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4. Drucker-Prager Material Model 

This model is intended to model cohesive geological materials that exhibit pressure-dependent yield, such 

as soils and rocks. The shear yield surface of this model is (e.g., Owen and Hinton 1980, Simo and Hughes 

1998): 

𝐹𝑠 = √𝐽2 + 𝑞𝜙
𝐼1

3
− 𝑘𝜙 = 0     (0.1) 

 

𝑞𝜙 and 𝑘𝜙 are material properties and RS2 and RS3 accept peak values and residual values for these two 

parameters. This means that after the initial yielding the strength of the material instantly drops from its 

peak state to a lower residual state. The Drucker-Prager model in RS2 and RS3 is an elasto-brittle-plastic 

material model in general. In the case where the residual values are the same as peak values the behavior 

is elasto-perfect-plastic. 

The mechanical behavior of a material that is modelled with Drucker-Prager model includes features such 

as: 

• Isotropic shear strength (peak and residual) that has cohesive-frictional characteristic, and 

increases linearly with the level of stress/confinement  

• Tensile strength (by using a tension cutoff yield function) 

• Dilation (increase in volume) or critical state (constant volume) at failure  

• Shear strength that is independent of Lode’s angle 

 

The plastic potential function has the same form as the yield surface 

 

𝑄𝑠 = √𝐽2 + 𝑞𝜓
𝐼1

3
= 𝑐𝑜𝑛𝑠𝑡.     (0.2) 

 

where 𝑞𝜓 is the dilation parameter.  This parameter should be less than or equal to 𝑞𝜙 which makes the 

flow rule non-associated or associated respectively.  

The dialog for defining this constitutive model is shown in Figure 4.1. Sample stress paths of drained and 

undrained triaxial compression tests that could be simulated with this model are presented in Figure 4.2 

and 4.3. All the tests start form a hydrostatic confinement of 𝑝 = 𝑝′ = 100 kPa.  
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Figure 4.1. Dialog for defining Drucker-Prager model 

 

 

Figure 4.2. Stress paths of drained triaxial tests on materials with Drucker-Prager constitutive model 

 

Stress paths of the drained tests include variations of axial stress and volumetric strain with increasing axial 

strain, variation of deviatoric stress with deviatoric strain and the stress path in p-q plane. The yield surface 
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is also shown in the p-q plane. The simulated behavior is an elasto-perfect plastic behavior. The dilation 

effect is illustrated in the variation of volumetric strain with axial strain.  

Stress paths of the undrained tests include the variation of axial stress and pore water pressure with 

increasing axial strain, variation of deviatoric stress with deviatoric strain and the stress path in p-q plane. 

The yield surface is also shown in the p-q plane. The dilation effect is illustrated in the plot of the stress 

path in p-q plane that also include the yield surface. The generation of negative pore water pressure in 

material with dilation leads to the increase in the effective mean stress, as the stress path lays on the yield 

surface and follows it to higher levels of deviatoric stress.    

The yield surface of this model is a line in 2D stress space as shown in Figures 4.2 and 4.3 and has a 

conical shape in 3D stress space as presented in Figure 4.4. The definition of yield surface does not include 

the Lode’s angle and thus the projection of this yield surface in Π plane, with normal direction being the 

stress space diagonal, is independent of this stress invariant and is a complete circle. 

 

 

Figure 4.3. Stress paths of undrained triaxial tests on materials with Drucker-Prager constitutive model 
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Figure 4.4. Yield surface of Drucker-Prager model in 3D stress space 

 

The model also accepts a tension cutoff. The yield surface of the tension cut off is 

 

𝐹𝑇 = 𝜎3 − 𝑇 = 0       (0.3) 

 

In above 𝑇 is the tensile strength of the material.  The flow rule for tensile failure is associated. 
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