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1 Natural Period of One-Dimensional Column 

1.1 Problem Description 

Verification problem #01 for RS2. This problem involves wave propagation in a soil column 
with a square cross section of width 1 m and height of 10 m subjected to gravity. we are 
using 10-noded tetrahedral elements to discretize 3D domain as presented in Figure 1-1. 
A summary of the parameters used to model the column are presented in Table 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Soil column as constructed in (left) RS2 and in (right) RS3 

Table 1.1: Input parameters for one-dimensional column model 

Parameter Value 
Material type Elastic 
Young’s modulus (E) 50000 kPa 
Poisson’s ratio (v) 0 
Unit weight (γ) 20 kN/m3 
Height (h) 10.0 m 
Width (w) 1.0 m 
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1.2 Analytical Solution 

Natural period of an elastic column with a fixed base and an open top face is presented in 
Eq. (1.1). 

                                                             4T L
E
ρ

=                                                       (1.1) 

where L is the height of the column, E is the elastic modulus of the soil column and ρ  is 
the soil mass. Given the inputs from Table 1.1, the analytical natural period (T) of this 
column is 0.255 s. 

1.3 Results  

Figure 1-2 shows the vertical displacement at the top face of the soil column with respect 
to time as produced by RS2 and RS3. The natural period calculated in RS2 and RS3 is 
0.256 s, which agrees well with the analytical solution presented earlier. 

 

Figure 1-2: RS2 and RS3 Solution. Vertical Displacement-Time 

1.4 References 

1. Itasca Consulting Group (2005). FLAC – Fast Langrangian Analysis of Continua, 
Version 5, User’s Manual. Itasca Consulting Group, Inc, Minneapolis, Minnesota. 

1.5 Data Files 

The input data file dynamic #001.rs3v3 can be downloaded from the RS3 Online Help 
page for Verification Manuals.  
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2 Simply Supported Beam Subjected to a Harmonic Point Load 

2.1 Problem Description 

Verification problem #05 for RS2. This problem concerns the dynamic behavior of a simply 
supported beam with a point load at midspan that changes amplitude harmonically. The 
beam has a length of 1 m and a rectangular cross section of 0.1 m by 0.05 m. The natural 
period of the beam is determined and compared with the analytical solution and RS2 
results. The geometry of 2D and 3D models are presented in Figure 2-1 and the material 
properties are provided in Table 2.1. 

 

 

Figure 2-1: Simply Supported Beam Modeled in (top) RS2 and in (bottom) RS3 

Table 2.1: Model parameters 

Parameter Value 
Material type Elastic 
Young’s modulus (E) 300000 kPa 
Unit weight (γ) 9.81 kN/m3 
Poisson’s Ratio (v) 0 
Length (L) 1.0 m 
Height (h) 0.1 m 
Width (w) 0.05 m 

 

The beam is loaded with a harmonic load at the midspan of the beam with an amplitude of 
1 kN and a forcing frequency, 𝜔𝜔�, of 40 Hz. 
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2.2 Analytical Solution 

Any number of natural frequencies of the beam may be calculated using Eq. (2.1), where 
n is the number of the mode number.  

                                                𝜔𝜔𝑛𝑛 =  𝑛𝑛
2𝜋𝜋2

𝐿𝐿2
�𝐸𝐸𝐸𝐸
𝑚𝑚

                                            (2.1) 

Each of these frequencies corresponds to a unique modal response that contributes to the 
overall response of the beam that is being subjected to the harmonic point load. The 
analytical solution may be determined by calculating the modal responses of the beam and 
the sum of these responses will be the overall response of the beam since the beam is 
modelled linear-elastically. Eq. (2.2) is the analytical solution to the simply supported 
beam. 

Each mode’s dynamic response can be described by the response of an equivalent 
undamped single degree of freedom system’s response to a harmonic load, with parameters 
determined from the mode’s natural frequency. The expression within the square brackets 
of Eq. (2.2) contains the response function of the equivalent single degree of freedom 
system. 

    𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 2𝑃𝑃𝐿𝐿3

𝜋𝜋4𝐸𝐸𝐸𝐸
∑

𝜙𝜙�𝐿𝐿2�

𝑛𝑛4
∞
𝑛𝑛=0 �𝑅𝑅𝑛𝑛 sin(𝜔𝜔�𝑡𝑡 − 𝜃𝜃) − 𝛽𝛽𝑛𝑛

1−𝛽𝛽𝑛𝑛
2 sin𝜔𝜔𝑛𝑛𝑡𝑡� sin �𝑛𝑛𝜋𝜋𝑛𝑛

𝐿𝐿
� (2.2) 

Where, 

𝛽𝛽𝑛𝑛 = 𝜔𝜔� 𝜔𝜔𝑛𝑛�  

𝑅𝑅𝑛𝑛 =
𝛽𝛽𝑛𝑛

�1 − 𝛽𝛽𝑛𝑛
2�

 

𝜃𝜃 = �0, 𝛽𝛽𝑛𝑛 < 0
𝜋𝜋, 𝛽𝛽𝑛𝑛 > 0 

The function, 𝜙𝜙, describes the shape of the beam for each mode. The mode shapes of the 
beam correspond to sinusoidal curves with half-periods that are fractions of the length of 
the total beam. The shape function is included in Eq. (2.2) as the final sinusoid expression 
that is dependent on x, distance along the beam, rather than time. At the midspan there 
exists only three options for the value of this function as described below: 

𝜙𝜙(𝐿𝐿/2) = �
0 𝑛𝑛 = 2,4,6, …
1 𝑛𝑛 = 1,5,9, …
−1 𝑛𝑛 = 3,7,11, …

 

The contribution of each mode needs to be determined and then summed together to 
determine the overall response of the system analytically. 
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The analytical solution provided above, accounts solely for deflection in the beam arising 
from bending and ignores shear deformations. The majority of displacement may be 
contributed by the beam bending in static analysis, however, in dynamic analysis 
accounting for shear deformation will lower the natural frequencies of the system and alter 
the response. Using a greater number of elements in the RS2/RS3 model will presumably 
capture the effect of shear deformation on the beam’s dynamic response better. 

The shortening of the frequency is described in Eq. (2.3). 

                                    𝜔𝜔′
𝑛𝑛 = 𝜔𝜔𝑛𝑛 �1 + �𝑛𝑛𝜋𝜋𝑛𝑛

𝐿𝐿
�
2
�1 + 𝐸𝐸

𝜅𝜅𝜅𝜅
��
−0.5

 (2.3) 

Where 𝑟𝑟 denotes the modulus of gyration is equal to the square root of the ratio between a 
cross section’s second moment of area and its area. This is shown in Eq. (2.4). 

                                                         𝑟𝑟 = �𝐸𝐸
𝐴𝐴

 (2.4) 

𝐺𝐺 is the shear modulus of the beam and 𝜅𝜅 is the Timoshenko shear coefficient, a correction 
parameter introduced to account for non-uniform shear stress distribution along the cross 
section. For rectangular cross sections this coefficient is given a value of 5/6. From Eq. 
(2.3) it becomes evident that the reduction in natural frequency becomes more prominent 
with higher modes due to the presence of the 𝑛𝑛 value. 

The increase in displacement will also decrease the modal stiffness of the system. This 
diminished stiffness can be calculated by following Eq. (2.5) which uses the new reduced 
frequency. 

                                      𝐾𝐾′𝑛𝑛 = 𝑀𝑀𝑛𝑛(𝜔𝜔′
𝑛𝑛)2 = 𝑚𝑚𝐿𝐿

2
(𝜔𝜔′

𝑛𝑛)2 (2.5) 

The analytical solution may now be calculated using Eq. (2.2) but with reduced values for 
the stiffness and natural frequencies to calculate the modal response parameters. 

2.3 Results 

The accuracy of the model will depend on how many elements the beam contains. With 
fewer number of elements, the response of the system will resemble more the response of 
the simply supported beam without considering shear deformation.  
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Figure 2-2: Vertical Displacement Response of the Midspan of the Beam 

The results of RS2 analyses are presented in Figure 2-2 that considered 640 and 1440 finite 
elements and compared with a dense mesh in RS3. The model with the greater number of 
elements exhibited a displacement response similar to that of the analytical solution that 
considered shear deformations. The coarser model was unable to capture that phenomenon 
as predicted. 

The results demonstrate RS3’s ability to capture complex material behavior during 
dynamic analysis provided that a sufficient number of elements have been used in the 
model. 

2.4 References 

1. Chopra, A. K. (1995). Dynamics of Structures.  New Jersey: Prentice Hall. 

2.5 Data Files 

The input data file dynamic #002.rs3v3 can be downloaded from the RS3 Online Help 
page for Verification Manuals.  
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3 Cantilever Beam Under Harmonic Load 

3.1 Problem Description 

Verification problem #06 for RS2. This problem demonstrates behavior of a cantilever beam 
under harmonic load. The cantilever beam has a length of 1 m and a square cross section 
of 0.1 m by 0.1 m. The geometry of the models in both RS2 and RS3 are presented in 
Figure 3-1. Material properties are presented in Table 3.1. 

 

  

Figure 3-1: Cantilever beam modeled in (top) RS2 and in (bottom) RS3  

 

The harmonic load is a function with respect to time as described in Eq. (3.1) and presented 
in Figure 3-2. 

                              𝑃𝑃(𝑡𝑡) = �𝑃𝑃(𝑡𝑡)=3.1941sin(πt/2)     if     0<t ≤ 2
 𝑃𝑃(𝑡𝑡) = 0                                  if      t > 2   (3.1) 
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Figure 3-2: Harmonic load acting on the beam  

Table 3.1: Model parameters 

Parameter Value 
Material type Elastic 
Young’s modulus (E) 38329.2 kPa 
Poisson’s ratio (v) 0.3 
Unit weight (γ) 9.81 kN/m3 
Length (L) 1.0 m 
Height (h) & Width (w) 0.1 m 

 
3.2 Results 

The beam displacement obtained using RS3 is compared with the solutions calculated by 
RS2 and commercial FEA software MIDAS GTS. In the first attempt, linear elements are 
used in both RS2 and RS3 models as it is shown in Figure 3-3. The results from RS2 and 
RS3 are slightly different from the MIDAS GTS results. By using a higher order element 
in RS3 (10-noded tetrahedral elements) the results matched with the provided results by 
MIDAST GTS. 
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Figure 3-3: Midspan Displacement Response 

3.3 References 

1. J. M. Duncan and C. Y. Chang (1970), Nonlinear analysis of stress and strain in 
soils, J. of Soil Mech. and Foundation Division, ASCE, 96 (SM5), pp. 1629-1653. 

3.4 Data Files 

The input data file dynamic #003.rs3v3 can be downloaded from the RS3 Online Help 
page for Verification Manuals.  
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4 Cantilever Beam Subjected to a Constant Point Load 

4.1 Problem Description 

Verification problem #07 for RS2. This problem demonstrates behavior of a cantilever beam 
under a constant load. The properties of the cantilever, shown in Table 4.1, are identical to 
the previous section’s problem statement except that the Poisson’s ratio here is zero, and 
that the beam is subjected to a constant load of 3.19 kN. However, the geometry is slightly 
different as the cross section of the beam is rectangular with a height of 0.1 m and a width 
of 0.02 m. The beam is fixed in the Y direction to prevent any movement in the out-of-
plane direction. Loading the cantilever with a constant load the fundamental period may 
be ascertained from the deflection response and compared to the theoretical first mode 
period. The mode shapes of the cantilever beam are not simple and described using 
hyperbolic cosine functions which does not allow for a concise analytical response function 
to be generated. The model geometries are presented in Figure 4.1. 

 

 

Figure 4-1: Cantilever beam modeled in (top) RS2 and in (bottom) RS3 

Table 4.1: Model parameters 

Parameter Value 
Material type Elastic 
Young’s modulus (E) 38329.2 kPa 
Poisson’s ratio (v) 0 
Unit weight (γ) 9.81 kN/m3 
Length (L) 1.0 m 
Height (h) 0.1 m 
Width (w) 0.02 m 
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4.2 Analytical Solution 

The stiffness of a cantilever beam will be needed to determine the static stiffness of the 
system and it is presented below in Eq. (4.1).  

                                                        𝐾𝐾 = 3𝐸𝐸𝐸𝐸
𝐿𝐿3

 (4.1) 

The stiffness for this problem was determined to be 9.582 kN/m/m. Dividing the amplitude 
of the load by this stiffness produces a value of 0.033 m for the static stiffness. 

The first natural period of a cantilever is defined by Eq. (4.2).  

                                                   𝜔𝜔𝑖𝑖 = 3.516
𝐿𝐿2

�𝐸𝐸𝐸𝐸
𝑚𝑚

  (4.2) 

Evaluating that expression, a fundamental period of 1.000 s was determined for this 
cantilever system. The analytical solution idealizes the system as a single degree of 
freedom system and the higher mode response of the cantilever is ignored. This is an 
imprecise idealization, but it allows one to evaluate the general shape of the cantilever 
response. The response of a single degree of freedom system to a constant load is described 
below in Eq. (4.3). 

                                                   𝑢𝑢(𝑡𝑡) = 𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠[1 − cos(𝜔𝜔𝑡𝑡)] (4.3) 

The maximum amplitude of the displacement will be twice that of the static displacement. 

4.3 Results 

The beam displacement obtained using RS2 and RS3 is compared with the idealized 
response of a cantilever only containing a response from the first mode.  
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Figure 4-2: Cantilever Free End Vertical Displacement Response  

The RS2 and RS3 responses display a minor discrepancy with the idealized response, 
especially a reduction in amplitude. The difference is likely due to the influence of higher 
mode responses. The deviation from a smooth sin curve is likely due to destructive 
interference of the higher modes. The response nevertheless exhibits a predominant period 
of 1 s as predicted analytically and revealing the influence of the fundamental period on 
the total response. 

4.4 References 

1. Chopra, A. K. (1995). Dynamics of Structures.  New Jersey: Prentice Hall. 
4.5 Data Files 

The input data file dynamic #004.rs3v3 can be downloaded from the RS3 Online Help 
page for Verification Manuals.  
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5 Single Element with Spring and Damping 

5.1 Problem Description 

Verification problem #08 for RS2. This section attempts to validate the spring and dashpot 
elements as well as the mass-proportional damping that is presently implemented in the 
dynamic module of RS2 and RS3. In order to create a verifiable model, the problem had to 
be reduced to one that could be determined analytically, and for this reason the problem 
described within is that of a single degree of freedom system. 

The model consists of a single quadrilateral element with near rigid stiffness that provides 
mass to the dynamic system. The geometry of the model is a 0.5 m by 0.5 m square element 
with a 0.1 m width. The model is restrained in the X and Y directions and is only supported 
vertically by springs that provide the system’s effective stiffness. The element’s rigidity is 
supposed to refrain it from deforming and allow the springs to solely combat the imposed 
loads. The configuration of the system is presented below in Figure 5-1 and the material 
properties are shown in Table 5.1. 

    

Figure 5-1: (left) RS2 model (right) RS3 model 

Table 5.1: Model Parameters 

Parameter Value 
Material type Elastic 
Spring Stiffness (K) 100 kN/m/m 
Unit weight (γ) 9.81 kN/m3 
Poisson’s Ratio 0 
Length (L) & Height (h) 0.5 m 
Width (w) 0.1 m 
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The bottom nodes of the element where the springs are attached will both be subjected to 
an identical harmonic force with an amplitude of 10 kN and a frequency of 10 Hz or 62.8 
rad/s. Therefore, the effective stiffness of the system is 200 kN/m/m and the amplitude of 
the total load is 20 kN. 

The system will be modeled: 

• without damping 
• with damping provided by mass-proportioned Rayleigh damping. 

5.2 Damping Parameters 

The coefficient of damper that is given to the dashpot damper is merely a fraction of the 
critical damping of the system and it is determined using Eq. (5.1). 

                                                            𝐶𝐶 = 𝜉𝜉 × 2√𝑀𝑀𝐾𝐾 (5.1) 

The mass of the system is 0.25 tons and the stiffness has been provided. assuming these 
values 10% for the damping ratio, the damping coefficient was determined to be 1.414 
kNs/m/m.  

To ensure that the mass-proportional Rayleigh damping provided equivalent damping, the 
damping parameter was determined by simply dividing the damping coefficient by the 
value of the mass. This results in a Rayleigh damping parameter of 5.657. 

5.3 Analytical Solution 

Since the system is effectively a single degree of freedom system the analytical solution 
for a damped system is readily available. The natural frequency was determined to be 
28.28 rad/s by using Equation (5.2). 

                                                       𝜔𝜔𝑛𝑛 = �𝐾𝐾
𝑀𝑀

  (5.2) 

For an undamped single degree of freedom system with no initial displacement or velocity 
the displacement response function is defined by Equation (5.3).  

                              𝑢𝑢(𝑡𝑡) =  𝑃𝑃𝑃𝑃
𝐾𝐾
𝑅𝑅 sin(𝜔𝜔�𝑡𝑡 − 𝜃𝜃) − 𝛽𝛽

1−𝛽𝛽2
sin𝜔𝜔𝑛𝑛𝑡𝑡 (5.3) 

Where 𝛽𝛽 is the ratio between the forcing and natural frequencies, 𝑅𝑅𝑑𝑑 is the amplitude 
reduction factor of the particular solution and 𝜃𝜃 is the phase angle. These variables are 
defined as: 

𝛽𝛽 = 𝜔𝜔� 𝜔𝜔𝑛𝑛�  
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𝑅𝑅 =
𝛽𝛽

|1 − 𝛽𝛽2| 

𝜃𝜃 = �0, 𝛽𝛽 < 0
𝜋𝜋, 𝛽𝛽 > 0 

The first sinusoidal function represents the particular solution which oscillates at the 
forcing frequency whereas the second sinusoidal function is the complimentary solution 
that oscillates at the natural frequency. Typically, in a damped system the complimentary 
solution is the transient response of the system that dissipates over time, however in an 
undamped system it is ever present. For this system 𝛽𝛽 was found to be 2.221, the 
reduction factor 𝑅𝑅 had a value of 0.254 and the phase angle had the value of π. 

A damped system possesses a similar response function except that the particular solution 
decays exponentially and there is some period elongation due to the damping. The steady-
state solution retains the same form, but the reduction factor and phase angle definitions 
are modified to account for damping in the system. The damped response function of this 
system with no initial velocity or displacement is presented in Eq. (5.4). 

       𝑢𝑢(𝑡𝑡) =  𝑃𝑃0
𝐾𝐾
𝑅𝑅𝑑𝑑 sin(𝜔𝜔�𝑡𝑡 − 𝜃𝜃𝑑𝑑) + 𝑒𝑒−𝜉𝜉𝜉𝜉𝑠𝑠[𝐴𝐴 cos(𝜔𝜔𝑑𝑑𝑡𝑡) + 𝐵𝐵 sin(𝜔𝜔𝑑𝑑𝑡𝑡)]  (5.4) 

Where the variables A and B are determined based on the initial conditions of the system. 
For a system that is initially stationary, the variables are defined below. 

𝐴𝐴 = −
𝑃𝑃0
𝐾𝐾
𝑅𝑅𝑑𝑑 sin(−𝜃𝜃𝑑𝑑) 

𝐵𝐵 =
𝜉𝜉𝜔𝜔𝐴𝐴 − 𝑃𝑃0

𝐾𝐾 𝑅𝑅𝑑𝑑𝜔𝜔� cos(−𝜃𝜃𝑑𝑑)
𝜔𝜔𝑑𝑑

 

The new damped parameters are defined below. 

𝑅𝑅𝑑𝑑 =
1

�(1 − 𝛽𝛽2)2 + (2𝜉𝜉𝛽𝛽)2
 

𝜃𝜃𝑑𝑑 = tan−1 �
2𝜉𝜉𝛽𝛽

1 − 𝛽𝛽2�
 

𝜔𝜔𝑑𝑑 = 𝜔𝜔𝑛𝑛�1 − 𝜉𝜉2 

For the damped problem the reduction factor 𝑅𝑅𝑑𝑑 has a value of 0.254, the phase angle is    
-0.1124 rad and the damped natural frequency is 28.14 rad/s. The initial condition variables 
A and B were determined to be -0.002851 and -0.05667 respectively. 
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5.4 Results 

The response of both the damped and undamped models show great agreement with both 
RS2 analysis and the analytical solution. As expected, the vertical displacement in an 
undamped model is higher than the model with damper. This behaviour is observed in both 
RS2 and RS3. This comparison demonstrates that the springs and dampers have been 
implemented correctly in RS3. 

 

 
Figure 5-2: Damped and Un-Damped Displacement Response using Dashpot Dampers 

 

5.5 Data Files 

The input data file dynamic #005.rs3v3 can be downloaded from the RS3 Online Help 
page for Verification Manuals.  
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6 Dimensional S-Wave Propagation 

6.1 Problem Description 

Verification problem #10 for RS2. This problem addresses S-wave propagation in a one-
dimensional soil column. The soil column has a height of 20 m and a rectangular cross 
section of 2 m by 5 m. The model is allowed to move only in the horizontal direction. A 
prescribed horizontal displacement of 0.01 m is applied to the bottom of the column. In 
order to test the absorb boundary condition, it is applied to the top of the soil column to 
replace the fixed boundary. The geometry of the problem is shown in Figure 6-1. The 
material properties used in the model are summarized in Table 6.1. 

 

 

 

 

 

 

 

 

 

 

Figure 6-1: Model of a soil column in (left) RS2 and in (right) RS3 

Table 6.1: Model parameters 

Parameter Value 
Material type Elastic 
Young’s modulus (E) 20000 MPa 
Poisson’s ratio (v) 0.25 
Unit Weight (γ) 20 kN/m3 
Height (h) 20 m 
Length (L) 2 m 
Width (w) 5 m 
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6.2 Analytical Solution 

Velocity of S-wave in the column is presented in Eq. (6.1). 

                                                                
Gβ
ρ

=                                          (6.1) 

Where, G is the shear modulus as described in Eq. (6.2). 

                                                             
2(1 )

EG
υ

=
+

       (6.2) 

In this problem, the analytical S-wave velocity is 62.64 m/s. The time necessary for the 
middle point of the bottom face to start moving is: 

                                                           / 2 0.16Lt s
β

= =       (6.3) 

The shear wave is induced by moving the bottom face of the mode by 0.01 m and 
maintaining that imposed displacement for the entirety of the simulation. For the fixed top 
boundary case it is expected that the shear wave will reflect from the fixed boundary and 
repeatedly influence the midspan horizontal deflection. The viscous boundary should 
absorb the incoming shear wave and eliminate any reflection waves. 

6.3 Results 

Displacements of a point at the middle of the column are analyzed in two cases: no damping 
and with absorb boundary condition applied to the top of the column and compared with 
RS2. The results are shown in Figure 6-2 and Figure 6-3. It can be seen that the middle 
point starts to move just before at 0.16s which agrees well with the analytical solution. The 
displacement at the point is dropped to zero at 0.48 s when the S-wave comes back due to 
lack of viscous boundaries. If an absorb boundary condition is used, a constant 
displacement of 0.01 m is observed after 0.16 s. Results of a similar problem calculated 
from Plaxis [1] are given in Figure 6-4 and Figure 6-5 for reference. 
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Figure 6-2: Displacement at the middle of the soil column-undamped fixed boundary 

 

Figure 6-3: Displacement at the middle of the soil column-absorb boundary condition 
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Figure 6-4: Displacements-undamped (from Plaxis) 

 

Figure 6-5: Displacements-viscous boundary (from Plaxis) 
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6.4 References 

1. Brinkgreve, R. B. (2002) Plaxis 2D Version 8.4: Reference, Scientific and Dynamic 
Manuals, Lisse, Balkema.  

6.5 Data Files 

The input data file dynamic #006.rs3v3 can be downloaded from the RS3 Online Help 
page for Verification Manuals.  
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7 Lamb’s Problem: S-Wave and P-Wave Propagation 

7.1 Problem Description 

Verification problem #11 for RS2. This problem addresses Lamb’s problem [1] which is 
wave propagation in a semi-infinite elastic medium subjected to an impulsive force applied 
at the surface. Due to symmetry, only a quarter of the field problem is modeled in RS3 with 
the radius of 100 m in the horizontal direction and 30 m in the vertical direction. Viscous 
boundaries are introduced around the model. The geometry of the problem is shown in 
Figure 7-1. The point load acting on the top left of the model is approximated by a 
distributed load with the duration of 0.025 s and the load started after 0.05 s. The magnitude 
of the load is 50 kN. This point load is distributed in a radius of 2.5 m and applied to the 
model. The material properties used in the model are summarized in Table 7.1. No artificial 
damping was used in the simulation. 

 

 

Figure 7-1: (top) RS2 (bottom) RS3 model of the problem 
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Table 7.1: Model parameters 

Parameter Value 
Material type Elastic 
Young’s modulus (E) 50000 MPa 
Poisson’s ratio (v) 0.25 
Unit weight (γ) 20 kN/m3 
Radius (r) 100 m 
Depth (d) 30 m 

 

7.2 Results 

Time-vertical displacement at relationship a point on the surface, 50 m away from the 
source as calculated by RS3 is shown in Figure 7-2. Results of a similar problem calculated 
from RS2 and Plaxis are also presented for reference. Please note that artifical damping 
values were employed in Plaxis to obtain the results. In all models, it is shown that the 
shock wave is approaching the desired point after 0.62 s of applying the initial load.  

 

Figure 7-2: Vertical Displacement at x = 50m 

7.3 Data Files 

The input data file dynamic #007.rs3v3 can be downloaded from the RS3 Online Help 
page for Verification Manuals.  

7.4 References 

1. Brinkgreve, R. B. (2012) Plaxis 2D Dynamic Module – Version 2011: Verification, 
Scientific and Dynamic Manuals, Lisse, Balkema.  
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8 Harmonic Shear Wave 

8.1 Introduction 

This verification is from FLAC example 1.7.4 Slip Induced by Harmonic Shear Wave [1]. 

This case focuses on the energy dissipation given a homogeneous media under a shear 
wave, separated by a discontinuity in the middle. Absorb boundary is assigned to the top 
and bottom boundary of the model acting as non-reflective boundary, vertical restraints are 
assigned to the two lateral boundaries. The material model is elastic. 

8.2 Problem Description 

Verification problem #13 for RS2. A joint boundary is used to simulate the discontinuity 
in the middle of the media, three joint boundary cohesions are assigned to the model to 
simulate the non-slip surface (2.5 MPa) and slip surface (0.02 MPa, 0.1 MPa). The friction 
angle of the joint boundaries is equal to zero. The geometry of the model is presented in 
Figure 8-1. The model has a height of 200 m and a rectangular cross section of 80 m by 
10 m. 

A shear wave in terms of frequency 𝑤𝑤 and time t is given as sin (𝑤𝑤𝑡𝑡) and applied in the 
horizontal direction at the bottom boundary of the models. Please note that the magnitude 
of the shear wave needs to be doubled in this case, taking consideration of two non-
reflective boundary. 

The RS3 response of the three models for displacement and velocity on top and bottom of 
the model are compared with RS2.  
 

8.3 Geometry and Properties 

The material properties used for this model is given in Table 8.1. 

Table 8.1: Material Properties 

Parameter Value 
Material type Elastic 
Young’s modulus (E) 25000 MPa 
Poisson’s ratio (v) 0.25 
Unit Weight (γ) 26.5 kN/m3 
Height  200 m 
Length 80 m 
Width  10 m 
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8.4 Results 

The following figures compare the horizontal displacement and velocity at the top and 
bottom of the column are compared between RS2 and RS3 for three cases (No Slip, 
Cohesion = 0.1 MPa, Cohesion = 0.02 MPa). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-1: (left) RS2 (right) RS3 Model Geometry 
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Figure 8-2: Comparison of horizontal displacement and velocity on top and bottom of the soil column for 
both RS2 and RS3 for the case of no slip 
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Figure 8-4: Comparison of horizontal displacement and velocity on top and bottom of the soil column for 
both RS2 and RS3 for the case of cohesion=0.02 MPa 

8.5 References 

1. Itasca Consulting Group Inc. (2011). FLAC Dynamic Analysis Version 7.0 (pp. 
1.252 – 1.261).  

Figure 8-3: Comparison of horizontal displacement and velocity on top and bottom of the soil 
column for both RS2 and RS3 for the case of cohesion=0.1 MPa 
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9 Internal Blast 

9.1 Introduction 

This verification is from FLAC example 1.7.5 Hollow Sphere Subject to an Internal Blast 
[1].  
This case demonstrates the propagation of a wave caused by a spherical internal pressure 
in a sphere and a rectangle. An absorb boundary is assigned to the outer boundary of the 
model. To model a half space in RS3, a spherical space is defined and to compare the 
results with RS2, an axisymmetric analysis is performed. The material model in this 
problem is elastic. 

9.2 Problem Description 

Verification problem #14 for RS2. The dynamic response of the half-spaced models is 
simulated in RS3. The sphere has a radius of 100 m and an inner boundary radius of 10 m. 
A pressure equals to 1 kPa is applied at the spherical inner boundaries of model. Figure 
9-1 indicates the model geometry in RS2 and RS3. The interest of this case is the 
propagation of the responsive wave translated by plotting the radial displacement at 
different time queries located at different distances from the internal pressure. The results 
are compared to the analytical solution by Blake [2], governed by an equation of 
compressional wave velocity Cp, time t, a potential function ø and Laplacian operator V: 

𝜕𝜕2ø
𝜕𝜕𝑠𝑠2

= 𝐶𝐶𝑝𝑝2V2ø                                                               (9.1) 
 

In this case, the potential function used to find the radial displacement can be expressed as 
following: 

 

𝑢𝑢𝑛𝑛 = −
𝑝𝑝0𝑎𝑎3𝑘𝑘
𝜌𝜌𝐶𝐶𝑝𝑝2𝑟𝑟2

[−1 + √2 − 2𝑣𝑣 exp(−𝑎𝑎0𝜏𝜏) cos �𝑤𝑤0𝜏𝜏 − 𝑡𝑡𝑎𝑎𝑛𝑛−1
1

√4𝑘𝑘 − 1
�  + 

𝑝𝑝0𝑎𝑎3𝑘𝑘
𝜌𝜌𝐶𝐶𝑝𝑝2𝑟𝑟

[
𝑎𝑎0
𝐶𝐶𝑝𝑝
√2 − 2𝑣𝑣 exp(−𝑎𝑎0𝜏𝜏) cos �𝑤𝑤0𝜏𝜏 − 𝑡𝑡𝑎𝑎𝑛𝑛−1

1
√4𝑘𝑘 − 1

�  + 

𝑤𝑤0
𝐶𝐶𝑝𝑝
√2 − 2𝑣𝑣 exp(−𝑎𝑎0𝜏𝜏) cos �𝑤𝑤0𝜏𝜏 − 𝑡𝑡𝑎𝑎𝑛𝑛−1 1

√4𝑘𝑘−1
�                                  (9.2) 

 
Where,  
 
𝑝𝑝0= pressure applied on the model; 
𝑎𝑎 = Radius of the sphere; 
𝑣𝑣 = Poisson’s Ratio; 
𝐾𝐾= 1−𝑣𝑣

2(1−2𝑣𝑣)
; 

𝑟𝑟 = Radial coordinate; 

𝑎𝑎0 = 𝐶𝐶𝑝𝑝
2𝑠𝑠𝑘𝑘

 = radiation damping constant; 
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𝜏𝜏 = 𝑡𝑡 − 𝑛𝑛−𝑠𝑠
𝐶𝐶𝑝𝑝

 ; and  

𝑤𝑤0 =  𝑠𝑠
2𝑠𝑠𝐾𝐾 √4𝐾𝐾 − 1  = natural frequency. 

 
9.3 Geometry and Properties 

Table 9.1: Material Properties 

Parameter Value 
Material type Elastic 
Young’s modulus (E) 24975 MPa 
Poisson’s ratio (v) 0.25 
Unit Weight (γ) 16.75 kN/m3 
Outer Sphere Radius (ro) 100 m 
Inner Sphere Radius (ri) 10 m 

 

 

                          

 

 

 

 

 

                           

 

9.4 Results 

The response in Figure 9-2 illustrates that farther locations transmit less wave. The 
values for vertical displacement were assessed at three points in the model (P1, P2 and 
P3). The locations of these points are at radii 20.5 m, 34.2 m, and 48.7 m, respectively. 
Figure 9-3 demonstrates that the resulted vertical displacement from RS3 is almost 
match the analytical solution derived by Blake [2] and RS2 analysis. 
 

 

 

Figure 9-1: (left) axi-symmetric RS2 model (right) RS3 Model Geometry 
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Figure 9-2: (left) Horizontal displacement in RS2 and (right) Vertical displacement in RS3 

 

Figure 9-3: Vertical-displacement vs time at different time queries in comparison with the RS2 and 
analytical Solution by Blake (1952) 

9.5 References 

1. Itasca Consulting Group Inc. (2011). FLAC Dynamic Analysis Version 7.0 (pp. 
1.262 – 1.271).  

2. Blake, F.G. (1952). “Spherical Wave Propagation in Solid Media”, J.Acous. Soc. 
Am., 24(2), 211-215. 
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10 Machine Foundation 

10.1 Introduction 

This verification is from FLAC example 1.7.6 Vertical Vibration of a Machines Foundation 
[1]. 
This case concerns the vertical response of the soil directly underneath a rigid strip footing, 
under the cyclic loading applying on the footing. Half of the model is simulated by taking 
advantage of the model’s symmetry and therefore it is fixed in the x-direction on the left 
boundary. Absorb boundary is assigned to the right and bottom boundary of the model. 
Five different frequency ratio a0 (0.5, 1, 1.5, 2, 2.5) is used in five models. The stiff footing 
is modelled as beam element with a very large young’s modulus to result in uniform 
vertical response and limit the horizontal and rotational movement of the soil directly 
underneath the footing. The material model in this problem is elastic. 

10.2 Problem Description 

Verification problem #15 for RS2. The dynamic response of the five models is simulated 
in RS3. The cyclic loading applied on the footing is in terms of a0 and therefore different 
in five models. Material properties for this model are presented in Table 10.1. The cyclic 
loading P is expressed as P = 𝑃𝑃0 sin (𝑤𝑤𝑡𝑡), where 𝑃𝑃0 is the force amplitude, w is the 
operational frequency and t is the run time for each model as shown in Table 10.2. Noting 
that in this table α and β are damping parameters.  

Figure 10-1 indicates the geometry of model in RS2 and RS3. The model has a length of 
160 m with a rectangular cross section of 80 m by 4 m. The focus of this study was to 
compare the vertical displacement of a point under the load with RS2 results for the five 
different frequency ratios. 
 

10.3 Geometry and Properties 

Table 10.1: Material Properties 

Parameter Value 
Material type Elastic 
Young’s modulus (E) 11200 MPa 
Poisson’s ratio (v) 0.4 
Unit Weight (γ) 128.8 pcf 
Length (L) 160 m 
Height (h) 80 m 
Depth (d) 4 m 
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Table 10.2: Dynamic Properties 

 a0 W β α Time (s) 
0.5 50.00 0.001000 2.50 1.2566 
1 100.00 0.0005000 5.00 0.6283 

1.5 150.00 0.000333 7.50 0.4189 
2 200.00 0.000250 10.00 0.3142 

2.5 250.00 0.000200 12.50 0.2513 
 

 

 

Figure 10-1: (top) RS2 and (bottom) RS3 Models Geometry 
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10.4 Results 

The results for the vertical displacements in RS3 are presented as contours in Figure 10-2. 
Figure 10-3 depicts variation of vertical displacement with the unified time (calculation 
time x a0) for all five cases in both RS2 and RS3 where the results are in good agreement. 
As expected, when damping parameter is reduced, the higher vertical displacement is 
observed in both RS2 and RS3.  
 

 
Figure 10-2: Vertical Displacement Results in RS3 for a0 =2.5 

 

Figure 10-3: Comparison of vertical displacement between RS2 and RS3 for five study cases 
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10.5 References 

1. Itasca Consulting Group Inc. (2011). FLAC Dynamic Analysis Version 7.0 (pp. 1.272 – 
1.278).  
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