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Introduction 
The accuracy of Finite Element modeling outcomes significantly relies on the chosen mesh type for 
discretizing the domain. Enhanced precision is achievable through finer meshing or by integrating higher-
order elements. RS3 offers two distinct element types: the 4-noded tetrahedron and the 10-noded 
tetrahedron. While it is generally recommended to favor 10-noded elements, especially in SSR analysis 
or complex models to improve result’s accuracy, this preference leads to time-intensive computations as it 
involves solving larger systems of equations. Meshing the entire model with 10-noded elements may not 
always be essential. In cases involving a domain section with low geometric or mechanical complexity, 
where linear analysis suffices, or when the area of interest is limited, using 10-noded elements across the 
entire domain may not be mandatory. 

To address such scenarios, RS3 introduces a hybrid mesh with mixed orders, enabling users to 
selectively apply 10-noded elements to specific critical areas within the domain and using 4-noded 
elements for the rest of the model. The hybrid meshing approach optimizes computational efficiency and 
enhances result accuracy by strategically incorporating higher-order elements only where their benefits 
are most needed. This document outlines the theoretical approaches for implementing the hybrid mesh in 
finite element analysis and provides an explanation of the formulation used in RS3. 

  



 4  rocscience.com 

1. Overview 
The fundamental prerequisites for integrating different discretization types within the spatial domain 
involve ensuring that the generated finite elements are both complete and compatible (Zienkiewicz, 1977; 
Bathe, 2016). Completeness, or the partition of unity in finite elements, dictates that the sum of all 
interpolation functions must equate to one at any point in the model. Compatibility, on the other hand, 
asserts that the field variables of interest (such as displacement, pore-fluid pressure, etc.) and the 
coordinates of nodes at the shared edges of two adjacent elements must coincide. Figure 1-1 illustrates 
an instance of an incompatible mesh employed to examine deformable solids.  

 

Figure 1-1: An incompatible finite element mesh of a deformable solid (a) before and (b) after deformation 

In Figure 1-1b, the displayed deformed configuration is incorrect even after the simulation has converged. 
The discrepancy in the current deformed configuration arises from an issue of incompatibility in the 
generated mesh, leading to the shared node between elements 1 and 2 failing to converge to a unique 
coordinate. A correct deformed configuration of the same mesh is illustrated in Figure 1-2b, where the 
shared point between elements 1 and 2 occupies a unique coordinate after deformation takes place. 

 

Figure 1-2: A compatible finite element mesh of a deformable solid (a) before and (b) after deformation 
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2. Classification of the approaches 
Different approaches can be used to implement a hybrid mesh in finite element analysis, including using 
elements with arbitrarily augmented nodes, penalty augmentation, Lagrange multiplier adjunction, and 
master-slave elimination. All these approaches reduce the number of degrees of freedom compared to a 
domain entirely meshed using higher-order elements, resulting in faster solving. Although the results may 
vary slightly, these approaches ensure that the constructed assembled elements are compatible. RS3 
employs the master-slave elimination approach due to its elegant formulation, high accuracy, and 
flexibility for use with different classes of elements (such as 3D solids, joints, liners, embedded structural 
elements, etc.). The following sections provide a summary of these approaches, with more details on the 
master-slave elimination approach. An extensively detailed explanation about augmenting arbitrary nodes 
to special elements can be found in Bathe (2016), and for penalty augmentation, Lagrange multiplier 
adjunction, and master-slave elimination, refer to Felippa (2004). 

 

2.1.1. Elements with arbitrarily augmented nodes 
Once additional node(s) are added to linear elements (e.g., 4-noded tetrahedra), their interpolation 
functions can be mathematically calculated, used in calculating the stiffness matrix, and assembled with 
other elements. By doing so, it ensures that the resultant mesh is compatible. For instance, in Figure 1-
2a, element 2 is treated as a special triangle with 4 nodes (three nodes at the corners and one node at 
one of the edges). The interpolation functions for a tetrahedron with arbitrarily augmented node(s) in the 
natural coordinate system can be found in Bathe (2016, page 375). 

 

2.1.2. Penalty augmentation 
In the penalty augmentation approach, fictitious elastic elements, referred to as penalty elements 
(Zienkiewicz and Taylor, 1993), can be introduced along the boundary of adjacent higher and lower order 
elements, each with lower dimensions. The penalty elements include constraint equations aligned with 
the response of the regular higher and lower order elements at the boundary where penalty elements are 
located. The stiffness and force contributions of these elements are combined using the global 
assembler. These additional penalty elements incorporate a parametrized numerical weight, adjustable to 
ensure that the field variables along the boundary adhere to the requirements of both higher and lower 
order elements. Although this method involves a slightly larger number of elements compared to the 
approach using elements with arbitrarily augmented nodes, it maintains the same number of degrees of 
freedom. 

The primary advantage of the penalty augmentation approach lies in its straightforward implementation. It 
also preserves positive definiteness, similar to the first approach. However, a significant drawback is the 
critical challenge associated with selecting weight values that strike a balance between solution accuracy 
and the violation of constraint conditions. While a square root rule often suffices for simple cases 
(Felippa, 2004), its effective application requires knowledge of the magnitudes of stiffness coefficients. In 
more complex scenarios, determining suitable weights may demand extensive numerical 
experimentation, leading to a time-consuming process of numerical trials that do not directly contribute to 
the primary goal—obtaining a solution (Felippa, 2004). 
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2.1.3. Lagrange multiplier adjunction 
In contrast to penalty augmentation, the incorporation of Lagrange multipliers provides the advantage of 
exactness (Felippa, 2004). This method directly calculates constraint forces at nodes situated at edges 
shared between higher and lower order elements, eliminating the need for weight assumptions. However, 
it introduces additional unknowns compared to penalty augmentation and elements with arbitrarily 
augmented nodes, necessitating the expansion of the original stiffness matrix and more intricate storage 
allocation procedures. The use of Lagrange multipliers may result in positive indefiniteness in the stiffness 
matrix, posing challenges for linear equation solving methods relying on positive definiteness (Felippa, 
1978). Its implementation is not straightforward, demanding careful attention to identifying singularities 
caused by constraint dependency and addressing the consequences of the loss of positive definiteness in 
the stiffness matrix (Felippa, 2004).  

 

2.1.4. Master-slave elimination 
The master-slave elimination approach, initially employed by the Boeing development team in the 1950s 
and detailed by Turner et al. (1964), had an early and general format. Felippa (2004) later refined it to 
handle versatile multi-freedom constraints in the finite element method. Despite its initial implementation 
in the NASTRAN code, challenges arose in identifying slave nodes. It is noteworthy that the application of 
master-slave elimination in hybrid meshing, as presented and employed in RS3, does not encounter the 
previously mentioned difficulties. 

The primary objective is to eliminate the slave nodes from the system of equations by imposing 
constraints that define their response based on the behavior of the master nodes. The master-slave 
elimination approach is explored for various constraints, including both homogeneous and non-
homogeneous ones, as discussed in Felippa (2004). However, this document specifically focuses on its 
application in implementing hybrid meshing, involving both higher and lower order elements (10-noded 
and 4-noded tetrahedra). 

In the master-slave elimination approach for hybrid meshing, mid-nodes situated at the edge shared 
between higher and lower order elements are designated as slave nodes. The remaining nodes along the 
shared edge are termed master nodes, influencing the response of the slave nodes. It is worth noting that 
since the slave nodes are exclusive to higher order elements (and not present in lower order elements), 
these higher order elements are termed buffer elements in this document (e.g., element 1 in Figures 1-1 
and 2-1). 

The subsequent section presents the formulation of the master-slave elimination approach in hybrid 
meshing of deformable solids. It is crucial to note that problem formulations related to steady-state and 
transient flow, coupled hydromechanical analysis, dynamic analysis, joints, and structural elements can 
be derived based on the concepts presented. RS3 employs the master elimination approach to address 
all the aforementioned problems. 

Consider an assembly of two neighboring elements with different orders, specifically a 10-noded and a 4-
noded tetrahedron, sharing a face defined by three common edges, as depicted in Figure 2-1. The 
number of slave nodes in this mesh is 𝑠𝑠 = 3. Denoting 𝑛𝑛 and 𝑑𝑑 as the total number of nodes and degrees 
of freedom of each node, this assembled mesh is associated with 𝑛𝑛 = 11 and 𝑑𝑑 = 3. In this figure, the 10-
noded buffer and 4-noded elements are labeled as 1 and 2, respectively. Element 2 is composed of 
nodes {1,2,3,4}, while element 1 includes nodes {1,2,3,5,6,7,8,9,10,11}. Additionally, nodes coloured in 
orange, green, and black are designated as slave, master, and regular nodes, respectively.  
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The original system of equations that arises from the variational principle of the balance of linear 
momentum, combined with the spatial discretization, leads to the following format (Zienkiewicz, 1977): 

[𝑲𝑲]{𝒖𝒖} = {𝒇𝒇} ( 2.1 ) 

where [𝑲𝑲] is the 𝑛𝑛𝑑𝑑 × 𝑛𝑛𝑑𝑑 stiffness matrix with, and {𝒖𝒖} and {𝒇𝒇} represent the displacement and force 
vectors, each with 𝑛𝑛𝑑𝑑 components.   

 

Figure 2-1: An assembly featuring a 10-noded tetrahedron (labeled 1) and a 4-noded tetrahedron (labeled 
2), highlighting slave, master, and regular nodes in orange, green, and black colours, respectively 

 

To ensure compatibility within this assembled mesh, the displacement of slave nodes must be determined 
by the master nodes. In the sample mesh represented in Figure 2-1, this is achieved by employing the 
interpolation functions (𝑁𝑁𝑖𝑖) of element 2 (the 4-noded element), as follows: 

�
𝑢𝑢6 = 𝑁𝑁1𝑢𝑢1 + 𝑁𝑁2𝑢𝑢2
𝑣𝑣6 = 𝑁𝑁1𝑣𝑣1 + 𝑁𝑁2𝑣𝑣2
𝑤𝑤6 = 𝑁𝑁1𝑤𝑤1 + 𝑁𝑁2𝑤𝑤2

�
𝑢𝑢7 = 𝑁𝑁2𝑢𝑢2 + 𝑁𝑁3𝑢𝑢3
𝑣𝑣7 = 𝑁𝑁2𝑣𝑣2 + 𝑁𝑁3𝑣𝑣3
𝑤𝑤7 = 𝑁𝑁2𝑤𝑤2 + 𝑁𝑁3𝑤𝑤3

�
𝑢𝑢8 = 𝑁𝑁1𝑢𝑢1 + 𝑁𝑁3𝑢𝑢3
𝑣𝑣8 = 𝑁𝑁1𝑣𝑣1 + 𝑁𝑁3𝑣𝑣3
𝑤𝑤8 = 𝑁𝑁1𝑤𝑤1 + 𝑁𝑁3𝑤𝑤3

 ( 2.2 ) 

where 𝑢𝑢, 𝑣𝑣, and 𝑤𝑤 represent the displacements along the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axes, respectively. Throughout the 
subsequent derivations, it is assumed that the slave nodes are positioned at the exact midpoint 
coordinates of the shared edges, maintaining an equal distance from their associated master nodes (𝑁𝑁𝑖𝑖 =
1
2; for 𝑖𝑖 = 1,2,3). Equation (2.2) illustrates a set of constraints that are well-suited to be expressed in the 
following generic form: 

{𝒖𝒖} = [𝑻𝑻]{𝒖𝒖�} ( 2.3 ) 

where {𝒖𝒖} and {𝒖𝒖�} represent displacement vectors, each with 𝑛𝑛𝑑𝑑 and (𝑛𝑛 − 𝑠𝑠)𝑑𝑑 components, respectively. 
It is important to note that {𝒖𝒖�} is the same as {𝒖𝒖} but excludes the displacements associated with slave 
nodes. Meanwhile, [𝑻𝑻] is an 𝑛𝑛𝑑𝑑 × (𝑛𝑛 − 𝑠𝑠)𝑑𝑑 matrix containing the constraint equations that represent the 
response of slave nodes concerning that of master nodes, as defined in Equation 2.2.  

To construct [𝑻𝑻], begin by creating an identity matrix with dimensions 𝑛𝑛𝑑𝑑 × 𝑛𝑛𝑑𝑑. Then, eliminate the 
columns associated with degrees of freedom of slave nodes, resulting in a matrix of dimensions 𝑛𝑛𝑑𝑑 × (𝑛𝑛 −
𝑠𝑠)𝑑𝑑. Denoting 𝑖𝑖 ∈ {1,2,3, … , 𝑛𝑛𝑑𝑑}, and 𝑘𝑘 and 𝑙𝑙 as the degrees of freedom associated with slave and master 
nodes:  
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𝑇𝑇𝑖𝑖𝑖𝑖 =
1
2 ;      𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑘𝑘 𝑎𝑎𝑛𝑛𝑑𝑑 𝑗𝑗 = 𝑙𝑙   ( 2.4 ) 

Substituting Equation (2.3) into Equation (2.1) and multiplying [𝑻𝑻]𝑇𝑇 to the resulting expression yields: 

�𝑲𝑲��{𝒖𝒖�} = �𝒇𝒇��;          �𝑲𝑲�� = [𝑻𝑻]𝑇𝑇[𝑲𝑲][𝑻𝑻]     and      �𝒇𝒇�� = [𝑻𝑻]𝑇𝑇{𝒇𝒇} ( 2.5 ) 

where �𝑲𝑲�� is a reduced (𝑛𝑛 − 𝑠𝑠)𝑑𝑑 × (𝑛𝑛 − 𝑠𝑠)𝑑𝑑 stiffness matrix that ensures positive definiteness if [𝑲𝑲] is 
positive definite. Solving Equation (2.5) under the imposed boundary conditions yields the unknown 
components of {𝒖𝒖�} and �𝒇𝒇��. Then, Equation (2.3) can be utilized to find {𝒖𝒖}. 

Alternatively, local constraint matrices, [𝑻𝑻]𝑙𝑙𝑙𝑙𝑙𝑙, can be calculated solely within buffer elements and not on 
the globally assembled mesh. Subsequently, the reduced stiffness, �𝑲𝑲��𝑙𝑙𝑙𝑙𝑙𝑙, and force vector, �𝒇𝒇��𝑙𝑙𝑙𝑙𝑙𝑙, are 
constructed and then assembled with the regular elements existing in the meshed domain. This 
approach, which yields the same result, is flexible and can be rigorously implemented for other classes of 
elements (e.g., joints, structural elements, etc.) and is employed in RS3. 

As demonstrated in the derivations, the implementation of the master-elimination approach in hybrid 
meshing is highly straightforward. This approach benefits not only from positive definiteness but also 
results in a reduced system of equations smaller than those of the first three approaches. Similar to the 
Lagrange multiplier adjunction, the constraints are precisely embedded in the solution. As mentioned 
earlier, the hybrid formulations used in RS3 for steady-state and transient flow, coupled hydromechanical 
analysis, dynamic analysis, and the utilization of features such as joints and structural elements in the 
models are all comparable to the formulation presented above for deformable solids, with slight 
differences in their governing equations and stiffness and vector calculations. 
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