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The finite element method can be used to model both steady state and transient groundwater flow, and it 
has been used to incorporate this type of seepage analysis into RS2. The following is a brief summary of 
the flow equations used, as described in “Soil Mechanics for Unsaturated Soils” by Fredlund and 
Rahardjo [1]. 

 

Simplified Steady State Fluid Flow 
The following steady state fluid flow equations are derived from the formulation developed by Fredlund 
and Rahardjo [1].  

There are a number of different formulations of the steady state flow equations for both saturated and 
unsaturated soils, depending on whether isotropic or anisotropic conditions are assumed, or if 
heterogeneous or homogenous soils are being examined. 

In all of the following equations, 𝑘𝑘𝑥𝑥 is the coefficient of permeability in the x direction, and ℎ𝑤𝑤 is the 
hydraulic head.  

 

Flow Equations for Unsaturated Soils 

The following are the flow equations that are applied in the case of unsaturated soil. These soils are said 
to be heterogeneous since the coefficients of permeability vary at different locations.  

Equation (1) gives the two-dimensional flow equation in a heterogeneous, anisotropic soil. The soil 
anisotropy means that the coefficients of permeability may not be equal in the x and y directions. 

  𝑘𝑘𝑤𝑤𝑥𝑥
𝜕𝜕2ℎ𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑘𝑘𝑤𝑤𝑤𝑤
𝜕𝜕2ℎ𝑤𝑤
𝜕𝜕𝑤𝑤2

+ 𝜕𝜕𝑘𝑘𝑤𝑤𝑤𝑤
𝜕𝜕𝑥𝑥

𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑘𝑘𝑤𝑤𝑤𝑤
𝜕𝜕𝑤𝑤

𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑤𝑤

= 0 (1) 

Similarly, the equation for 2D flow in a heterogeneous, isotropic soil is given by equation (2). Since the 
soils is isotropic, the coefficients of permeability are identical in the x and y directions; this simplifies the 
equation. 

  𝑘𝑘𝑤𝑤 �
𝜕𝜕2ℎ𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2ℎ𝑤𝑤
𝜕𝜕𝑤𝑤2

� + 𝜕𝜕𝑘𝑘𝑤𝑤
𝜕𝜕𝑥𝑥

𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝑘𝑘𝑤𝑤
𝜕𝜕𝑤𝑤

𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑤𝑤

= 0 (2) 
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Flow Equations for Saturated Soils 

The following are the 2D flow equations for saturated soils. The first equation is used for heterogeneous, 
anisotropic soil. 

  𝑘𝑘𝑠𝑠𝑥𝑥
𝜕𝜕2ℎ𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑘𝑘𝑠𝑠𝑤𝑤
𝜕𝜕2ℎ𝑤𝑤
𝜕𝜕𝑤𝑤2

+ 𝜕𝜕𝑘𝑘𝑠𝑠𝑤𝑤
𝜕𝜕𝑥𝑥

𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑘𝑘𝑠𝑠𝑤𝑤
𝜕𝜕𝑤𝑤

𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑤𝑤

= 0 (3) 

The next equation is used for heterogeneous, isotropic soil. As previously mentioned, the coefficient of 
permeability is the same in the x and y directions for the isotropic soil.  

  𝑘𝑘𝑠𝑠 �
𝜕𝜕2ℎ𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2ℎ𝑤𝑤
𝜕𝜕𝑤𝑤2

�+ 𝜕𝜕𝑘𝑘𝑠𝑠
𝜕𝜕𝑥𝑥

𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝑘𝑘𝑠𝑠
𝜕𝜕𝑤𝑤

𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑤𝑤

= 0 (4) 

The following equation is applicable for a homogeneous, anisotropic soil. 

  𝑘𝑘𝑠𝑠𝑥𝑥
𝜕𝜕2ℎ𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑘𝑘𝑠𝑠𝑤𝑤
𝜕𝜕2ℎ𝑤𝑤
𝜕𝜕𝑤𝑤2

= 0 (5) 

Finally, the next equation is used for homogeneous, isotropic soil; since the coefficient of permeability is 
the same for the x and y directions, it can be eliminated from the equation. 

  𝜕𝜕2ℎ𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2ℎ𝑤𝑤
𝜕𝜕𝑤𝑤2

= 0 (6) 

 

Finite Element Method 

If the soil mass is discretized into finite elements, the appropriate governing flow equation (taken from 
equation 1 to 6) can be solved, applying the correct boundary conditions, in order to determine the 
hydraulic head at each node.  

The finite element formulation for steady-state fluid flow in two dimensions is as follows: 

 ∫ [𝐵𝐵]𝑇𝑇[𝑘𝑘𝑤𝑤][𝐵𝐵]𝑑𝑑𝑑𝑑{ℎ𝑤𝑤𝑤𝑤}−  ∫ {𝐿𝐿}𝑇𝑇�̅�𝜈𝑤𝑤𝑑𝑑𝑑𝑑 = 0𝑆𝑆𝐴𝐴  (7) 

where  

[𝐵𝐵] = the matrix of the derivatives of the area coordinates, for 3 node triangular element, it can be 
written as: 

  1
2𝐴𝐴
�
(𝑦𝑦2 − 𝑦𝑦3) (𝑦𝑦3 − 𝑦𝑦1) (𝑦𝑦1 − 𝑦𝑦2)
(𝑥𝑥3 − 𝑥𝑥2) (𝑥𝑥1 − 𝑥𝑥3) (𝑥𝑥2 − 𝑥𝑥1)� 

𝐿𝐿 is the vector of element shape functions 

For 3 node triangular elements, equation (7) can be written as: 

 ∫ �
𝜕𝜕
𝜕𝜕𝑥𝑥

{𝐿𝐿}
𝜕𝜕
𝜕𝜕𝑤𝑤

{𝐿𝐿}
�

𝑇𝑇

�
𝑘𝑘𝑤𝑤𝑥𝑥 0

0 𝑘𝑘𝑤𝑤𝑤𝑤
�𝐴𝐴 �

𝜕𝜕
𝜕𝜕𝑥𝑥

{𝐿𝐿}
𝜕𝜕
𝜕𝜕𝑤𝑤

{𝐿𝐿}
� 𝑑𝑑𝑑𝑑{ℎ𝑤𝑤𝑤𝑤}∫ {𝐿𝐿}𝑇𝑇�̅�𝜈𝑤𝑤𝑑𝑑𝑑𝑑 = 0𝑆𝑆     (8) 

where 

 {𝐿𝐿} = matrix of the element area coordinates {𝐿𝐿1 𝐿𝐿2 𝐿𝐿3} 

𝐿𝐿1,𝐿𝐿2, 𝐿𝐿3 = area coordinates of points in the element that are related to the Cartesian coordinates 
of nodal points in the following equations: 
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𝐿𝐿1 = (1/2𝑑𝑑){(𝑥𝑥2𝑦𝑦3 − 𝑥𝑥3𝑦𝑦2) + (𝑦𝑦2 − 𝑦𝑦3)𝑥𝑥 + (𝑥𝑥3 − 𝑥𝑥2)𝑦𝑦} 

𝐿𝐿2 = (1/2𝑑𝑑){(𝑥𝑥3𝑦𝑦1 − 𝑥𝑥1𝑦𝑦3) + (𝑦𝑦3 − 𝑦𝑦1)𝑥𝑥 + (𝑥𝑥1 − 𝑥𝑥3)𝑦𝑦} 

𝐿𝐿3 = (1/2𝑑𝑑){(𝑥𝑥1𝑦𝑦2 − 𝑥𝑥2𝑦𝑦1) + (𝑦𝑦1 − 𝑦𝑦2)𝑥𝑥 + (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦} 

𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖  (𝑖𝑖 = 1, 2, 3) = Cartesian coordinates of the three nodal points of an element 

 𝑥𝑥, 𝑦𝑦 = Cartesian coordinates of a point within the element 

 𝑑𝑑 = area of the element 

  �
𝑘𝑘𝑤𝑤𝑥𝑥 0

0 𝑘𝑘𝑤𝑤𝑤𝑤
� = matrix of the water coefficients of permeability  

{ℎ𝑤𝑤𝑤𝑤} = matrix of hydraulic heads at the nodal points, which has the form: 

�
ℎ𝑤𝑤1
ℎ𝑤𝑤2
ℎ𝑤𝑤3

� 

�̅�𝜈𝑤𝑤 = External water flow rate in a direction perpendicular to the boundary of the element 

 𝑑𝑑 = perimeter of the element 

In order to solve for the hydraulic head at each node, either the hydraulic head or flow rate must be 
defined for each node. Then, equation (7) can be written for each element to form a set of global flow 
equations, which may then be solved using an iterative method.  

Once the hydraulic head at each node has been calculated, other quantities such as hydraulic head 
gradients or element flow rates can be calculated.  

The hydraulic head gradients in the x and y directions can be calculated for an element by taking the 
derivative of the element hydraulic heads with respect to x and y: 

   �
𝑖𝑖𝑥𝑥
𝑖𝑖𝑤𝑤
� =  [𝐵𝐵]{ℎ𝑤𝑤𝑤𝑤} (9) 

where 

𝑖𝑖𝑥𝑥 , 𝑖𝑖𝑤𝑤 = hydraulic head gradient within an element in the x and y directions  

Finally, the element flow rates can be calculated using Darcy’s law, the hydraulic head gradients and the 
coefficient of permeability as follows: 

   �
𝜈𝜈𝑤𝑤𝑥𝑥
𝜈𝜈𝑤𝑤𝑤𝑤� = [𝑘𝑘𝑤𝑤][𝐵𝐵]{ℎ𝑤𝑤𝑤𝑤} (10) 

where  

𝜈𝜈𝑤𝑤𝑥𝑥 , 𝜈𝜈𝑤𝑤𝑤𝑤 = water flow rates within an element in the x and y directions. 

The hydraulic head gradients and flow rates at each node are calculated by determining a weighted 
average (based on element area) of the quantities in the elements surrounding the node.  
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Transient Fluid Flow 
The transient fluid flow equations are derived from the formulation developed by Fredlund and Rahardjo 
[1] and Lewis and Schrefler [2] to account for the effects of solid deformation on the fluid flow.  

The following is the governing partial differential equation for transient water seepage in an anisotropic 
soil, when the pore-air pressure is assumed to remain constant with time, and when the major and minor 
coefficient of permeability directions are identical to the x and y axes: 

   𝜕𝜕
𝜕𝜕𝑥𝑥
�𝑘𝑘𝑤𝑤1

𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑥𝑥
�+ 𝜕𝜕

𝜕𝜕𝑤𝑤
�𝑘𝑘𝑤𝑤2

𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑤𝑤
� = 𝑚𝑚2

𝑤𝑤𝜌𝜌𝑤𝑤𝑔𝑔
𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝜕𝜕

 (11) 

where  

 hw is the hydraulic head 

kw1 is the major coefficient of permeability with respect to water as a function of matric suction   

 kw2 is the minor coefficient of permeability  

 𝜌𝜌𝑤𝑤 is the density of water   

g is gravitational acceleration 

𝑚𝑚2
𝑤𝑤 is the coefficient of water volume change and calculated as 

For fully saturated soil: 

𝑚𝑚2
𝑤𝑤 =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑛𝑛
𝐾𝐾𝑤𝑤

,             𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑑𝑑 𝑓𝑓𝑛𝑛𝑓𝑓𝑦𝑦

𝛼𝛼 − 𝑛𝑛
𝐾𝐾𝑠𝑠

+
𝑛𝑛
𝐾𝐾𝑤𝑤

+ 𝛼𝛼
(1 + 𝜇𝜇)(1− 2𝜇𝜇)

𝐸𝐸(1 − 𝜇𝜇) , 𝑓𝑓𝑓𝑓𝑓𝑓 1𝐷𝐷 𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒 𝑓𝑓𝑛𝑛𝑒𝑒𝑓𝑓𝑓𝑓𝑢𝑢𝑓𝑓𝑒𝑒𝑑𝑑

𝛼𝛼 − 𝑛𝑛
𝐾𝐾𝑠𝑠

+
𝑛𝑛
𝐾𝐾𝑤𝑤

+ 𝛼𝛼
2(1 + 𝜇𝜇)(1 − 2𝜇𝜇)

𝐸𝐸 , 𝑓𝑓𝑓𝑓𝑓𝑓 2𝐷𝐷 𝑢𝑢𝑓𝑓𝑒𝑒𝑛𝑛𝑒𝑒 − 𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖𝑛𝑛 𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒 𝑓𝑓𝑛𝑛𝑒𝑒𝑓𝑓𝑓𝑓𝑢𝑢𝑓𝑓𝑒𝑒𝑑𝑑

 

where 

 n is the solid porosity 

 𝜇𝜇 is the solid material Poisson’s ratio 

 E is the Young’s modulus of the solid material 

 𝐾𝐾𝑤𝑤 is the fluid bulk modulus 

 𝛼𝛼 is Biot’s constant and is defined as 𝛼𝛼 = 1 − 𝐾𝐾𝑇𝑇
𝐾𝐾𝑠𝑠

 

 where 

  𝐾𝐾𝑠𝑠 is bulk modulus of grain material 

  𝐾𝐾𝑇𝑇 is bulk modulus of solid (or composition of grain material) 

 Note that in soil mechanics the ratio of Kt/Ks is very small and insignificant, but it 
is important in rock mechanics and in concrete  

For unsaturated soil: 
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𝑚𝑚2
𝑤𝑤

=

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝐶𝐶𝑠𝑠 +

𝑛𝑛𝑑𝑑𝑤𝑤
𝐾𝐾𝑤𝑤

,             𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑑𝑑 𝑓𝑓𝑛𝑛𝑓𝑓𝑦𝑦

𝛼𝛼 − 𝑛𝑛
𝐾𝐾𝑠𝑠

𝑑𝑑𝑤𝑤 �𝑑𝑑𝑤𝑤 +
𝐶𝐶𝑠𝑠
𝑛𝑛 𝑢𝑢𝑤𝑤� +

𝑛𝑛𝑑𝑑𝑤𝑤
𝐾𝐾𝑤𝑤

+ 𝐶𝐶𝑠𝑠 + 𝑑𝑑𝑤𝑤𝛼𝛼
(1 + 𝜇𝜇)(1− 2𝜇𝜇)

𝐸𝐸(1 − 𝜇𝜇) , 𝑓𝑓𝑓𝑓𝑓𝑓 1𝐷𝐷 𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒 𝑓𝑓𝑛𝑛𝑒𝑒𝑓𝑓𝑓𝑓𝑢𝑢𝑓𝑓𝑒𝑒𝑑𝑑

𝛼𝛼 − 𝑛𝑛
𝐾𝐾𝑠𝑠

𝑑𝑑𝑤𝑤 �𝑑𝑑𝑤𝑤 +
𝐶𝐶𝑠𝑠
𝑛𝑛 𝑢𝑢𝑤𝑤�+

𝑛𝑛𝑑𝑑𝑤𝑤
𝐾𝐾𝑤𝑤

+ 𝐶𝐶𝑠𝑠 + 𝑑𝑑𝑤𝑤𝛼𝛼
2(1 + 𝜇𝜇)(1− 2𝜇𝜇)

𝐸𝐸 , 𝑓𝑓𝑓𝑓𝑓𝑓 2𝐷𝐷 𝑢𝑢𝑓𝑓𝑒𝑒𝑛𝑛𝑒𝑒 − 𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖𝑛𝑛 𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒 𝑓𝑓𝑛𝑛𝑒𝑒𝑓𝑓𝑓𝑓𝑢𝑢𝑓𝑓𝑒𝑒𝑑𝑑

 

where 

 𝑑𝑑𝑤𝑤  is degree of saturation 

 𝐶𝐶𝑆𝑆 is the slope of water content curve under matrix suction 

In RS2, the bulk modulus of the grain material (𝐾𝐾𝑠𝑠) was taken as 69 GPa (Terzaghi et al., [3]) 

The finite element method formulation for transient groundwater flow is developed as follows. This 
formulation is based on a generalized form of equation (11) in which the major and minor coefficient of 
permeability directions are not identical to the x and y axes: 

  𝜕𝜕
𝜕𝜕𝑥𝑥
�𝑘𝑘𝑤𝑤𝑥𝑥𝑥𝑥

𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑥𝑥

+ 𝑘𝑘𝑤𝑤𝑥𝑥𝑤𝑤
𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑤𝑤
� + 𝜕𝜕

𝜕𝜕𝑤𝑤
�𝑘𝑘𝑤𝑤𝑤𝑤𝑥𝑥

𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑥𝑥

+ 𝑘𝑘𝑤𝑤𝑤𝑤𝑤𝑤
𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝑤𝑤
� = 𝑚𝑚2

𝑤𝑤𝜌𝜌𝑤𝑤𝑔𝑔
𝜕𝜕ℎ𝑤𝑤
𝜕𝜕𝜕𝜕

 (12) 

First, equation (12) is integrated over the area and boundary surface of a triangular element:  

  ∫ [𝐵𝐵]𝑇𝑇[𝑘𝑘𝑤𝑤][𝐵𝐵]𝑑𝑑𝑑𝑑{ℎ𝑤𝑤𝑤𝑤} + ∫ [𝐿𝐿]𝑇𝑇𝜆𝜆[𝐿𝐿]𝑑𝑑𝑑𝑑𝜕𝜕{ℎ𝑤𝑤𝑤𝑤}
𝜕𝜕𝜕𝜕

− ∫ [𝐿𝐿]𝑇𝑇�̅�𝜈𝑤𝑤𝑑𝑑𝑑𝑑 = 0𝑆𝑆𝐴𝐴𝐴𝐴  (13) 

where:  

[𝑘𝑘𝑤𝑤] = tensor of the water coefficients of permeability for the element, which can be written as: 

   �
𝑘𝑘𝑤𝑤𝑥𝑥𝑥𝑥 𝑘𝑘𝑤𝑤𝑥𝑥𝑤𝑤
𝑘𝑘𝑤𝑤𝑤𝑤𝑥𝑥 𝑘𝑘𝑤𝑤𝑤𝑤𝑤𝑤

�  

 𝜆𝜆 = 𝜌𝜌𝑤𝑤𝑔𝑔𝑚𝑚2
𝑤𝑤 

The other parameters are the same as those described for equation (7).  

The numerical integration of equation (13) results in the following system of equations: 

   [𝐷𝐷]{ℎ𝑤𝑤𝑤𝑤} + [𝐸𝐸]{ℎ𝑤𝑤𝑤𝑤} = [𝐹𝐹] (14) 

where 

 [𝐷𝐷] = stiffness matrix, which has the form: 

   [𝐵𝐵]𝑇𝑇[𝑘𝑘𝑤𝑤][𝐵𝐵]𝑑𝑑 

 [𝐸𝐸] = capacitance matrix, which has the form: 

[𝐿𝐿]𝑇𝑇𝜆𝜆[𝐿𝐿]𝑑𝑑 

{ℎ𝑤𝑤𝑤𝑤} = vector of the time derivatives of the hydraulic heads at the nodal points: 

𝜕𝜕{ℎ𝑤𝑤𝑤𝑤}
𝜕𝜕𝑒𝑒  

 [𝐹𝐹] = flux vector reflecting the boundary conditions: 

  ∫ [𝐿𝐿]𝑇𝑇�̅�𝜈𝑤𝑤𝑑𝑑𝑑𝑑𝑆𝑆  
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A finite difference technique, either the central difference approximation or backward difference 
approximation, may be used to approximate the time derivative in (14) by relating the nodal heads of an 
element at two time steps. The central difference approximation is written as follows: 

  �[𝐷𝐷] + 2[𝐸𝐸]
∆𝜕𝜕
� {ℎ𝑤𝑤𝑤𝑤}𝜕𝜕+∆𝜕𝜕 =  �2[𝐸𝐸]

∆𝜕𝜕
− [𝐷𝐷]� {ℎ𝑤𝑤𝑤𝑤}𝜕𝜕 + 2[𝐹𝐹]  (15) 

Similarly, the backward difference approximation may be used: 

   �[𝐷𝐷] + [𝐸𝐸]
∆𝜕𝜕
� {ℎ𝑤𝑤𝑤𝑤}𝜕𝜕+∆𝜕𝜕 =  [𝐸𝐸]

∆𝜕𝜕
{ℎ𝑤𝑤𝑤𝑤}𝜕𝜕 + [𝐹𝐹] (16) 

Equation (14) can be written for each element in order to form a set of global flow equations. This set of 
equations is solved using iterative methods in order to calculate the hydraulic head {ℎ𝑤𝑤𝑤𝑤} at the nodal 
points.  

Once the hydraulic head values at the nodal points have been determined, it is possible to calculate other 
quantities. For instance, the pore water pressures are calculated using the following equation: 

   {𝑓𝑓𝑤𝑤𝑤𝑤} =  ({ℎ𝑤𝑤𝑤𝑤} − {𝑦𝑦𝑤𝑤})𝜌𝜌𝑤𝑤𝑔𝑔 (17) 

where 

{𝑓𝑓𝑤𝑤𝑤𝑤} = matrix of pore-water pressures at the nodal points, which has the form: 

�
𝑓𝑓𝑤𝑤1
𝑓𝑓𝑤𝑤2
𝑓𝑓𝑤𝑤3

� 

{𝑦𝑦𝑤𝑤} = matrix of elevation heads at the nodal points, which has the form: 

�
𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
� 

Similarly, the hydraulic head gradients can be calculated using (9), and the element flow rates can be 
calculated using (10).  
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