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15. Hardening Soil Model 
This model is the Hardening Soil model as presented in PLAXIS manual. The model is developed using 
the user-defined material model option in RS2 and RS3. 

Experimental evidence indicates that the plastic deformation in soils starts from the early stages of 
loading. To capture such behavior in a constitutive model the typical elasto-perfect plastic models are not 
adequate. It requires constitutive models that utilize a hardening law after initial yielding. The main feature 
of the Hardening Soil model (Schanz and Vermeer 1999) is its ability to simulate hardening behavior. The 
hardening in this model is divided to deviatoric and volumetric hardenings by utilizing a shear and a cap 
yield surface. The model also uses nonlinear elastic behavior that relates the elastic modulus to the 
stress level.  

The model utilizes three yield surfaces that includes deviatoric (shear), volumetric (cap) and tension cut 
off. The yield surfaces and hardening characteristics of this model are illustrated in Figure 15.1. The 
formulations of these three mechanisms are discussed, together with definition of yield surfaces and their 
corresponding plastic potential and hardening law. 

 

 

 

 

 

 

 

                                                                                          

Figure 15.1 The yield surfaces of the Hardening Soil model;  
Deviatoric yield surface (red) and elliptical cap (blue) 

 

 

15.1 Deviatoric Hardening Mechanism  
The deviatoric mechanism is the core of this model; and it uses the Mohr-Coulomb material properties in 
its definition and at its ultimate state reaches to the failure defined by corresponding Mohr-Coulomb yield 
surface. Like Duncan-Chang model this model is formulated to capture that hyperbolic curve that is 
commonly observed in drained triaxial tests. The hardening in this mechanism is attributed to plastic 
distortion by developing direct inclusion of plastic deviatoric strain in the definition of yield function.  

The yield surface of the deviatoric mechanism is defined as  
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𝐹𝐹𝑠𝑠 = 𝑞𝑞
𝐸𝐸𝑖𝑖(1−𝑞𝑞 𝑞𝑞𝑎𝑎⁄ )

− 𝑞𝑞
𝐸𝐸𝑢𝑢𝑢𝑢

− 𝜀𝜀𝑞𝑞
𝑝𝑝−𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 0  (15.1) 

 

where 𝑞𝑞 is the deviatoric stress and 𝜀𝜀𝑞𝑞
𝑝𝑝−𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 is the deviatoric plastic strain generated only by the 

deviatoric mechanism. The definition of other parameters are discussed below. 

The Mohr-Coulomb parameters, ultimate friction angle (𝜑𝜑) and cohesion (𝑐𝑐), are used in the definition of 
𝑞𝑞𝑒𝑒 as following  

 

𝑞𝑞𝑒𝑒 =  
𝑞𝑞𝑓𝑓
𝑅𝑅𝑓𝑓

  ,    𝑞𝑞𝑓𝑓 = (𝑐𝑐 cot𝜑𝜑 + 𝜎𝜎1) 2sin𝜑𝜑
1−sin𝜑𝜑

  (15.2) 

 

where 𝑅𝑅𝑓𝑓 is the failure ratio (less than 1.0 with a default value 0.9) and 𝑞𝑞𝑓𝑓 is the ultimate deviatoric stress.  

The 𝐸𝐸𝑢𝑢𝑒𝑒 is the elastic modulus in unloading and reloading is defined as following 

 

𝐸𝐸𝑢𝑢𝑒𝑒 = 𝐸𝐸𝑢𝑢𝑒𝑒
𝑒𝑒𝑒𝑒𝑓𝑓 � 𝑐𝑐 cos𝜑𝜑+𝜎𝜎3 sin𝜑𝜑

𝑐𝑐 cos𝜑𝜑+𝑝𝑝𝑢𝑢𝑟𝑟𝑓𝑓 sin𝜑𝜑
�
𝑚𝑚

  (15.3) 

 

where 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 is the reference elastic modulus for unloading/reloading at stress level equal to the reference 
pressure, 𝑝𝑝𝑢𝑢𝑟𝑟𝑟𝑟. Power 𝑚𝑚 controls the stress dependency of the elastic modulus and it is within the range 

of 0.5 < 𝑚𝑚 < 1.0. 

The other parameter in the definition of yield surface, that controls the slope of hyperbolic curve, is 𝐸𝐸𝑖𝑖, 
which is defined as following 

 

𝐸𝐸𝑖𝑖 = 2𝐸𝐸50
2−𝑅𝑅𝑓𝑓

  ,    𝐸𝐸50 = 𝐸𝐸50
𝑒𝑒𝑒𝑒𝑓𝑓 � 𝑐𝑐 cos𝜑𝜑+𝜎𝜎1 sin𝜑𝜑

𝑐𝑐 cos𝜑𝜑+𝑝𝑝𝑢𝑢𝑟𝑟𝑓𝑓 sin𝜑𝜑
�
𝑚𝑚

  (15.4) 

 

where 𝐸𝐸50
𝑒𝑒𝑒𝑒𝑓𝑓 is a reference stiffness modulus at the reference pressure. 

The hyperbolic curve in a triaxial test that is simulated using Hardening Soil model is illustrated in Figure 
15.2. The effects of different material properties are illustrated in this figure. 
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Figure 15.2 Hyperbolic stress-strain curve in a drained compression triaxial test 

 

In RS2 and RS3, we introduced a minimum mean effective stress limit (𝑝𝑝𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙) to prevent stiffness 
equations (15.3) and (15.4) from returning zero or not a number (NAN). The limit helps to ensure that the 
minor principal stress (𝜎𝜎3) is greater than zero. In general, zero stiffness can cause computational 
instability which is undesirable. Additionally, yield surface equation (15.1) shows that a zero stiffness in 
the denominator will cause a computational error. We set 𝑝𝑝𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙 to be about 10% of the reference 
pressure (𝑝𝑝𝑒𝑒𝑒𝑒𝑓𝑓) as a rule of thumb. However, the user can adjust 𝑝𝑝𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙 according to the needs of their 
simulation. 

There are two options for the flow rule for the deviatoric mechanism of this model. The flow rule is defined 
in terms of the relationship between the plastic volumetric strain and plastic deviatoric strain as following:  

 

𝜀𝜀�̇�𝑣
𝑝𝑝 = sin𝜓𝜓𝑚𝑚 𝜀𝜀�̇�𝑞

𝑝𝑝  (15.5) 
 

where 𝜓𝜓𝑚𝑚 is the mobilized dilation angle.  

The first option for calculation of the mobilized dilation angle is based on the stress-dilatancy theory by 
Rowe (1962). In this theory the mobilized dilation angle is calculated based on the mobilized friction angle 
𝜑𝜑𝑚𝑚 and critical state friction angle 𝜑𝜑𝑐𝑐𝑣𝑣 . The essential concept behind the critical state friction angle is that 
while under shear the material will undergo dilation if 𝜑𝜑𝑚𝑚 > 𝜑𝜑𝑐𝑐𝑣𝑣  and will contract otherwise.  

 

sin𝜓𝜓𝑚𝑚 = sin𝜑𝜑𝑚𝑚−sin𝜑𝜑𝑐𝑐𝑐𝑐
1−sin𝜑𝜑𝑚𝑚 sin𝜑𝜑𝑐𝑐𝑐𝑐

  (15.6) 

 

sin𝜑𝜑𝑚𝑚 = 𝜎𝜎1−𝜎𝜎3
𝜎𝜎1+𝜎𝜎3−2𝑐𝑐 cot𝜑𝜑

  (15.7) 

 

sin𝜑𝜑𝑐𝑐𝑣𝑣 = sin𝜑𝜑−sin𝜓𝜓
1−sin𝜑𝜑−sin𝜓𝜓

  (15.8) 

 

In above 𝜓𝜓 is the ultimate dilation angle.  
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The second option for the calculation of dilation angle is a simplification of the former option, wherein the 
𝜓𝜓𝑚𝑚 is defined differently based on 𝜑𝜑𝑚𝑚 as following  

 

sin𝜑𝜑𝑚𝑚 < 3
4
𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑 ∶           𝜓𝜓𝑚𝑚 = 0 (15.9) 

 

sin𝜑𝜑𝑚𝑚 ≥
3
4
𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑  and  𝜓𝜓 > 0 ∶             sin𝜓𝜓𝑚𝑚 = max �

sin𝜑𝜑𝑚𝑚 − sin𝜑𝜑𝑐𝑐𝑣𝑣
1 − sin𝜑𝜑𝑚𝑚 sin𝜑𝜑𝑐𝑐𝑣𝑣

, 0� 

sin𝜑𝜑𝑚𝑚 ≥
3
4
𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑  and  𝜓𝜓 ≤ 0 ∶             𝜓𝜓𝑚𝑚 = 𝜓𝜓 

𝜑𝜑 = 0 ∶             𝜓𝜓𝑚𝑚 = 0 

 

The model takes an advantage of an optional dilation cut off as well. In case the shearing is extensive 
and the dilation forces the material to reach to its critical void ratio, at which the plastic flow occurs at 
constant volume, the dilation cut off will stop the volume increase as following  

 

if 𝑟𝑟 ≥ 𝑟𝑟𝑚𝑚𝑒𝑒𝑚𝑚 ∶             𝜓𝜓𝑚𝑚 = 0      (15.9) 
 

The relationship between the volumetric strain and void ratio is  

 

(𝜀𝜀𝑣𝑣 − 𝜀𝜀𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑒𝑒𝑙𝑙) = ln � 1+𝑒𝑒
1−𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

�      (15.10) 

 

where 𝜀𝜀𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑒𝑒𝑙𝑙 and 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑒𝑒𝑙𝑙 are the initial volumetric strain and initial void ratio, respectively.  

 

15.2 Volumetric Hardening Mechanism  
The main role of the volumetric mechanism (cap) is to close the elastic domain in space (𝑝𝑝 − 𝑞𝑞) on the 
hydrostatic (𝑝𝑝) axis and simulate the densification/compaction of the material.  

The cap in the Hardening Soil model has an elliptical shape with its apex on the 𝑞𝑞 axis: 

 

𝐹𝐹𝑐𝑐 =  �𝑞𝑞
∗

𝛼𝛼
�
2

+ 𝑝𝑝2 − 𝑝𝑝𝑐𝑐2 = 0 (15.11) 

 

where 𝑝𝑝𝑐𝑐 is the location of the intersection of this yield surface with the 𝑝𝑝 axis, and 𝛼𝛼 is the shape factor 
for the elliptical shape of the cap. The stress invariant 𝑞𝑞∗ is defined as 
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𝑞𝑞∗ = 𝑞𝑞
𝑓𝑓(𝜃𝜃)

  , 𝑟𝑟(𝜃𝜃) = 3−sin (𝜑𝜑)
2�√3cos(𝜃𝜃)−sin(𝜃𝜃)sin (𝜑𝜑)�

  (15.12) 

 

The hardening for these yield surfaces is considered for 𝑝𝑝𝑐𝑐 and it is attributed to volumetric plastic strain 
generated only by the cap yield surface. 

 

𝜀𝜀𝑣𝑣
𝑝𝑝−𝑐𝑐𝑒𝑒𝑝𝑝 = 𝛽𝛽

1−𝑚𝑚
 � 𝑝𝑝𝑐𝑐
𝑝𝑝𝑢𝑢𝑟𝑟𝑓𝑓

�
1−𝑚𝑚

    𝑜𝑜𝑢𝑢    �̇�𝑝𝑐𝑐 =
𝑝𝑝𝑢𝑢𝑟𝑟𝑓𝑓
𝛽𝛽

 � 𝑝𝑝𝑐𝑐
𝑝𝑝𝑢𝑢𝑟𝑟𝑓𝑓

�
𝑚𝑚

    (15.13) 

 

where 𝛽𝛽 is another parameter for this model that controls the hardening of the cap. 

The cap parameters 𝑚𝑚 and  𝛽𝛽 are not direct parameters of the model. They are evaluated from the other 
parameters, such as coefficient of lateral pressure for normal consolidation, 𝐾𝐾0𝑖𝑖𝑐𝑐, and modulus parameter, 
𝐸𝐸𝑜𝑜𝑒𝑒𝑜𝑜 (slope of axial stress-axial strain curve).  They are material parameters for the Hardening Soil model, 
which can be evaluated from an oedometer test. 𝐸𝐸𝑜𝑜𝑒𝑒𝑜𝑜

𝑒𝑒𝑒𝑒𝑓𝑓 is the slope of the aforementioned curve at axial 
stress equal to the reference pressure (Figure 15.3).  

 

 

Figure 15.3 Variation of axial stress versus axial strain in an oedometer, and definition of 𝐸𝐸𝑜𝑜𝑟𝑟𝑜𝑜
𝑢𝑢𝑟𝑟𝑟𝑟  

 

The assumptions for the evaluation of the cap parameters by simulating an oedometer test are as following:  

• the state of stress is at 𝐾𝐾0𝑖𝑖𝑐𝑐 condition with the axial stress equal to the reference pressure; 

• a strain controlled oedometer test is simulated by an increment of axial strain; 

• in this loading process both the deviatoric and volumetric mechanisms are active; and 

• the parameters 𝑚𝑚 and  𝛽𝛽 should be found in a way that 𝐾𝐾0𝑖𝑖𝑐𝑐and 𝐸𝐸𝑜𝑜𝑒𝑒𝑜𝑜
𝑒𝑒𝑒𝑒𝑓𝑓 are generated by the 

updated state of stress 
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15.3 Tension Cut Off  
This mechanism is to incorporate the tensile strength of the material to this model. In this mechanism the 
minor principal stress is limited to the tensile strength of the material. The flow rule is associated and the 
mechanism has no hardening. 

 

1 0TF Tσ= − =       (15.14) 

 

In above T  is the tensile strength of the material.   

 

15.4 Examples  
Figure 15.4 and 15.5 shows the numerical results of drained triaxial tests on Berlin sand-III. A comparison 
is made between the results obtained by Hardening Soil model in PLAXIS and simulation results of the 
Hardening Soil model in Rocscience products. The model parameters are presented in Table 15.1. 

 

 
Characteristics Values for Berlin Sand III 

refp (kPa) 100 

50
refE (MPa) 105 

ref
urE (Ma) 315 

ref
oedE (MPa) 105 

m  0.55 

ν (Poisson’s ratio) 0.2 

0
ncK  0.38 

ϕ (degrees) 38 

ψ (degrees) 6 

c (kPa) 1.0 

Failure ratio 0.9 

Tensile strength (kPa) 0 
 

Table 15.1 Hardening Soil model parameters for Berlin sand-III (PLAXIS 2014) 
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Figure 15.4 Stress paths of drained triaxial tests on Berlin sand-III 

 

 

Figure 15.5 Stress paths of undrained triaxial tests on Berlin sand-III 
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