PEM approximated output 
distribution compared to an actual output distribution evaluated using Monte-Carlo computations. 



Conclusions 
The PEM/FEM approach implemented in Phase2 8.0 presents an attractive method for 
handling the uncertainty and variability inherent in most geomechanical problems. The 
approximation using point estimates makes it computationally efficient and permits the 
performance of statistical analyses for problems for which other methods like Monte-Carlo 
simulation are not practical. However, its simplicity brings some limitations. The PEM 
approach, as presented here without correlation, is based on normal and uncorrelated 
distributions. When a modelled case differs from these assumptions the results can be 
inaccurate. Generally, the central tendency and some variability around it is well captured, 
but in many cases the tails may not be captured properly. 

When modelling involves behaviour discontinuities, as for example when transitioning 
from elastic to plastic domains, the point estimate method shows further limitations and 
does not accurately capture the distribution of the design criteria. For this reason, it is 
recommended to test the effect of a limited number of random variables at a time. This will 
not only save computation time and allow deeper exploration of the possible outcomes but 
will also permit a better understanding and control over the potential bias introduced by 
the PEM/FEM approach. In addition to the outputs obtained using the proposed PEM/FEM 
approach, it is recommended to manually run some extreme cases of the targeted 
distributions in order to determine if it captures the tails of the output distribution 
properly. Never forget that a model must be as simple as possible, but not simpler. 

In summary, when combined with an awareness of the assumptions and potential 
limitations, the PEM/FEM approach offers an attractive and very efficient way of 
considering uncertainty in FEM analyses. It should lead to a broader use of the 
probabilistic approach in the mining industry and a better assessment of the reliability 
level of the design of underground openings. 
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