

RocFall2

Simplified Input Parameters for Fragmentation Analysis

Theory Manual

Table of Contents

Introduction			3	
1.	Der	ivation of the Weibull parameters from simplified input parameters	4	
	1.1.	Workflow for Simplified Fragmentation Input Parameters	4	
	1.2.	Formula used for Force and derivation of the Work from tensile strength and young modulus	4	
	1.3.	Weibull fitting	6	
R	efere	nces	7	

Introduction

The original fragmentation module proposed by Guccione et al. (2025) requires six input parameters for the rock block, four of which are estimated from Brazilian tensile tests (BT):

- Specimen diameter
- Critical force
- Weibull shape factor for force
- Critical work
- · Weibull shape factor for work

and one from unconfined compression tests (UCS):

• E_i (Secant modulus).

Additionally, two optional parameters—Mode I fracture toughness and E_i (Tangent modulus)—are used to estimate energy loss during fragmentation.

In RocFall2, these original parameters are input via Rock Type Library > Fragmentation tab > Advanced entry form. The Advanced entry form can only be accessed by enabling Advanced rock type entry under Project Settings.

Rather than requiring the user to input all aforementioned parameters, a simplified methodology was developed because the distribution of force and work required to break discs in BT are rarely reported in standard laboratory results. The **Simplified entry form** is the default input form in the **Rock Type Library**. This simplified approach estimates the four Weibull parameters (critical force, Weibull shape factor for force, critical work, and Weibull shape factor for work) using only:

- Specimen diameter (mean and standard deviation)
- Tensile strength (mean and standard deviation)
- E_i (Intact secant modulus, mean and standard deviation)

These steps are performed internally in **RocFall2**. The two optional parameters for energy-loss estimation are not included in the simplified version.

Verification of this methodology is reported in the Verification Manual.

1. Derivation of the Weibull parameters from simplified input parameters

[RocFall2 Build 8.027]

1.1. Workflow for Simplified Fragmentation Input Parameters

The workflow can be summarized as follow:

1. Monte Carlo Sampling

Generate 100,000 random normal samples for the three input variables:

- Specimen diameter (mean and standard deviation)
- o Tensile strength (mean and standard deviation)
- \circ E_i (Secant modulus, mean and standard deviation)

2. Compute Force and Work Distributions

For each sample, apply:

- o The standard formula for tensile strength in Brazilian tests
- o A theoretical formula to estimate disc displacement during indirect tensile tests.

These calculations yield distributions of **force** and **work** required to break a disc.

3. Fit Weibull Distributions

Use the simulated force and work data to fit Weibull distributions, obtaining:

- Critical force and its shape factor
- o Critical work and its shape factor

1.2. Formula used for Force and derivation of the Work from tensile strength and young modulus

The tensile strength in Brazilian tests (σ_t) is given by the ISRM standard (1978):

$$\sigma_t = \frac{2F_{BT}}{\pi dh}$$

Where F_{BT} is the failure load, and d and h are the diameter and thickness, respectively.

Assuming h = d/2, the force at failure becomes:

$$F_{BT} = \frac{\sigma_t \pi d^2}{4}$$

The work required to break the disc (W_{BT}) is the integral of the force F_{BT} over the displacement δ_{BT} :

$$(1-3) W_{BT} = \int F_{BT} d\delta_{BT}$$

Substituting (1-2):

(1-4)
$$W_{BT} = \int \sigma_t \frac{\pi d^2}{4} d\delta_{BT} = \frac{\pi d^2}{4} \int \sigma_t d\delta_{BT}$$

Hertzian contact theory provides the total deformation when a disc is compressed against a flat surface The total deformation $\delta_{BT(d)}$ for a disc compressed between steel platens can be expressed (modified from Japaridze L. 2015):

(1-5)
$$\delta_{BT(d)} = \frac{4 F_{BT(d)} (1 - v_b^2)}{\pi Y_b h} \left[0.41 + \ln(2d) - 0.5 \ln \left(\frac{2 d F_{BT(d)}}{\pi h \tilde{Y}_{bst}} \right) \right]$$

Where:

- Y_m is the elastic modulus of the rock;
- v_h is the Poisson's ratio of the rock; assumed equal to 0.3;
- \tilde{Y}_{bst} is an equivalent modulus for the rock-steel platen system defined as:

(1-6)
$$\frac{1}{\tilde{Y}_{bst}} = \left(\frac{1 - v_b^2}{Y_b} + \frac{1 - v_{st}^2}{Y_{st}}\right)$$

 Y_b and Y_{st} are the elastic moduli of the rock and steel platens (equal to 210 GPa), respectively; v_b and v_{st} (equal to 0.3) are the Poisson's ratios of the rock and steel platens, respectively.

Expressing $\delta_{BT(d)}$ in terms of σ_t (details omitted for brevity):

(1-7)
$$\delta_{BT(d)} = 2d\sigma_t \frac{1 - v_b^2}{Y_b} \left(0.41 + \ln 2 - 0.5 \ln \frac{\sigma_t}{\tilde{Y}_{bst}} \right)$$

And then differentiating:

(1-8)
$$d\delta_{BT(d)} = 2d \frac{1 - v_b^2}{Y_b} \left(0.6 - 0.5 \ln \frac{\sigma_t}{\tilde{Y}_{hst}} \right) d\sigma_t$$

An explicit expression of the work as a function of the simplified input parameters (specimen diameter, tensile strength, and the young modulus) can be obtained by substituting equation (1-8) into equation (1-4):

(1-9)
$$W_{BT} = \pi d^3 \frac{1 - v_b^2}{Y_b} \frac{\sigma_t^2}{2} \left(0.16 + \ln 2 - 0.5 \ln \frac{\sigma_t}{\tilde{Y}_{bst}} \right)$$

1.3. Weibull fitting

Once the simulated force and work data are obtained, the Weibull fitting is computed to obtain the critical and shape factors. The critical value (F_{BT}^{cr} or W_{BT}^{cr}) corresponds to a survival probability equal to $1/e \sim 37\%$; and the shape parameter (m_{BT-F} or m_{BT-W}) corresponds to the slope of the central part of the Weibull distribution, which increases with decreasing of variability.

$$SP(F_{BT}) = e^{-\left(\frac{F_{BT}}{F_{BT}^{CT}}\right)^{m_{BT}-F}}$$

(1-11)
$$SP(W_{BT}) = e^{-\left(\frac{W_{BT}}{W_{BT}^{cT}}\right)^{m_{BT-W}}}$$

More details of the effect of Weibull parameters and other parameters on the fragmentation module can be found in Guccione et al 2021a, 2021b and 2022.

References

Guccione DE, Barros G, Thoeni K, Huang Z, Giacomini A, Buzzi O (2025). A new stochastic rockfall fragmentation approach for lumped mass simulations. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-025-04743-x

Guccione DE, Buzzi O, Thoeni K, Fityus S, Giacomini A (2021a) Predicting the fragmentation survival probability of brittle spheres upon impact from statistical distribution of material properties. Int J Rock Mech Min Sci. 142:104768. https://doi.org/10.1016/j.ijrmms.2021.104768

Guccione D.E., Buzzi O., Thoeni K., Fityus S., Butcher C., Giacomini A. (2021b). Sensitivity analysis of a new model to predict the survival probability of artificial rock blocks upon dynamic impact. EUROCK 2021.

Guccione DE, Buzzi O, Thoeni K, Giacomini A, Fityus S (2022) Practical considerations for the application of a survival probability model for rockfall. Aust Geomech J 57(2):115–129

ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr. 15(3):99–103. https://doi.org/10.1016/0148-9062(78)90003-7

Japaridze L. Stress-deformed state of cylindrical specimens during indirect tensile strength testing. *J Rock Mech Geotech Eng.* 2015;7(5): 509-518. https://doi.org/10.1016/j.jrmge.2015.06.006