
16- Hardening Soil Model with Small Strain Stiffness -

PLAXIS 
 

This model is the Hardening Soil Model with Small Strain Stiffness as presented in PLAXIS. The model is 

developed using the user-defined material model option in RS2 and RS3. 

This model is an extension of the Hardening Soil Model with the major difference that the elastic properties 

are when the strains are very small. The base for this extension is illustrated in Figure 16.1. 

 

 

 

Figure 16.1- Characteristic stiffness-strain curve for soils 

 

The S shaped characteristic stiffness-strain shows that the elastic modulus of soil is dependent on the level 

of shear strain, and major part of this curve is actually ignored when the material properties are evaluated 

from the conventional soil tests. In this graph, 𝐺0 is the maximum/initial shear modulus and 𝐺 is the shear 

modulus at a certain level of shear strain 𝛾.  Based on Figure 16.1, the elastic modulus that should be used 

in a numerical analysis should account for its dependency on the strain level. 

 

16.1- Small Strain Stiffness  
The S shape characteristic curve that is commonly used in soil dynamics is based on the Hardin and 

Drnevich (1972) equation 
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where 𝜏𝑚𝑎𝑥  is the shear stress at failure. This relationship covers the small and large range of strain up to 

failure. The use of smaller range for strain has been proposed for example by Santos and Correia (2001). 

They suggested to use 𝛾𝑟 = 𝛾0.7 at which the shear modulus is reduced to 70% of its initial value. 
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On top of the decay function that is applied to the shear modulus in 16.2, it is assumed that the elastic 

modulus is dependent on the level of stress similar to the relationships that was presented for Hardening 

Soil model. So equation 16.2 is used in combination of equation 16.3. 

 

𝐺0 = 𝐺0
𝑟𝑒𝑓 (

𝑐 cos 𝜑+𝜎1 sin 𝜑

𝑐 cos 𝜑+𝑝𝑟𝑒𝑓 sin 𝜑
)

𝑚

  (16.3) 

 

where  𝐺0
𝑟𝑒𝑓

 is the reference shear modulus at reference pressure. 

Note that the cutoff for the decay function in 16.2 is the value of  𝐸𝑢𝑟, meaning that the elastic modulus 

predicted for the numerical analysis cannot be less than this limit.  

To be able to capture the hysteretic behavior of the material in loading-unloading-reloading stress paths the 

proposed approach by Masing (1926) is adopted in this model. In this method the initial shear modulus in 

unloading path is the same as the initial modulus in the initial loading path, and the shape of unloading and 

reloading path is similar to the initial loading but twice its size. 

To obtain such a behavior in reloading conditions the Hardening Soil Model with Small Strain Stiffness 

uses the following modification  

 

𝛾0.7−𝑟𝑒𝑙𝑜𝑎𝑑𝑖𝑛𝑔= 2𝛾0.7−𝑣𝑖𝑟𝑔𝑖𝑛 𝑙𝑜𝑎𝑑𝑖𝑛𝑔          (16.4) 

 

 

16.2- History Dependent Shear Strain  
The shear strain used in the decay function for the shear modulus is actually dependent on the loading 

history. Once the direction of loading is changed the stiffness regains a maximum recoverable value in the 

order of its initial value at that stress level. The shear strain used in the decay function is in general 
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To make it history dependent Benz (2006) has proposed a modification  
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The ‖… ‖ denotes the Hilbert-Schmidt norm, ‖𝑎‖ = √𝑎𝑖𝑗𝑎𝑖𝑗 . The formulation to calculate the history 

dependent shear strain, 𝛾ℎ𝑖𝑠𝑡, is as follows.  

The deviatoric strain history is stored in a symmetric tensor 𝐻𝑘𝑙. In an increment of load the increment of 

deviatoric strain is �̇�𝑘𝑙 and its eigen values and eigen vectors can be found by solving  

 

(�̇�𝑘𝑙 − 𝜆(𝑖)𝛿𝑘𝑙)𝑉𝑙
(𝑖)
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where pairs of (𝜆, 𝑉𝑙) are the eigen value and eigen vectors, and 𝛿𝑘𝑙 is the Kronecker delta. 

 

𝛿𝑖𝑗 = {
0   , 𝑖 ≠ 𝑗
1   , 𝑖 = 𝑗

  (16.8) 

 

The set of orthogonal eigen vectors forms a coordinate base 𝑉𝑙𝑚 in which the increment of deviatoric strain 

is a diagonal tensor with diagonal element being the eigen values. To identify a change in loading direction 

the deviatoric strain history and the increment of deviatoric strain are compared in this base. 

 

�̇�𝑘𝑙 = 𝑉𝑘𝑚�̇�𝑚𝑛𝑉𝑙𝑚  (16.9) 

 

𝐻𝑘𝑙 = 𝑉𝑘𝑚𝐻𝑚𝑛𝑉𝑙𝑚  (16.10) 

 

In above �̇�𝑘𝑙  is the transformed increment of deviatoric strain and 𝐻𝑘𝑙 is the transformed deviatoric strain 

history. �̇�𝑘𝑙 is later used to calculate the 𝛾ℎ𝑖𝑠𝑡. 

Each principal direction is checked for a possible change in the loading direction. Reversed loading cases 

are detected when the signs of the corresponding diagonal elements in �̇�𝑘𝑙 and 𝐻𝑘𝑙 are different. To calculate 

the updated strain history according to the loading direction a diagonal transformation matrix, 𝑇𝑘𝑙 , is 

defined as 
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where 𝑢(𝑥) is the Heaviside step function 

 

𝑢(𝑥) = {
0   , 𝑥 < 0
1   , 𝑥 ≥ 0

  (16.12) 

 

The updated deviatoric strain history is calculated as 

 

𝐻𝑘𝑙
∗ = 𝑇𝑘𝑚(𝐻𝑚𝑛 + 𝛿𝑚𝑛)𝑇𝑙𝑚 − 𝛿𝑘𝑙       (16.13) 

 

The updated deviatoric strain history, 𝐻
𝑘𝑙

∗ , then is used in equation 16.5 to calculate the 𝛾ℎ𝑖𝑠𝑡. 

The updated deviatoric strain then is transformed to the original frame of reference for the calculations of 

next increment. 

 

16.3- Other Considerations in the Small Strain Range  
Within the range of small strain the hardening rule for both deviatoric and volumetric mechanisms are 

accelerated. The model should keep track of the minimum value of the elastic modulus, 𝐸𝑚𝑖𝑛  that is 

calculated based on the decay function in 16.1.  

The hardening rule for the deviatoric hardening mechanism then is modified by replacing the plastic 

deviatoric strain that is multiplied by a factor as below 
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Similarly the hardening rule for the cap is modified by  
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16.4- Examples  
Figure 16.4 and 16.5 show the numerical results of drained triaxial tests on Berlin sand-I. A comparison is 

made between the results obtained by Hardening Soil with Small Strain Stiffness model in PLAXIS and 

simulation results of the same model in Rocscience products. The model parameters are presented in Table 

16.1. 



 

 

Parameter Values for Berlin Sand I 

𝑝𝑟𝑒𝑓 (kPa) 100 

𝐸50
𝑟𝑒𝑓

 (MPa) 45 

𝐸𝑢𝑟
𝑟𝑒𝑓

 (Ma) 180 

𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 (MPa) 45 

𝑚 0.55 

𝜈 (Poisson’s ratio) 0.2 

𝐺0
𝑟𝑒𝑓

 (MPa) 168.75 

𝛾0.7 0.0002 

𝐾0
𝑛𝑐 0.43 

𝜙 (degrees) 35 

𝜓 (degrees) 5 

𝑐 (kPa) 1.0 

Failure ratio 0.9 

Tensile strength (kPa) 0 
 

Table 16.1. Hardening Soil with Small Strain Stiffness model parameters  

for Berlin sand-I (PLAXIS 2014) 

 

 



 

Figure 16.4. Stress paths of drained triaxial tests on Berlin sand-I 

 

 

Figure 16.5. Stress paths of undrained triaxial tests on Berlin sand-I 
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