
15- Hardening Soil Model – PLAXIS  
 

This model is the Hardening Soil model as presented in PLAXIS manual. The model is developed using 

the user-defined material model option in RS2 and RS3. 

Experimental evidence indicates that the plastic deformation in soils starts from the early stages of loading. 

To capture such a behavior in a constitutive model the typical elasto-perfect plastic models are not adequate. 

To simulate such behavior constitutive models that utilize a hardening law after initial yielding are required. 

The main feature of the Hardening Soil model (Schanz and Vermeer 1999) is its ability to simulate 

hardening behavior. The hardening in this model is divided to deviatoric and volumetric hardenings by 

utilizing a shear and a cap yield surface. The model also uses nonlinear elastic behavior that relates the 

elastic modulus to the stress level.  

The model utilizes three yield surfaces that includes deviatoric (shear), volumetric (cap) and tension cut 

off. The yield surfaces and hardening characteristics of this model are illustrated in Figure 15.1.  

 

 

 

 

 

 

 

                                                                                          

Figure 15.1- The yield surfaces of the Hardening Soil model;  

Deviatoric yield surface (red) and elliptical cap (blue) 

 

The formulations of these three mechanisms, definition of yield surfaces and their corresponding plastic 

potential and hardening law are presented below. 

 

15.1- Deviatoric Hardening Mechanism  
The deviatoric mechanism is the core of this model and at it uses the Mohr-Coulomb material properties in 

its definition and at its ultimate state reaches to the failure defined by corresponding Mohr-Coulomb yield 

surface. Like Duncan-Chang model this model is formulated to capture that hyperbolic curve that is 

commonly observed in drained triaxial tests. The yield surface of the deviatoric mechanism is defined as  
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Where 𝑞 is the deviatoric stress and 𝜀𝑞
𝑝−𝑠ℎ𝑒𝑎𝑟

 is the deviatoric plastic strain generated only by the 

deviatoric mechanism.  

The Mohr-Coulomb function, with ultimate friction angle (𝜑) and cohesion (𝑐), is used in the 

definition of 𝑞
𝑎
.  

 

𝑞𝑎 =  
𝑞𝑓

𝑅𝑓
  ,    𝑞𝑓 = (𝑐 cot 𝜑 + 𝜎1)

2 sin 𝜑

1−sin 𝜑
  (15.2) 

 

In above 𝑅𝑓 is the failure ratio and one of the material parameters (less than 1.0 with a default value 

0.9).  

The 𝐸𝑢𝑟 is the elastic modulus in unloading and reloading 
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where 𝐸𝑢𝑟
𝑟𝑒𝑓

 is the reference elastic modulus for unloading/reloading at stress level equal to the 

reference pressure, 𝑝
𝑟𝑒𝑓

. Power 𝑚, controls the stress dependency of the elastic modulus and it is within 

the range of 0.5 < 𝑚 < 1.0. 

The other parameter in the definition of yield surface, that controls the slope of hyperbolic curve, is 𝐸𝑖 
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In above 𝐸50
𝑟𝑒𝑓

 is a reference stiffness modulus at the reference pressure. 

The hyperbolic curve in a triaxial test that is simulated using Hardening Soil model is illustrated in Figure 

15.2. The effects of different material properties are illustrated in this figure. 

The hardening in this mechanism is attributed to plastic distortion by direct appearance of the plastic 

deviatoric strain in the definition of yield function.  

 



 

Figure 15.2- Hyperbolic stress-strain curve in a drained compression triaxial test 

 

In RS2 and RS3, we introduced a minimum mean effective stress limit (𝑝𝑙𝑖𝑚𝑖𝑡) to prevent stiffness equations 

(15.3) and (15.4) from returning zero or not a number (NAN). The limit helps ensure the minor principal 

stress (𝜎1) is greater than zero. In general, zero stiffness can cause computational instability which is 

undesirable. Additionally, yield surface equation (15.1) shows that a zero stiffness in the denominator will 

cause a computational error. We set 𝑝𝑙𝑖𝑚𝑖𝑡 to be about 10% of the reference pressure (𝑝𝑟𝑒𝑓) as a rule of 

thumb. However, the user can adjust 𝑝𝑙𝑖𝑚𝑖𝑡 according to the needs of their simulation. 

There are two option for the flow rule for the deviatoric mechanism of this model. The flow rule is defined 

in terms of the relationship between the plastic volumetric strain and plastic deviatoric strain in a way that  
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where 𝜓𝑚 is the mobilized dilation angle.  

The first option for calculation of the mobilized dilation angle is based on the stress-dilatancy 

theory by Rowe (1962). In this theory the mobilized dilation angle is calculated based on the 

mobilized friction angle 𝜑𝑚 and critical state friction angle 𝜑𝑐𝑣 . The essential concept behind the 

critical state friction angle is that while under shear the material will undergo compression if 𝜑𝑚 >
𝜑𝑐𝑣   and will dilate otherwise.  
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In above 𝜓 is the ultimate dilation angle.  

The second option for the calculation of dilation angle is a simplification of the former option, and is as 

flows 
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The model takes advantage of an optional dilation cut off as well. In case the shearing is extensive and the 

dilation forces to material to reach to its critical void ratio, at which the plastic flow happens at constant 

volume, the dilation cut off will stop the volume increase.  

 

if 𝑒 ≥ 𝑒𝑚𝑎𝑥 ∶             𝜓𝑚 = 0      (15.9) 

 

The relationship between the volumetric strain and void ratio is  
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where 𝜀𝑣
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are the initial volumetric strain and initial void ratio, respectively.  

 

15.2- Volumetric Hardening Mechanism  
The main role of the volumetric mechanism (cap) is to close the elastic domain in space (𝑝 − 𝑞) on the 

hydrostatic (𝑝) axis and simulate the densification/compaction of the material.  

The cap in the Hardening Soil model is has an elliptical shape with its apex on the 𝑞 axis: 
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where 𝑝𝑐 is the location of the intersection of this yield surface with the 𝑝 axis, and 𝛼 is the shape factor 

for the elliptical shape of the cap. The stress invariant 𝑞∗ is defined as 
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The hardening for these yield surfaces is considered for 𝑝𝑐 and it is attributed to volumetric plastic strain 

generated only by the cap yield surface. 

 

𝜀𝑣
𝑝−𝑐𝑎𝑝

=
𝛽

1−𝑚
 (

𝑝𝑐

𝑝𝑟𝑒𝑓
)

1−𝑚

    𝑜𝑟    𝑝̇𝑐 =
𝑝𝑟𝑒𝑓

𝛽
 (

𝑝𝑐

𝑝𝑟𝑒𝑓
)

𝑚

    (15.13) 

 

where 𝛽 is another parameter for this model that controls the hardening of the cap. 

The cap parameters 𝛼 and  𝛽 are not direct parameters of the model. They are evaluated from the 

combination of other parameters especially 𝐸𝑜𝑒𝑑 and  𝐾0
𝑛𝑐  . These last two parameters are material 

parameters for the Hardening Soil model and can be evaluated from an oedometer test. 𝐾0
𝑛𝑐  is the coefficient 

of lateral pressure for normal consolidation, and 𝐸𝑜𝑒𝑑 in an odometer test is the slope of the variation of 

axial stress versus axial strain. 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 is the slope of the aforementioned curve at axial stress equal to the 

reference pressure.  

 

 

Figure 15.3- Variation of axial stress versus axial strain in an oedometer, and definition of 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 



 

The cap parameters 𝛼 and  𝛽 should be evaluated in a way that when simulating an odometer test, the test 

results generate 𝐸𝑜𝑒𝑑 and  𝐾0
𝑛𝑐  . The assumptions for the evaluation of the cap parameters by simulating an 

oedometer test are that  

- the state of stress is at 𝐾0
𝑛𝑐  condition with the axial stress equal to the reference pressure 

- a strain controlled oedometer test is simulated by an increment of axial strain 

- in this loading process both the deviatoric and volumetric mechanisms are active 

- the parameters 𝛼 and  𝛽 should be found in a way that 𝐾0
𝑛𝑐and 𝐸𝑜𝑒𝑑

𝑟𝑒𝑓
 are generated by the updated 

state of stress 

 

15.3- Tension Cut off  
 

This mechanism is to incorporate the tensile strength of the material to this model. In this mechanism the 

minor principal stress is limited to the tensile strength of the material. The flow rule is associated and the 

mechanism has no hardening. 

 

1 0TF T= − =       (15.14) 

 

In above T  is the tensile strength of the material.   

 

15.4- Examples  
Figure 15.4 and 15.5 shows the numerical results of drained triaxial tests on Berlin sand-III. A comparison 

is made between the results obtained by Hardening Soil model in PLAXIS and simulation results of the 

Hardening Soil model in Rocscience products. The model parameters are presented in Table 15.1. 

 

 

Characteristics Values for Berlin Sand III 

refp (kPa) 100 

50

refE (MPa) 105 

ref

urE (Ma) 315 

ref

oedE (MPa) 105 

m  0.55 

 (Poisson’s ratio) 0.2 

0

ncK  0.38 

 (degrees) 38 

 (degrees) 6 



c (kPa) 1.0 

Failure ratio 0.9 

Tensile strength (kPa) 0 
 

Table 15.1. Hardening Soil model parameters for Berlin sand-III (PLAXIS 2014) 

 

Figure 15.4. Stress paths of drained triaxial tests on Berlin sand-III 

 



 

Figure 15.5. Stress paths of undrained triaxial tests on Berlin sand-III 
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