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1. Steady State Heat Conduction

1.1. Problem Description

This problem addresses calculation of temperature distribution in a two-dimensional square plate using
linear triangular finite elements, adapted from Nithiarasu and Lewis (2012). Model 1 (Figure 1.1) uses a
coarse mesh whilst model 2 uses an irregular fine mesh (Figure 1.2). A prescribed isothermal boundary
condition of 100°C is set on all sides except the top, which is set as 500°C. The plate has a constant
thermal conductivity of 10 W/m°C. The geometry of the problem is shown in Figure 1.1. The material
properties used in the models are summarized in Table 1.1.

500 500 500
- T

190 100 100

[

i i

: >

Figure 1.1: RS2 model 1 of a square plate
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Figure 1.2: RS2 Model 2 of square plate

Table 1.1: Model parameters

Value

Thermal Properties
Unfrozen Conductivity

Frozen conductivity

10
10
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1.2. Analytical Solution

Figure 1.3: Triangular elements
1.2.1. Finite Element Method

Two sets of elemental [K] matrices exist because of the orientation of the triangles in Figure 1.3. For
elements 1, 3, 5 and 7, the elements of the [K] matrix are:

by =y, —ya €1 =Xx4— X,
b, =ys—yi; €1 =% — x4 (1.1)

by =y1 =y Ca=x3—%

The elemental [K] matrices:

b? + c? bib, + cic;  bib, +cicy
biby, + cic; b2+ c2  byby+cyc, (1.2)
bib, + cicy  byby + cycy b2 +cz

k
(K], = [K]s = [Kls = [K], = —~

Where bl == _0.5 bz = 0.5, b4_ = 0.5, 1 = _0.5, Cy = O, and Cy = 0.5.

The area of elements:

1.0 0.0 0.0
] (13)

2A=det[1.0 0.5 0.0
1.0 0.0 0.5

Where 24 = 0.25m?2.

Final elemental equation:

| Geotechnical tools, inspired by you. 7 rocscience.com



k20 —10 -1.0
(K], = [K]s = [K]s = [K]; = | =10 1.0 0.0 (1.4)
-1.0 0.0 1.0
Similarly for elements 2, 4, 6 and 8, the elemental [K] matrices:
tk[10 —1.0 00
(K] = [Kls = [K]s = [K]lg = —|-10 20 10 (15)
00 -10 1.0

The assembled equations:

-20 —-10 00 -10 00 00 00 00 00 1117 0.0
-10 40 -10 00 -20 00 00 00 00 || 0.0
00 -10 20 00 00 -10 00 00 00 [|T3 0.0
dl-10 00 00 40 -20 00 -10 00 00 ||Ts 0.0
—l00 -20 00 -20 80 -20 00 -20 00][[Ts]={00 (1.6)

0.0 00 -10 00 -2.0 4.0 0.0 0.0 —1.0(|Ts 0.0
00 00 00 -10 00 0.0 20 —-1.0 0.0 ||, 0.0

0.0 0.0 0.0 00 -20 00 -10 40 -1.0{|Tg 0.0
L 0.0 0.0 0.0 0.0 00 -10 00 -1.0 2.0-lT,l 0.0/

From equation ( 1.6 ) the only unknown Ts can be calculated from:

Ts = 200 °C.

1.2.2. Equation Method

o . nm
(—D™'+1  nmxy sinh (52)
——  sin —) (1.8)

2
T(X, :V) = (Ttop - Tside) (;) Z T nmHN + Tsige
= sinh (%)

n w

Where w is the width, H is the height of the plate, T;,, is the temperature at the top boundary and Ty;g, iS
the temperature on the other boundaries.

7(0.5,0.5) = 200.11°C

| Geotechnical tools, inspired by you. 8 rocscience.com



1.3. Results

A query point plotted in RS2 at node 5 (0.5,0.5) on models 1 and 2 indicate Ts = 200°C which agrees with
the analytical solutions presented. A fine meshed computer-generated analytical temperature contour
was compared to that of RS2 model 2 (Figure 1.6) for further verification of temperature distribution
throughout the square plate.

500 500
T T

T
[ [

Figure 1.4: Model 1, coarse mesh solution
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Figure 1.5: Model 2, fine mesh solution
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RS2

Temperature
min (3tage): 100.00

125.00
150.00
175.00
200.00
225.00
250.00
275.00
300.00
325.00
350.00
375.00
400.00
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500.00

max (3tage): 500.00

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 L:rLll ———— Analyt'cal

B B B B i

Figure 1.6: Analytical fine mesh temperature contour solution superimposed on RS2 fine mesh
temperature contour solution. (Tmin=100°C, Tmax= 500°C interval between two contours is 25 °C)

1.4. References

Nithiarasu, P. and Lewis, R., 2012. Fundamentals of the finite element method for heat and fluid flow.
Oxford: Wiley-Blackwell, pp.130-132: Example 5.2.1
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2. Steady State Heated Strip

2.1. Problem Description

This problem addresses the effects of a heated strip extending across permafrost conditions. The results
will be compared to that of TEMP/W software. The initial surface temperature of the model is -5°C and
increases with depth at a rate of 1°C/30m. A heated strip is then introduced at a constant temperature of
4°C extending across 50 m of the surface from (0,450) to (50,450). The geometry of the model can be
seen in Figure 2.1. A random conductivity of 1 W/m/C was used. A uniform fine 6 noded triangle mesh
was used to ensure convergence and solution accuracy.

Figure 2.1: Model geometry

| Geotechnical tools, inspired by you. 11 rocscience.com



2.2. Results

Figure 2.2 shows good agreement between the RS2 result and TEMP/W verified solution.

RS2
. iaa
A R
E ey Temperature
2 b2
i R s
g % -4.00
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p o -3.00
7 AR
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- R
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an
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-~ AR
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i — e
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£ R
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| T.00
ER2
5 &% .00
/A
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713
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R AR
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=R
= 6% —— TEMP/W
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Figure 2.2: RS2 results versus TEMP/W verified solution

2.3. References

GEO-SLOPE International Ltd. Temp/W example models. Heated Strip.
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3. Transient Heat Conduction

3.1. Problem Description

This problem adapted from Nithiarasu and Lewis (2012) through a rod of 1m width and 20m length. The
initial temperature of the rod is 0°C. A heat flux of 1 W/m is introduced on the left boundary and all other
sides are insulated as seen in Figure 3.1. The material properties used are summarized in Table 3.1.
Since both conductivity and heat capacity are constants and no latent heat was considered, the unfrozen
water content curve information is not needed.

Flux1

Flux1

Fluxt

< 20,000 1]

Figure 3.1: RS2 model
Table 3.1: Model Properties
Initial Conditions

Unit weight 9.81 kN/m?

Thermal Properties

Conductivity type Constant
Unfrozen Conductivity (W/m/C) 1
Frozen conductivity (W/m/C) 1
Thermal volumetric heat capacity type Constant
Unfrozen volumetric heat capacity (J/m3/C) 1
Frozen volumetric heat capacity (J/m3/C 1

3.2. Analytical Solution

Calculation of Temperature through the rod is given by:

T(x,t) =2 (;)1/2 [exp (— Z—:) - (%) errf c (ﬁ)] (3.1)

| Geotechnical tools, inspired by you. 13 rocscience.com



3.3. Results

Figure 3.2 shows the temperature variation along the length of the rod in RS2 in comparison to the
temperature calculated using the analytical solution. The results indicate strong agreement with the
analytical solution.

Temperature

Temperature[C]

0 T T T T 1
0 0.5 1 1.5 2 2.5

Distance [m]

e=§==RS2 —— Analytical

Figure 3.2: Temperature distribution along the rod at t=1

3.4. Reference

Nithiarasu, P. and Lewis, R., (2012). Fundamentals of the finite element method for heat and fluid flow.
Oxford: Wiley-Blackwell, pp.159-160: Example 6.4.2.
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4. Convective Surface on a Semi-infinite Domain

4.1. Problem Description

This problem attempts to validate the RS2 implementation of convection boundary conditions which
allows users to simulate energy transfer by diffusion from a bounding surface into a moving fluid. This
model features a 10m column with an initial temperature of 20°C. The lower boundary is kept at a
constant temperature of 20°C and assumed far enough from the bounding surface to characterize the
domain as semi-infinite. The surface of the column is subjected to changes in conditions simulating fluid
flowing over the surface at a constant temperature of -15°C for a duration of 1 day (86,400 seconds). The
convective heat transfer coefficient is assumed constant at 40 J/s/m?/ °C. The geometry of the problem
can be seen in Figure 4.1 and the properties used in the model are summarized in Table 4.1.

o

Y
il

Figure 4.1: RS2 model of the problem statement

| Geotechnical tools, inspired by you. 15 rocscience.com



Table 4.1: Model Properties
‘ Parameters Value
Initial Conditions
Unit weight (kN/m3) 1E-06 KN/m?
Porosity 0.999999

Thermal Properties

Water content value (m3/m3) 0.999999
Unfrozen Conductivity (W/m/°C) 0.52
Frozen conductivity (W/m/°C) 0.52
Thermal heat capacity type Constant
Use latent heat No
Unfrozen volumetric heat capacity (J/m®/°C) 3.772E+06
Frozen volumetric heat capacity (J/m%/°C) 3.772E+06
Thermal soil unfrozen water content type Simple

4.2. Analytical Solution

An analytical solution is provided by Carslaw and Jaeger (1986).

4.3. Results

Figure 4.2 shows the temperature variation at the bounding surface as time increase. The results show
the RS2 solution agrees with that of the analytical solution.

| Geotechnical tools, inspired by you. 16 rocscience.com
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Figure 4.2: Temperature vs Time at the top of the semi-infinite domain.

4.4. Reference

Carslaw, H.S. and Jaeger, J.C. (1986). Conduction of heat in solids. Oxford Science Publication, 2nd
Edition.
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5. Phase Change — Neumann’s Solution

5.1. Problem Description

This problem attempts to validate the RS2 implementation of Neumann’s solution, a numerical analysis of
phase change problems. A phase change problem involves the release or absorption of thermal energy in
the region undergoing the change of state. In this case, the process of thawing (absorption of energy) will
be addressed. The model comprises of a 10m column with an initial temperature of -2°C. The domain is a
semi-infinite region where the lower boundary is kept at the initial temperature of -2°C and the upper
boundary is set to 2°C to activate thawing. The duration of the analysis is taken over 100 days. It should
be noted a simplified thermal model was used where complete phase change occurs at 0°C. The
geometry of the problem can be seen in Figure 5.1 and the properties used in the model are summarized
in Table 5.1. The soil column has a porosity of 0.99999 to represent pure water. The unfrozen water
content curve has a very steep slope with the fully solidus temperature at -0.001 Celsius degrees.
Normally, when dealing with phase change simulation with steep unfrozen water content curve, other
programs will have to use small time step to capture the phase change accurately. RS2 uses an advance
enthalpy compensation algorithm so that the simulation does not need to use very small time step to
capture the phase change with soils that has very steep unfrozen water content curve.

Table 5.1: Model properties

Water content value 0.999
Unfrozen Conductivity (kW/m/C) 0.0015
Frozen conductivity (kW/m/C) 0.0015
Thermal volumetric heat capacity type Jame Newman
Include latent heat Yes

Soil specific heat capacity (kJ/tons/C) 755

Thermal soil unfrozen water content type Custom

| Geotechnical tools, inspired by you. 18 rocscience.com



Figure 5.1: RS2 model of problem statement

5.2. Analytical Solution

An analytical solution was found by Neumann in the 1860s and is provided by Carslaw and Jaeger
(1986).

5.3. Results

Figure 5.2 represents the temperature variation profile along the column calculated in RS2 and
Neumann’s solution for 10, 50 and 100 days. The figure shows RS2 results in great agreement with that
of Neumann'’s thus validate the ability of RS2 to model phase change behaviours effectively. Note that
RS2 use average of 3 time steps per stage and still capture the frozen front as well as the temperature
distribution correctly.

| Geotechnical tools, inspired by you. 19 rocscience.com
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5.4. Reference
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Figure 5.2: Comparison of solutions

e RS2 10 days

e RS2 50 day

e RS2 100
Neumann 10 days

e Nuemann 50

e N\ 100 days

Carslaw, H.S. and Jaeger, J.C. (1986). Conduction of heat in solids. Oxford Science Publication, 2nd

Edition.
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6. Phase Change — Freezing Analysis of a Buried
Pipeline

6.1. Problem Description

This problem addresses the use of RS2 to model the changing thermal profile around a buried pipeline.
Verification of RS2 results will be compared against results published by Coutts and Konrad (1994).

6.2. Model Geometry

The model comprises of 1.6m by 3.2m area of soil as seen in Figure 6.1. The centre of the pipe is located
at the middle of the domain at 1.6m and elevation of 1.15m, with a radius of 0.15m. The initial
temperature condition of the domain is 3°C. The temperature of the pipe is set to -2°C after initial
condition is established. The analysis is taken over a period of 730 days (6.3072e+07 s). 20 stages were
used with initial increments of 1 day and increasing exponentially.
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Figure 6.1: RS2 model geometry

6.3. Model Properties

The material properties of the soil used in the model can be found in Table 6.1. Custom thermal
conductivity and thermal soil unfrozen water content functions were used, as seen in Figure 6.2 and
Figure 6.3 respectively.
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Parameters

Table 6.1: Material properties

Value

Thermal Properties

Water content (m3/m3) 0.3772
Thermal Conductivity method Custom
Dependency Temperature
Thermal volumetric heat capacity type Constant
Include latent heat Yes
Unfrozen heat capacity (kJ/m3/°C) 1950
Frozen heat capacity (kJ/m%/°C) 1950
Frozen temperature ("C) 0
Thermal soil unfrozen water content type Custom
0.0018
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Figure 6.2: Thermal conductivity function
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Figure 6.3: Unfrozen water content function

6.4. Results

Coutts and Konrad (1994) studied the extent of freezing around a pipe using “Node State” finite element
method. They computed that after two years the freezing front would be approximately 0.6m and 0.23m,
below and beside the pipeline, respectively. The RS2 thermal contour result after the two year simulation
period is shown in comparison to that published by Coutts and Konrad (1994), as seen in Figure 6.4. RS2
estimates the freezing front to be 0.6m below the pipe, in good agreement with Coutts and Konrad (1994)
estimations. The RS2 freezing front width is approximately 0.23m beside the pipe, this is also consistent
with Coutts and Konrad (1994).

Coutts and
Konrad (1954)

— RS2

Figure 6.4: Temperature contours on day 730 Coutts and Konrad (1994) and RS2.
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Figure 6.5 shows the changing positions of the freezing front with time RS2.

_:'_'__‘.-1'1""1-.:'_-._‘

th
-

100 da

200 da
730 days

Figure 6.5: Isolines of changing freezing front with time.

6.5. Reference

Coutts, R.J. and Konrad, J.M. (1994). Finite element modeling of transient non-linear heat flow using the
node state method. International Ground Freezing Conference, France.
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7. Forced Convection with Water Transfer

7.1. Problem Description

This case aims to verify RS2 ability to model force by which heat transfer occurs with a flowing fluid. In
this case, the heat advection will be produced by flowing water condition. The model comprises of a
column of length 0.3m with an initial temperature of 0°C. The temperature of the bottom remains at 0°C
while the temperature of the top is set to 1°C, creating a downward conduction heat gradient. The
hydraulic boundary conditions were defined to create a steady-state flux of q,,= 3.33e-8 m/s. The top
hydraulic boundary is 0.31 and the bottom is 0.3 to create a downward gradient. The boundary conditions
are reversed to create and upward gradient. The duration of the analysis is taken over 150 days
(1.296e+07 seconds) until a steady state was achieved. Figure 7.1 shows the geometry of the case.

Figure 7.1: Problem statement geometry

Three different cases were considered in:
Model 1-The hydraulic and thermal gradients are in the same downward gradient direction.
Model 2- The thermal gradient is downward and the hydraulic gradient is upwards (opposite directions).

Model 3- The Hydraulic and thermal gradients are normal so that the streamlines for fluid flow are
collinear with the isotherms of heat conduction (i.e. fluid flow is from left to right).

Force convection option is activated for Model 2 and 3. The model properties listed are listed in Table 7.1.
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Table 7.1: Model properties

Hydraulic properties

Material behaviour Drained
Ks (m/s) 1le-06
K2/K1 1

K1 angle (degrees) 0

WC curve slope (m3/m3/kPa) le-05
mv (m3/m3/kPa) le-05

Thermal Properties

Water content (m3/m3) Use from Groundwater
Thermal Conductivity method Constant

Unfrozen Conductivity (W/m/C) 0.01

Frozen conductivity (W/m/C) 0.01

Frozen temperature (C) 0

Thermal heat capacity type constant

Include latent heat no

Unfrozen volumetric heat capacity (J/m3/C) 2.5e+06

Frozen volumetric heat capacity (J/m3/C) 2.5e+06

Thermal soil unfrozen water content type Simple

7.2. Analytical Solution

The partial differential equation for one-dimensional steady-state heat transfer by conduction and
advection with flowing water is given by:

AT _ pwCwlw dT _

hadiel = 7.1
dy? k dy ( )
Where p,, is water density, c¢,, is mass specific heat, g,, is water flux and k is the thermal conductivity. The
solution to equation ( 7.1 ) (Bredehoeft and Papadopulos, 1965) is given by:
— AT
[T, —T,] [EXP (NPE L) 1] (7.2)

T, =T, +
v [exp(Npg) — 1]
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Where T, and T, are the temperature at the top and bottom of the porous unit, L is the thickness and Npg
is the Peclet number for heat transfer given by:

Assuming p,, =1000 kg/m®and c,, = 4186 J/kg/K

NPE = 4.186

7.3. Results

The temperature profiles for all models against the analytical solution presented is seen in Figure 7.2.
Each RS2 solution shows great agreement with that of the analytical solution. The forced convection
produces great alteration of the conductive temperature profile in models 1 and 2. Whilst for model 3,
there is no effects of forced convection due to the streamlines for fluid flow being colinear with the
isotherms of heat conduction.

Distance, m

0.35
0.3
0.25
[ 1
0.2 Model
== analytical same direction
015 Model 2
0.1 analytical opposite direction
® Model3
0.05
0

0 0.2 0.4 0.6 0.8 1 1.2
Temperature,”C

Figure 7.2: Temperature profile along the column

7.4. Reference

Bredehoeft, J. and Papadopulos, I.S. (1965). Rates of vertical groundwater movement estimated from the
earth’s thermal profile. Water Resources Res. 1: 325-328.

(7.3)
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8. Phase Change — Water Transfer Forced
Convection with Freezing

8.1. Introduction

RS2 has previously been verified against the Neumann closed form equation for phase change problems
and heat transfer by conduction. Also, RS2 was verified against an analytical solution for heat transfer by
conduction and forced convection with flowing water in the absence of phase change. This problem
further attempts to validate the forementioned verifications by including phase change in the analysis of
heat transfer by conduction and forced convection by water transfer. Forces convection option in project
setting was activated for this verification.

8.2. Problem description

The problem is a forced convection analysis based on conditions described by Kurylyk et al. (2014). The
model comprises of a column of 10m length with an initial temperature of -1e-03 °C. The lower boundary
is kept at the initial temperature and the upper is set to 1 °C to activate thawing. The constant head
boundary conditions of 11m and 1m were set to the upper and lower boundary, respectively. This
ensured the column remained saturated and simulated the saturated hydraulic conductivity to reflect the
Darcy velocity of 100m/year. The analysis is taken over a 20 days period. Figure 8.1 shows the geometry
of model. The material properties used in the analysis can be found in Table 8.1. Unfrozen water content
curve is shown in Figure 8.2.

Table 8.1: Material properties

Hydraulic properties

Material behaviour Drained
Ks (m/s) 3.17e-06
K2/K1 1

K1 angle (degrees) 0

WC curve slope (m3/m3/kPa) le-05
Mv (m3/m3/kPa) le-05

Thermal Properties

Water content (m3/m3) 0.5
Thermal conductivity method Constant
Unfrozen conductivity (W/m/C) 1.839
Frozen conductivity (W/m/C) 2.649
Frozen temperature (C) 0
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Thermal volumetric heat capacity type Constant

Include latent heat Yes
Unfrozen heat capacity (J/m3/C) 3.201e+06
Frozen heat capacity (J/m3/C) 2.163e+06
Thermal soil unfrozen water content type Custom

10.000

Figure 8.1: RS2 model 2
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Figure 8.2: Unfrozen water content curve

8.3. Analytical Solution

The location of the thaw front (X) developed by Lunardini (1998):

X+“{ (J) 4— St 81
v, €xp p = Veor (8.1)

Where « is the thermal diffusivity of the unfrozen zone, v, is the velocity of the thermal plume without
conduction, Sy is the Stefan number, and t is the time.

The assumption that the thawing front is moving gradually enough to be considered under steady-state
conditions, allows for the use of the steady-state conduction- advection equation;

d*T ar
= 8.2
adxz v I 0 ( )

8.4. Results

Figure 8.3 shows comparison between the Lunardini’s solution and RS2. The thaw front location for the
duration of the analysis is compared. The figure shows RS2 is in good agreement with Lunardini’s
solution. Again, the enthalpy compensation algorithm in RS2 shown excellent performance when the
similar results from Kurylyk et al. can only be obtained using very small time step.
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Figure 8.3: Location of thaw front over 20 days period

8.5. References

Kurylyk, B.L., McKenzie, J.M., MacQuarrie, K.T.B., and Voss, C.I. (2014). Analytical solutions for
benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil
thaw with conduction and advection. Advances in Water Resources 70: 172-184.

Lunardini, V.J. (1998). Effect of convective heat transfer on thawing of frozen soil. In: Lewkowicz, A.G.,
Allard, M. (ed). Proceedings of the seventh international conference on permafrost. Yellowknife, Canada:
689-695.
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9. Natural Convection

9.1. Problem Description

Groundwater flow plays an important role in thermal dissipation and can be driven by topography and
buoyancy. Topography driven flow occurs due to differences in elevation of water table which creates
difference in potential energy driving fluid from high elevation to low elevation, often referred to as forced
convection. Buoyancy-driven flow results from variations in fluid density associated with changes in
temperature. This is usually referred to as free or natural convection. This example demonstrates RS2
modelling of the groundwater flow conditions mentioned above and will be compared to the numerical
simulation conducted by Yang, Feng, Luo and Chen, (2010). In order to include the natural convection
behaviors, Natural Convection and Force Convection options are activated in project setting.

9.2. Model Geometry

Two transient hydro-thermal analysis will be conducted.
Model 1:

This model will simulate natural convection. The domain is 200m in height and has a width of 800m.
There is no change in topography, the surface is flat. The temperature of the top and bottom boundary is
kept at 20°C and 26°C, respectively. The top surface is assigned a groundwater boundary condition of
zero pressure (Figure 9.1). Natural convection and forced convection are toggled on in thermal project
settings and a TIN triangulation grid interpolation is used. The analysis is taken over 206 years
(6.49642e+09 secs), with the stage increases starting with 1-year steps. After 26 years the steps increase
to 5 years.

*
¥

Figure 9.1: Model 1 geometry
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Model 2:

This model will simulate both natural and forced convection. There is a slight alteration in the geometry
from model 1. The top surface sloped with a difference in height of 20 cm. All other conditions in the
model 1 remain the same. The analysis is taken over 5e04 days (4.32e+09secs), with the stage increases
starting with lyear steps. After 26 years the steps increase to 5 years.

]
.|

200.200 ] 200.000

[
il
|t

=3 suonono |
Figure 9.2: Model 2 geometry

9.3. Model Properties

The hydraulic and thermal properties used in each model are the same and seen in Table 9.1.

Table 9.1: Material properties

‘ Parameter Value
Unit weight (kN/m?®) 23.22
Porosity 0.1
Hydraulic properties
Model Constant
Material behaviour Drained
Ks (m/s) 0.00012
K2/K1 1
K1 definition Angle
Angle (degrees) 0
WC curve slope (m3/m3/kPa) le-06
Use mv Yes
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Mv (m3/m3/kPa) le-06

Thermal properties

Water content value (m3/m3) 0.1
Thermal conductivity method Constant
Unfrozen conductivity (kW/m/C) 0.00218
Frozen conductivity (kW/m/C) 0.00218
Thermal volumetric heat capacity Constant
Unfrozen heat capacity (kJ/m3/C) 2311
Frozen heat capacity (kJ/m3C) 2311
Thermal soil unfrozen water content Simple
Thermal expansion No
Dispersivity No
9.4. Results

The RS2 results are compared to the results of a similar simulation conducted by Yang, Feng, Luo and
Chen, (2010). It should be noted that the Yang, Feng, Luo and Chen, (2010) simulation does not use the
same material properties as RS2 example as there are some typos in the paper leading to contradicted
values. Thus, the model parameters were chosen so that similar results were obtained. Since the slope is
0, there was no existing groundwater flow in the model at the beginning. Model 1 groundwater flow is only
affected by natural convection (Figure 9.3 and Figure 9.4). As the slope increases to 0.00025, Model 2
experiences the effects of both forced convection and natural convection (Figure 9.5 and Figure 9.6).
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206 years, b) Yang, Feng, Luo and Chen, (2010) at steady
state

35

Figure 9.4: Model 1 flow vectors. A) RS2 at time
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Figure 9.5: Model 2 temperature contours. A) RS2 at time =5e04 days b) Yang, Feng, Luo and Chen, (2010) at time
=5e04 days
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Figure 9.6: Model 2 flow vectors. A) RS2 at time =5e04 days, b) Yang, Feng, Luo and Chen, (2010) at
5e04 days
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9.5. References

Yang, J., Feng, Z., Luo, X. and Chen, Y.(2010). Numerically quantifying the relative importance of
topography and buoyancy in driving groundwater flow. Science in China Series D: Earth Sciences, 53(1),

pp.64-71.
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10. Surface Energy Balance

10.1. Problem Description

This problem addresses RS2 implementation of a surface energy balance boundary considering climatic
data. The model will simulate the behaviour of a warm gas pipeline on permafrost. The modelled
predictions of Hwang (1976) and measured field data collected by the Canadian Artic Gas Study Limited
will be used to verify RS2 results.

10.2. Model Geometry

The model comprises of a 30.15 m column of soil with a thermal grid defining initial temperature
conditions. The ground surface is assigned as a heat transfer section. At the bottom boundary there is a
constant flux of 8e-05 kW/m. At the top boundary the flux is time dependent with respect to
meteorological data. The geometry of the model is seen in Figure 10.1. The analysis is taken over 360
days (3.1104e+07 s) with stages set from day 0, day 1 (86400 s), day 10 (864000 s) and 10 day
increments continuing, for a total of 37 stages.

Tl
Is

20180

|
=k

uSe-0s

Figure 10.1: RS2 model geometry
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The model inputs are as follows:

Table 10.1: RS2 temperature grid

X coordinate (m)

0.6 62.0573
0.6 60.8381
0.6 57.9425
0.6 51.3893
0.6 0

0.0001 62.0573
0.0001 60.8381
0.0001 57.9425
0.0001 51.3893
0.0001 0

0.3 62.0573
0.3 60.8381
0.3 57.9425
0.3 51.3893
0.3 0

Top boundary Flux Climate Conditions:

Y coordinate (m)

Temperature (°C)

7.77778
0
-2.22222
-2.22222
-2.22222
71.77778
0
-2.22222
-2.22222
-2.22222
7.77778
0
-2.22222
-2.22222
-2.22222

Table 10.2: Top boundary flux climate conditions

Type Data

Start time 0s
Total time 427 days
Radiation Calculate from Solar Radiation
Define Vegetation yes
Define snow pack yes
Snow conductivity (kW/m/C) 0.0001
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Figure 10.2: Air temperature vs. time
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Figure 10.3: Wind speed vs. time
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Figure 10.4: Evaporation vs. time
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Figure 10.5: Solar radiation vs. time
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Figure 10.6: Snow depth vs. time

Table 10.3: Albedo vs. time

Time (days) Albedo
0 0.15
45 0.5
258 0.15
400 0.15

Time (sec)

Table 10.4: Vegetation height vs. time

Vegetation Height (m)

0
1le+09

0.001
0.001

10.3. Material Properties

The column’s soil stratigraphy consists of 7 soil types defined from ground surface as Peat, Silt 1, Silt 2,
Silt 3, Silt 4, Grey silt and Grey Till. The material properties of the soils can be found in Table 10.5 and
thermal Properties in Table 10.6.
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Material name Thickness

(m)

Table 10.5: Material properties

Unit weight
(kN/m?3)

porosity

Hydraulic
material
behavior

Static water
mode

Peat
Silt 1
Silt 2
Silt 3
Silt 4
Grey silt
Grey till

Material name

Static
Temperature
Mode

Water content

Thermal
conductivity
method

Unfrozen
Conductivity
(kW/m/°C)

Frozen
conductivity
(kW/m/°C)

Latent Heat

Unfrozen
Volumetric
Heat capacity
(kJ/m3/°C)

Frozen
Volumetric
Heat capacity
(kd/m3/°C)

0.122
0.366
1.372
0.642
2.012
2.286
23.840

Peat
Grid

0.35

constant

0.0004843 0.001038

0.001712

yes

3865

2541

27
27
27
27
27

Table 10.6: Thermal properties

Silt 1 Silt 2
Grid Grid
0.35 0.35

constant constant

0.99999

0.5
0.5
0.5
0.5
0.5
0.5

0.0008302

0.00192  0.001799

yes yes
2224 2594
1483 1588

Silt 3

Grid

0.35

constant

0.001055

0.00192

yes

2224

1483

Drained
Drained
Drained
Drained
Drained
Drained

Drained

Silt 4
Grid

0.35

constant

0.001176

0.001989

yes

2065

1430

Dry
Dry
Dry
Dry
Dry
Dry
Dry

Grey silt

Grid

0.35

constant

0.001314

0.002041

yes

1959

1430

Grey till
Grid

0.35

constant

0.001851

0.002162

yes

1483

1271
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Thermal soil Simple Simple Simple Simple Simple Simple Simple
unfrozen water

content

method

10.4. Results

Figure 10.7 shows the temperature profile of the RS2 results compared with the Hwang (1976) prediction
and measured data from field. RS2 shows good agreement with the prediction of Hwang (1976). The
large temperature fluctuations near the ground surface are not predicted by RS2 and Hwang (1976) due
to output being computed in time steps. It should also be noted that the location of the measured data has
changed somewhat due to ground surface settlement.
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Figure 10.7: Comparison of RS2 results with Hwang (1976) and measured data

10.5. Reference

Hwang, C. (1976). Predictions and observations on the behaviour of a warm gas pipeline on
permafrost. Canadian Geotechnical Journal, 13(4), pp.452-480.
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11. Thermal Conductivity — Cote and Konrad

11.1. Introduction

This problem attempts to validate the RS2 implementation of thermal conductivity estimation using the
Cote and Konrad (2005) approach. This approach integrates the effects of porosity, degree of saturation,
mineral content, grain-size distribution, and particle shape on thermal conductivity of unfrozen and frozen
soils. RS2 estimation of thermal conductivity will be compared to closed-form solution estimations by Cote
and Konrad (2005), and experimental data collected by Kersten (1949).

11.2. Model Geometry

The RS2 model was designed to simulate the conditions of the experiment conducted by Kersten (1949).
The unfrozen model comprises of a 1m column with an initial temperature of 20 °C. The frozen model
comprises of a 1m column with an initial temperature -5 “C. For both the unfrozen and frozen model, pore
pressure boundary condition for the top and bottom boundaries were set to 0 kPa and -100 kPa
respectively.

2202020200
ATITITITT —

L.|
T

1.000

2202020200 ¥
ATTTITITE -
L AR K SAK S S Y

Figure 11.1: RS2 unfrozen model geometry
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Figure 11.3: RS2 pore pressure boundary condition
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11.3. Material Properties

The experiment set up by Kersten (1949) measured the thermal conductivity for two types of soils,
Fairbanks sand sample and Healy clay sample. The soil properties used to model the experiment can be
seen in Table 11.1 and Table 11.2.

Table 11.1: Material properties

Material Unit Porosity Thermal Particle Unfrozen Frozen Chi Eta

name weight conductivity conductivity kappa kappa (W/m/C)
(KN/m3) method (W/m/C)

Fairbanks 19.17 0.29 Cote and 5.3 4.6 1.7 0.75 1.2

sand Konrad

Healy 15.66 0.42 Cote and 2.8 1.9 0.85 0.75 1.2

clay Konrad

Table 11.2: User defined water content

Matric suction (kPa) Water content (m3/m3)

Fairbank Sand Healy Clay
0 0.29 0.42
100 le-6 le-06

It should be noted the volume fraction of unfrozen water that corresponds to the experimental data for
frozen Healy clay sample is approximately 0.15. This is relevant for the accuracy of the frozen analysis
solution. The additional parameters for Healy clay frozen model are included to reflect this data:

Table 11.3: Thermal soil unfrozen water content custom coordinates

Degrees (°C) Unfrozen water content (m3/m?)

-3 0.15
0 0.42
11.4. Results

Figure 11.4 and Figure 11.5Error! Reference source not found. show the RS2 estimation of thermal
conductivity, along with Cote and Konrad (2005) closed-form solution estimation, and Kersten (1949)
experiment data for unfrozen and frozen soil conditions respectively. Both figures show RS2 in good
agreement with the closed-form solution and experiment data.

| Geotechnical tools, inspired by you. a7 rocscience.com



2.5

1.5

0.5

Thermal Conductivity, [W/m°C]

o

0.2 0.4

Unfrozen

0.6 0.8

Saturation

[N

= RS2 Healy clay

B experiment healy clay

RS2 Fairbanks sand

A experiment fairbanks

Cote and Konrad (2005) -
sand

Cote and Lonrad (2005) -
clay

Figure 11.4: Unfrozen model comparison to estimated solution and experiment data
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Figure 11.5: Frozen model comparison to estimated solution and experiment data

11.5. Reference

Coté, J. and Konrad, J. (2005). A generalized thermal conductivity model for soils and construction
materials. Canadian Geotechnical Journal, 42(2), pp.443-458

Kersten, M.S. (1949). Laboratory research for the determination of the thermal properties of soils.
Research Laboratory Investigations, Engineering Experiment Station, University of Minnesota,

Minneapolis, Minn. Technical Report 23.
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12. Thermal Conductivity Model — Johansen - Lu

12.1. Problem Description

This problem attempts to validate the RS2 implementation of thermal conductivity estimation using the
Johansen (1975) model and the Lu et al. (2007) model. The behaviour of thermal conductivity with
changing water content will be compared to experimental data collected. The RS2 model was designed to
simulate the conditions of the experiment conducted by Lu et al. (2007) and Tarnawski et al. (2009). The
model comprises of a 1m column with a constant initial temperature of 20°C. The top and bottom pore
pressure boundary condition were set to 0 kPa and -100 kPa, respectively.
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Figure 12.1: RS2 model geometry

12.2. Material Properties

The experiment set up by Lu et al. (2007) and Tarnawski et al. (2009) included four soil types with varying
densities and quartz content. The soil properties used to model the experiment can be seen in Table

12.1.
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Table 12.1: Material properties

Material name  Unit weight Porosity Material Quartz Dry density
(kN/m3) type content (kg/m3)

Sand 1 15.696 0.407 coarse 0.74 1,600

Sand 2 15.696 0.407 coarse 0.51 1,600

Silty loam 13.047 0.5074 fine 0.47 1,330

Silty clay loam  12.753 0.518519 fine 0.36 1,300

Table 12.2: User defined water content

Matric suction Water content

0 Porosity values of each material types
100 le-06
12.3. Results

Figure 12.2 shows the results of the thermal conductivity calculated for each soil type by the Johansen
and Lu model compared with the experimental data. The calculated results of both the Johansen and Lu
are in good agreement with the experimental data.
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2.2 e sand 2-lu
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1.6 == sand 1- Johansen
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@ silty loam- Johansen

1
e silty clay loam -

Thermal Conductivity, [J/s-m-C]

0.8 Johansen

B experiment-sand 1
0.6

@ experiment sand 2
0.4

@® experiment silty clay
0.2 loam

X experiment silty clay

0 loam
0 0.1 0.2 0.3 0.4 0.5 0.6

Volumetric Water Content, [m”3/m~3]

Figure 12.2: Comparison of thermal conductivity with varying Volumetric water content
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13. Thermosyphon — Laboratory Test

13.1. Problem Description

Two asymmetric analysis was completed to simulate one of the laboratory experiments conducted by
Haynes and Zarling (1988). Model 1 uses the manual thermosyphon method and model 2 uses the
Haynes and Zarling method. This case demonstrates the thermosyphon modelling methods manual and
Haynes and Zarling in RS2. The results will also be compared to that of TEMP/W.

13.2. Model Geometry

Each model has the same geometry. The domain comprises of a height 6.1m and width 0.325m. The left
boundary represents the outside surface of the evaporator and is 0.025m (outside radius of evaporator)
from the central axis x=0. The left boundary is assigned a vertical infiltration of 20 m/s and the
thermosyphon boundary condition. The right boundary represents the inside surface of the outer pipe that
contains the fluid and evaporator. The right boundary is assigned a constant pore pressure and
temperature of 20kPa and 20°C, respectively. The analysis is taken over the period of 10800 s with
staging in increments of 3600 s.

|
T

TR
Figure 13.1: RS2 model geometry
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13.3. Material Properties

The material properties of the column can be seen in Table 13.1. Table 13.2 shows thermosyphon
properties used. Figure 13.2 shows the convection coefficient function used in model 1 and Figure 13.3
shows the wind speed function.

Table 13.1: Material properties

Parameter Value

Porosity 0.999999
Thermal conductivity Simple
Frozen conductivity (kW/m/C) 0.0005
Unfrozen conductivity (kW/m/C) 0.0005
Thermal volumetric heat capacity constant
Latent heat No
Unfrozen heat capacity (kJ/m®/C) 4
Frozen heat capacity (kJ/m®/C) 4
Thermal soil unfrozen water content simple
Thermal expansion No
Dispersivity No

Table 13.2: Thermosyphon properties

Air temperature method Constant

Air temperature value (C) -18

Delta temperature (C) 1

Max temperature (C) -0.5

Model 1

Method Manual

Heat capacity method Wind dependant
Perimeter (m) 0.1

Model 2

Method Zarling and Haynes
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Gas type COo2

Angle (degrees) 12

Wwind speed method Time dependant
Radiator area (m2) 1

Syphon length (m) 1

Perimeter (m) 0.1

0.12

0.1
0.08
0.06
0.04

0.02

convection coeficient (kJ/s/m2/C)

0 1 2 3 4 5 6 7
Wind speed (m/s)

Figure 13.2: Convection coefficient function
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3.5

wind speed (m/s)
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Time (s)

Figure 13.3: Wind speed function
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13.4. Results

Figure 13.4 shows the temperature history at the surface of the evaporator for RS2 model 1,2 and
TEMP/W. The results show good agreement between all models. Figure 13.5 presents the total heat rate
of the thermosyphon. The value obtained after computation is multiplied by Pi value to obtain a full
revolution about the axis of symmetry.
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Figure 13.4: Temperature history at evaporator surface
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Figure 13.5: Total heat rate at the thermosyphon
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14. Thermosyphons in Pipeline Piles

14.1. Problem Description

This example demonstrates RS2 ability to model the effect of thermosyphons inside steel piles to prevent
degradation of permafrost. This an asymmetric analysis. The results of this analysis will be compared to
that of TEMP/W. The model domain is 6m wide and 8m in height. The steel pipe pile is approximately
0.4m in diameter and steel wall thickness of 25mm. Only half of the pile is modelled (Figure 14.1). The
analysis will take place over a 4-year period with an initial temperature of -4°C. The first three years of
climate cycles is necessary to obtain realistic initial thermal conditions.

|

e
= -

R e R e S R R S S R R T A R S A R SR S R R T,

R

7

bt

%

2

YA

Bt

-
R

o

o
A B

-
7
.17:-._

£

AT
T?T
A A
AV 572k
5
‘1
<
s
=
oS

-

o

o

-
O

T

%

1

%

5y

7
=
A
T
AV

A
7
%

T

oy

,E"

2

tho

PR
Rkl b A

o
e
ST
X0 A

Yo
b o
=
L

o
A

RO

¥ S

g g g g g g g g g g g g g g

E

e

T T T e

e

Figure 14.1: RS2 model geometry

The thermosyphon in the pile is 4m length from the bottom of the pile. The flux simulating climate
condition will be set at the top boundary and to account for additional heat conduction into the ground
through the steel pile, the air temperature function (Figure 14.5) is applied to the top of the pile. The
temperature at the bottom boundary is kept at a constant temperature of -4 °C.
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Figure 14.2: Transient model conditions
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Figure 14.3: Top boundary conditions
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14.2. Model Properties

The properties of the soil and pipe steel wall can be found in Table 14.1. The unfrozen water content
function is seen in Figure 14.4.

Soil

Steel

Table 14.1: Material properties

Thermal Properties

Water content

Thermal Conductivity method
Unfrozen Conductivity (kW/m/ °C)
Frozen conductivity (kW/m/ °C)
Frozen temperature

Thermal volumetric heat capacity type
Include latent heat

Unfrozen heat capacity (kJ/m% °C)
Frozen heat capacity

Thermal soil unfrozen water content type
Thermal Properties

Water content

Thermal Conductivity method
Unfrozen Conductivity (kW/m/ °C)
Frozen conductivity (kW/m/ °C)
Frozen temperature

Thermal volumetric heat capacity type
Include latent heat

Unfrozen heat capacity (kJ/m3 °C)
Frozen heat capacity

Thermal soil unfrozen water content type
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0.4
Constant
0.00173611
0.00173611
0

Constant
Yes

2400

2400

Custom

0
Constant
0.05
0.05

0
Constant
No

3800
3800

Simple
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Figure 14.4: Unfrozen water content function

The climate annual climate data used is as follows.
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Figure 14.5: Mean daily air temperature
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Figure 14.7: Average snow depth function

When there is no snow (day 110 to day 280) the albedo is set to 0.9. When there is snow on the surface
the albedo is 0.3 as seen in Figure 14.8. The solar radiation function is estimated for latitude 65 °N.
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Figure 14.8: Albedo function

The snow conductivity is 0.000116 kd/sec/m/ °C. Table 14.2 shows the thermosyphon properties and
Figure 14.9 the heat transfer function.

Table 14.2: Thermosyphon properties

Type Data
Air temperature method Time dependent
Method Manual
Heat capacity method Time dependent
0.015

9 0.013

o

£

< 0.011

~

3

£ 0.009

2

S

g 0.007

o

5

£ 0.005

0.003
0 0.5 1 15 2

Wind speed (m/s)

Figure 14.9: Thermosyphon heat transfer function
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14.3. Results

Figure 14.10 through Figure 14.14 show the temperature contours of RS2 and TEMP/W in the range of -
26 ‘C to 0 'C. Both TEMP/W and RS2 show the same trends but temperature contour differences are
seen due to differing time steps in each program. The discussion follows the results seen by RS2.

In early February, most of the ground is frozen (Figure 14.10). The ground temperature is lower near the
activated thermosyphon. By the 10™ day of April, the ground is beginning to thaw, the temperatures only
range from -4 °C to 0 °C (Figure 14.11). By the beginning of July, the majority of the upper two meters has
thawed (Figure 14.12). It should be noted that the depth of unfrozen soil is greater furthest from the
thermosyphon and pile. At the start of October, the temperatures begin to drop again, and the ground
surface is beginning to freeze again (Figure 14.13). Note the soil immediately next to the pile freezes
faster. By the end of December, all the soil next to the thermosyphon is frozen (Figure 14.14). Further
away from the thermosyphon and pile is still a pocket of unfrozen soil.
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Figure 14.10: a) Temperature profile on the 15" day of February in RS2

b) Temperature profile early February in TEMP/W
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Figure 14.11: a) Temperature profile on the April 10" in RS2
b) Temperature profile early April in TEMP/W
Temperature
-26.00
. -24.00 Temperature
-22.00 W -26--24°C
= -z0.00 W -24--22°C
e.00 W -22--20°C
N W -20--18°C
— -16.00 W -158--16°C
I -14.00 W -16--14°C
.00 W -14--12°C
.00 W -12--10°C
. m-10--8°C
N O-8-6°C
] 0 -5--4°C
-4.00 0-4--2°C
-2.00 0-2-0°C
0.00 .

Figure 14.12: Temperature profile at the beginning of July: a) RS2 b) TEMP/W
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14.13: Temperature profile at the beginning of October: a) RS2 b) TEMP/W
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Figure 14.14: Temperature profile at the end of December: a) RS2 b) TEMP/W
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15. Thermal Expansion — 2D

15.1. Problem Description

To verify capacity of RS2 for thermal expansion analysis, a simple model was created to verify the
accuracy of thermal strain calculation of solid elements. Geometry and boundary conditions of the model
are shown in Figure 15.1. Material properties are shown in Table 15.1. The whole model was set an initial
temperature of 125 Celsius degrees at the initial stage. Then the temperature increases to 250 degrees
and 500 degrees at second and third stage respectively.
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Figure 15.1: RS2 model. a) Geometry b) Stage 2 Thermal BC c) Stage 3 Thermal BC
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Table 15.1: Model properties
‘ Parameters Value
Initial Conditions ]
Unit weight (kN/m?3) 20
Initial Temperature (Celsius) 125

Thermal Properties

Thermal expansion Linear Coefficient (m/m/C) le-5
Unfrozen Conductivity 1
Frozen conductivity 1

15.2. Analytical Solution

The thermal strain is calculated as
Aett = AT (15.1)

where Acg is the principal thermal strain vector, « is the thermal expansion linear coefficient and AT is the
changes in temperature.

For stage 2, thermal strain is 1e-5 x 125 = 0.00125 and stage 3 thermal strain is 1e-5 x 375 = 0.00375

15.3. Results

Figure 15.2 shows the vertical displacement computed in RS2. The results indicate strong agreement
with the analytical solution.
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Figure 15.2: Vertical displacement in Y direction
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16. Thermal Expansion — 1D

16.1. Problem Description

To verify capacity of RS2 for thermal expansion analysis, a simple model was created to verify the
accuracy of thermal strain calculation of beam elements. Geometry and boundary conditions of the model
are shown in Figure 16.1. Material properties are shown in Table 16.1. The whole model was set with an
initial temperature of 20 Celsius degrees at the initial stage. Then the temperature increases to 60
degrees at the second stage.

a) b)

Figure 16.1: RS2 model. a) Geometry b) Stage 2 Thermal BC

Table 16.1: Model properties
CInitial Conditions
Unit weight (kN/m?) 77
Initial Temperature (Celsius) 20
Thermal Properties
Thermal expansion Linear Coefficient (m/m/C) 5e-5

Conductivity (W/m/C) 30
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16.2. Analytical Solution

The thermal strain is calculated as
Agtl = qAT (16.1)

where Acg is the principal thermal strain vector, «a is the thermal expansion linear coefficient and AT is the
changes in temperature.

For stage 2, thermal strain is 5e-5 x40 = 0.002

16.3. Results

Figure 16.2 shows the vertical displacement computed in RS2. The results indicate strong agreement
with the analytical solution.
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Figure 16.2: Vertical displacement in Y direction

| Geotechnical tools, inspired by you. 72 rocscience.com



