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Introduction 

Plate element formulations can be based on either the classical Kirchhoff thin plate theory or the Mindlin-

Reissner plate theories. The Kirchhoff theory, which extends the Euler-Bernoulli beam theory to plates, 

neglects transverse shear deformations and requires at least C1 continuity, meaning that higher-order 

elements are necessary. In contrast, the Mindlin theory accounts for transverse shear effects, similar to the 

Timoshenko theory for beams, and can use C0 continuity for lateral displacements and two independent 

rotations (Cook et al., 1989). Because RS3 employs 3-noded and 6-noded plate elements, the Mindlin 

elements are used to take advantage of these properties. In the following section, RS3’s Mindlin element 

formulation is presented.  
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1. Linear Momentum and Weak Form Equations 

The balance of linear momentum (equilibrium equations) for plates begins with the following generalized 

three-dimensional field equations subject to relevant Dirichlet and Neumann boundary conditions 

𝜵 · 𝝈 + 𝜌𝒈 − 𝜌𝒖̈ = 𝟎     in     𝛺 = (𝜕𝛺𝑡⋃𝜕𝛺𝑢) ∈ ℝ3 (1) 

where 𝛺 is the spatial domain, 𝜵 · 𝝈 = 𝜎𝑖𝑗,𝑗 = 𝜕𝜎𝑖𝑗 𝜕𝑥𝑗⁄ , 𝜌 is the density, 𝒈 denotes the vector of gravitational 

acceleration, and 𝒖̈ is the acceleration (𝒖 is the displacement). Neglecting tractions on the Neumann 

boundary (𝜕𝛺𝑡) and acceleration in the spatial domain “for convenience and simplicity in presenting the 

equations”, the Voigt notation of the weak form of equation (1), using the Galerkin method and considering 

infinitesimal deformations, leads to 

𝜓({𝒖}, {𝛿𝒖}) = ∫ ({𝛿𝜺}𝑇{𝝈} − 𝜌{𝛿𝒖}𝑇{𝒈})𝑑𝛺
 

𝛺

= 0 (2) 

where {𝛿𝒖}𝑇 = {𝛿𝑢(𝑥, 𝑦, 𝑧), 𝛿𝑣(𝑥, 𝑦, 𝑧), 𝛿𝑤(𝑥, 𝑦, 𝑧)} is the variation of displacements in 𝑥, 𝑦, and 𝑧 directions, 

and 

{𝛿𝜺}𝑇 = {𝛿𝜀𝑥𝑥 , 𝛿𝜀𝑦𝑦, 𝛿𝜀𝑧𝑧, 𝛿𝛾𝑥𝑦 , 𝛿𝛾𝑥𝑧 , 𝛿𝛾𝑦𝑧};    {𝝈}𝑇 = {𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜎𝑧𝑧, 𝜏𝑥𝑦 , 𝜏𝑥𝑧 , 𝜏𝑦𝑧}  

 

2. Mindlin Plate: Kinematics and Kinetics 

Assuming (𝑥, 𝑦, 𝑧) as the local Cartesian coordinate system, where 𝑧 is perpendicular to the flat Mindlin 

plate with thickness 𝑡, the domain of interest, 𝛺, is specified as 

𝛺 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3| 𝑧 ∈ [− 𝑡 2⁄ , 𝑡 2⁄ ] & (𝑥, 𝑦) ∈ ℝ2} (3) 

The kinematics of Mindlin plates require the lateral deformation, 𝑤, to be independent of the 𝑧-direction, 

and the normal vector to the surface 𝑧 = 0 remains straight but not necessarily perpendicular after 

deformation occurs (Owen and Hinton, 1980). Accordingly, the vector of displacement {𝒖} is 

{𝒖}𝑇 = {𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧), 𝑤(𝑥, 𝑦, 𝑧)} = {−𝑧𝜃𝑥(𝑥, 𝑦), −𝑧𝜃𝑦(𝑥, 𝑦), 𝑤(𝑥, 𝑦)} (4) 

where 𝜃𝑥 and 𝜃𝑦 are the rotations of the normal vector to the surface 𝑧 = 0 in the 𝑥𝑧 and 𝑦𝑧 planes, 

respectively. 

In Mindlin plates, the normal stress 𝜎𝑧𝑧 is assumed to be zero, and the vector {𝝈} is described by five 

components. Additionally, the vector {𝝈} can be decomposed into flexural-shear and membrane stresses 

as given 

{𝝈}𝑇 = {{𝝈𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙}
𝑇
, {𝝈𝑠ℎ𝑒𝑎𝑟}

𝑇} + {𝝈𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒}
𝑇 (5) 

where 

{𝝈𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒}
𝑇 = {𝝈𝑚}𝑇 = {𝜎𝑥𝑥

𝑚 , 𝜎𝑦𝑦
𝑚 , 0,0,0} 

{𝝈𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙}
𝑇

= {𝝈𝑓}
𝑇

= {𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜏𝑥𝑦} 

{𝝈𝑠ℎ𝑒𝑎𝑟}
𝑇 = {𝝈𝑠}

𝑇 = {𝜏𝑥𝑧 , 𝜏𝑦𝑧} 
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In equation (5), the superscript “𝑚” denotes the membrane stress components, while the stress components 

without a superscript correspond to the flexural-shear counterparts. Since 𝑤 is independent to 𝑧 (equation 

(4)), 𝛿𝜀𝑧𝑧 is equal to zero. Therefore, the vector {𝛿𝜺} can be restated as 

{𝛿𝜺}𝑇 = {{𝛿𝜺𝑓}
𝑇
, {𝛿𝜺𝑠}

𝑇} (6) 

where 

{𝛿𝜺𝑓}
𝑇

= {𝛿𝜀𝑥𝑥, 𝛿𝜀𝑦𝑦, 𝛿𝛾𝑥𝑦} 

{𝛿𝜺𝑠}
𝑇 = {𝛿𝛾𝑥𝑧 , 𝛿𝛾𝑦𝑧} 

 

Using the kinematics expressed in equation (4), {𝛿𝜺𝑓} and {𝛿𝜺𝒔} are 

{𝛿𝜺𝑓}
𝑇

= 𝑧{−𝜕(𝛿𝜃𝑥) 𝜕𝑥⁄ , − 𝜕(𝛿𝜃𝑦) 𝜕𝑦⁄ , −(𝜕(𝛿𝜃𝑥) 𝜕𝑦⁄ + 𝜕(𝛿𝜃𝑦) 𝜕𝑥⁄ )} = 𝑧{𝛿𝜺̂𝑓}
𝑇
 

{𝛿𝜺𝒔}
𝑇 = {(𝜕(𝛿𝑤) 𝜕𝑥⁄ ) − 𝛿𝜃𝑥, (𝜕(𝛿𝑤) 𝜕𝑦⁄ ) − 𝛿𝜃𝑦} 

(7) 

 

3. Mindlin Plate: Weak Form Equations 

To obtain the weak-form equation for Mindlin plates, equations (5,6) can be inserted into equation (2), 

resulting in  

𝜓({𝒖}, {𝛿𝒖}) = ∫ ∫ ∫ (𝑧{𝛿𝜺̂𝑓}
𝑇
{𝝈𝑓} + {𝛿𝜺𝑠}

𝑇{𝝈𝑠} + {𝛿𝜺}𝑇{𝝈𝑚} − 𝜌{𝛿𝒖}𝑇{𝒈}) 𝑑𝑧𝑑𝑦𝑑𝑥
 𝑡/2

−𝑡/2

 

𝑦

 

𝒙

= 0 (8) 

Using equation (4) and integrating along the 𝑧-direction, equation (8) leads to  

𝜓({𝒖}, {𝛿𝒖}) = ∫ ∫({𝛿𝜺̂𝑓}
𝑇
{𝑴} + {𝛿𝜺𝑠}

𝑇{𝑸} − {𝛿𝒖}𝑇{𝒒}) 𝑑𝑦𝑑𝑥
 

𝑦

 

𝒙

 

+∫ ∫ ∫ {𝛿𝜺}𝑇{𝝈𝑚}𝑑𝑧𝑑𝑦𝑑𝑥
 𝑡/2

−𝑡/2

 

𝑦

 

𝒙

= 0 

(9) 

where {𝑴}, {𝑸}, and {𝒒} are the bending moments, shear forces, and lateral distributed loads acting on the 

plate which are defined as  

{𝑴}𝑇 = {𝑀𝑥𝑥 , 𝑀𝑦𝑦 , 𝑀𝑥𝑦} = ∫ 𝑧{𝝈𝑓}
𝑇
𝑑𝑧

 𝑡/2

−𝑡/2

 

{𝑸}𝑇 = {𝑄𝑥 , 𝑄𝑦} = ∫ {𝝈𝑠}
𝑇𝑑𝑧

𝑡/2

−𝑡/2

 

{𝒒}𝑇 = ∫ 𝜌{𝒈}𝑇𝑑𝑧
𝑡/2

−𝑡/2

 

(10) 
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4. Mindlin Plate: Constitutive Equations 

Rate-independent constitutive equations relating changes in stresses to changes in infinitesimal strains are 

used for Mindlin plates. For isotropic elastic materials, these equations are as follows. 

The constitutive equations for isotropic elastic Mindlin plates require defining the relationships between the 

flexural, shear, and membrane stresses and their corresponding strain measures. This begins by applying 

Hooke's law for isotropic elastic materials. By omitting the zero component 𝛿𝜎𝑧𝑧 from the rate-form 

constitutive equation, and considering that 𝑤 is independent to the 𝑧-driection (i.e. 𝛿𝜀𝑧𝑧 = 0; refer to 

equation (4)), the general constitutive relation for stresses is    

{𝛿𝝈} = [𝔻]{𝛿𝜺} (11) 

where 

[𝔻] =
𝐸

1 − 𝜈2

[
 
 
 
 
1
𝜈
0
0
0

𝜈
1
0
0
0

0
0

(1 − 𝜈)/2
0
0

0
0
0

(1 − 𝜈)/2
0

0
0
0
0

(1 − 𝜈)/2]
 
 
 
 

 (12) 

where 𝐸 and 𝜈 are Young’s modulus and Poisson’s ratio. Accordingly, the constitutive equation for the 

change in membrane stress is as follows 

{𝛿𝝈𝑚} = [𝔻𝑚]{𝛿𝜺} (13) 

where  

[𝔻𝑚] =
𝐸

1 − 𝜈2

[
 
 
 
 
1
𝜈
0
0
0

𝜈
1
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0]
 
 
 
 

 (14) 

In order to obtain the constitutive relations for the flexural and shear stresses, the changes in {𝝈𝑓} and {𝝈𝑠}  

in equation (8) can be analyzed using the general constitutive equation (11) and the kinematic relation (6). 

Accordingly, the first two terms of equation (8) are 

∫ ∫ ∫ (𝑧{𝛿𝜺̂𝑓}
𝑇
{𝛿𝝈𝑓} + {𝛿𝜺𝑠}

𝑇{𝛿𝝈𝑠}) 𝑑𝑧𝑑𝑦𝑑𝑥
 𝑡/2

−𝑡/2

 

𝑦

 

𝒙

= ∫ ∫ ∫ (𝑧{𝛿𝜺̂𝑓}
𝑇
[𝔻𝑓]{𝛿𝜺𝑓} + {𝛿𝜺𝑠}

𝑇[𝔻𝑠]{𝛿𝜺𝑠}) 𝑑𝑧𝑑𝑦𝑑𝑥
 𝑡/2

−𝑡/2

 

𝑦

 

𝒙

 

(15) 

where  

[𝔻𝑓] =
𝐸

1 − 𝜈2
[
1 𝜈 0
𝜈 1 0
0 0 (1 − 𝜈)/2

] 

[𝔻𝑠] =
𝐸

1 − 𝜈2
[
(1 − 𝜈)/2 0

0 (1 − 𝜈)/2
] 

(16) 

The terms in equation (15) can be further studied by substituting equation (7) into equation (15), which 

yields 
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∫ ∫ ({𝛿𝜺̂𝑓}
𝑇
(∫ 𝑧2[𝔻𝑓]𝑑𝑧

𝑡/2

−𝑡/2

) {𝛿𝜺̂𝑓} + {𝛿𝜺𝑠}
𝑇 (∫ [𝔻𝑠]𝑑𝑧

𝑡/2

−𝑡/2

) {𝛿𝜺𝑠}) 𝑑𝑦𝑑𝑥
 

𝑦

 

𝒙

 (17) 

By drawing an analogy between equations (17) and (9), it can be observed that 

{𝛿𝑴} = [𝔻𝑀]{𝛿𝜺̂𝑓} 

{𝛿𝑸} = [𝔻𝑄]{𝛿𝜺𝑠} 

(18) 

(19) 

where  

[𝔻𝑀] = ∫ 𝑧2[𝔻𝑓]𝑑𝑧
𝑡/2

−𝑡/2

=
𝐸𝑡3

12(1 − 𝜈2)
[
1 𝜈 0
𝜈 1 0
0 0 (1 − 𝜈)/2

] 

[𝔻𝑄] = ∫ [𝔻𝑠]𝑑𝑧
𝑡/2

−𝑡/2

=
𝐸𝑡𝑘𝑠

1 − 𝜈2
[
(1 − 𝜈)/2 0

0 (1 − 𝜈)/2
] 

(20) 

Analytically, 𝑘𝑠 equals one. However, RS3 uses a value of 5/6, which is commonly adopted in the literature 

(e.g., Batoz et al., 1980). 

 

5. Mindlin Plate: Weak form Linearization 

Using the three constitutive equations (13,17,18) of the rate-form stress-strain relationships of the Mindlin 

plates, linearization of the Mindlin plate’s weak form equation (9) is as follows 

𝜓𝑖({𝒖}, {𝛿𝒖}) + 𝛿𝜓 = 0 (21) 

where 

𝛿𝜓 = ∫ ∫({𝛿𝜺̂𝑓}
𝑇
[𝔻𝑀]{𝛿𝜺̂𝑓} + {𝛿𝜺𝑠}

𝑇[𝔻𝑄]{𝛿𝜺𝑠} + 𝑡{𝛿𝜺}𝑇[𝔻𝑚]{𝛿𝜺}) 𝑑𝑦𝑑𝑥
 

𝑦

 

𝒙

 (22) 
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