

RSPile

Steel Pile for Slope Stabilization in Multi-layer Soil

Verification Manual

Table of Contents

1.	Stee	el Pile for Slope Stabilization in Multi-layer Soil	3
	1.1.	Introduction	3
	1.2.	Introduction	7
	1.3.	Results	7
	1.4.	References	8
	1.5.	Data Files	8

1. Steel Pile for Slope Stabilization in Multi-layer Soil

1.1. Introduction

This problem examines a steel pipe pile embedded into multi-layer soil for slope stabilization. The problem will analyze the axial force and shear in the pile when subjected to a uniform soil displacement of 25 mm from the ground to the slip surface intersection as shown in Figure 1-1. The assumed slip surface intersects the pile at 5 degrees to the horizontal which is also taken as the direction of applied soil displacement. The axial force and shear in response to an applied displacement can be taken as the axial and lateral resistance of the pile against sliding. The soil profile along the pile is presented in Figure 1-2. The results from **RSPile** are compared to commercial pile analysis software *TZPile* [1] and *LPile* [2].

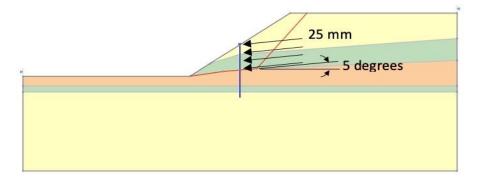
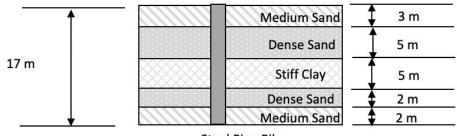



Figure 1.1: Slide model of steel pipe pile subjected to a uniform soil displacement of 25 mm

The pile properties are presented in the following Table 1-1.

Table 1.1:	Pile	Properties
------------	------	------------

Parameter	Value
Young's modulus (<i>E</i>)	200 GPa
Pile Outer Diameter	0.61 m
Pipe Wall Thickness	0.02 m
Embedment Length	17 m

Conventional soil models are different for axially and laterally loaded piles although they may share similar properties. The soil properties for medium sand in the first and fifth layer are presented in Table 1-2.

Parameter	Value			
General Properties				
Unit Weight	18 kN/m ³			
Friction Angle	30 degrees			
Axially Loaded Piles				
Soil Type	API Sand			
Coefficient of Lateral Earth Pressure	0.8			
Bearing Capacity Factor	35			
Laterally Loaded Piles				
Soil Type	Sand			
Coefficient of soil reaction (k_{py}) (elastic portion of p-y curve)	16300 kN/m ³			

Table 1.2: Medium Sand Soil Properties

The soil properties for dense sand in the second and fourth layer is presented in Table 1-3. The t-z curve is presented in Table 1-4 and Figure 1-3 and the p-y curve is presented in Table 1-5 and Figure 1-4.

Table 1.3	3: Dense	Sand	Soil	Properties
-----------	----------	------	------	------------

Parameter	Value			
General Properties				
Unit Weight	20 kN/m ³			
Axially Loaded Piles				
Soil Type	User Defined			
Ultimate Unit Skin Friction	150 kPa			
Ultimate End Bearing Resistance	0 kN			
Laterally Loaded Piles				
Soil Type	User-Defined			

Soil displacement (m)	Unit Skin Friction (τ) / Ultimate Unit Skin Friction (τ _{ult})		
0	0		
0.000287	0.4		
0.000476	0.6		
0.000561	0.675		
0.000695	0.76		
0.000854	0.83		
0.0011	0.9		
0.0014	0.935		
0.00174	0.965		
0.00195	0.972		
0.00305	1		
∞	1		

Table 1.4: Load-transfer (t-z) curve for skin friction

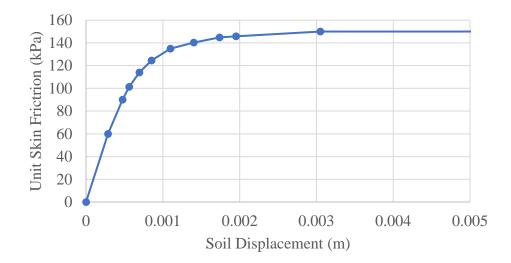


Figure 1.3: Load transfer (t-z) curve for skin friction

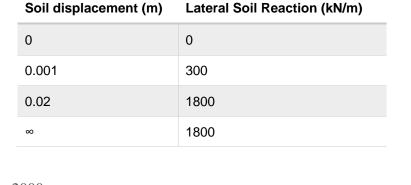


Table 1.5: Load-transfer (p-y) curve for lateral soil reaction

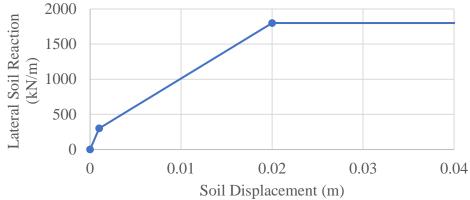


Figure 1.4: Load transfer (p-y) curve for lateral soil reaction

The soil properties for stiff clay in the third layer are presented in Table 1-6.

Parameter	Value			
General Properties				
Unit Weight	17 kN/m ³			
Undrained Shear Strength	80 kPa			
Axially Loaded Piles				
Soil Type	API Clay			
Remolded Shear Strength	60 kPa			
Laterally Loaded Piles	aterally Loaded Piles			
Soil Type	Dry Stiff Clay			
Strain Factor (E50)	0.007			

Table	1.6^{-1}	Stiff	Clav	Soil	Properties
rabie	1.0.	Jun	Clay	001	i ioperties

1.2. Introduction

To compute the pile resistance, the axial and lateral components are computed separately. For a slip surface intersection at 5 degrees above the horizontal, the axial and lateral components of the applied displacement are 2.18 mm and 24.91 mm respectively, as shown in Figure 1-5. The resultant force of the axial and lateral resistance is the pile resistance.

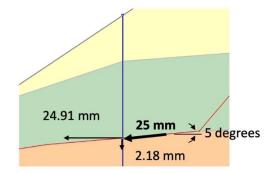


Figure 1.5: Components of the applied displacement to compute axial and lateral resistance

1.3. Results

Figure 1-6 shows the load distribution throughout the pile subjected to an applied displacement of 25 mm at 5 degrees to the horizontal. The results from **RSPile** compare well with *TZPile* [1] and *LPile* [2].

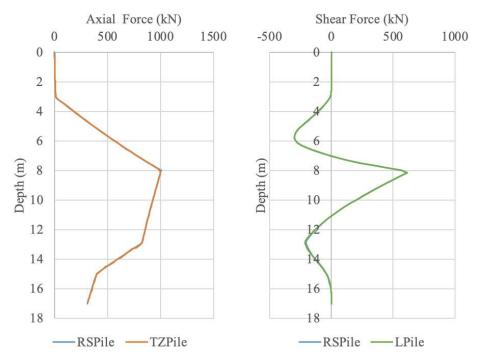


Figure 1.6: Pile load distribution for a sliding depth of 8 m

The axial and lateral resistance at a sliding depth of 8 m are 1003 kN and 582 kN respectively. The resultant pile resistance is 1160 kN.

1.4. References

- 1. Ensoft, Inc. TZPile. Computer software. Vers. 2014.3.2. Ensoft, Inc., 21 Jan. 2015.
- 2. Ensoft, Inc. LPile. Computer software. Vers. 2013-7.007. Ensoft, Inc., 24 Oct. 2013.

1.5. Data Files

The input data file *Verification 001 (Steel Pile for Slope Stabilization in Multi-layer Soil).rspile* can be found in the installation folder.