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1. RocFall2 Lump Mass Analysis Verification 

This document presents several lump mass rockfall examples, which have been used as verification 

problems for RocFall2. RocFall2 is a 2D statistical analysis program designed to assist with assessment 

of slopes at risk for rockfalls. 

The results produced by RocFall2 agree very well with the documented examples and confirm the 

reliability of RocFall2 results.  
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1.1. RocFall2 Verification Problem #1 – Projectile  

[RocFall2 Build 8.007] 

1.1.1. Problem Description 

The purpose of this verification is to confirm that the projectile algorithm used by the program is working 

correctly. The projectile algorithm calculates the motion of the rocks while they are travelling through the 

air, bouncing from one point on the slope to another. The vast majority of the simulation time in RocFall2 

takes place in the projectile algorithm. 

Any errors in the projectile algorithm would surely produce incorrect results. Therefore, it is essential that 

the projectile algorithm work correctly. 

The example consists of a slope with two benches and a single rock that begins its travel at the crest of 

the slope. The rock was given an initial velocity and bounced a number of times before coming to rest at 

the base of the slope. The initial velocity for the rock was chosen so that the rock would follow a distinct 

path (high and clearly above the slope) and so that the rock would have enough energy so that each of 

the impacts would occur on a different segment of the slope. This velocity does not necessarily reflect 

typical initial velocities that are used in rockfall analyses. 

The slope was created by making minor modifications to the geometry of an actual slope profile. The 

geometry was modified so that the impacts would occur on slope segments with a positive slope, a 

negative slope, and a horizontal segment. This was done in order to verify that the projectile algorithm 

handles sign changes correctly. This verification also serves as a good example of the sign conventions 

that are used in the program. 

The slope geometry and the input parameters were configured so that no sliding would occur. No 

statistics were incorporated into this verification (i.e. only mean values were used, and all standard 

deviations were set to 0). Although rock trajectories in an actual simulation typically have dozens of steps, 

only the first four steps are followed here. This was done in the interest of brevity. 

The minimum velocity (𝑉𝑀𝐼𝑁) was set to 1 m/s. This minimum velocity was selected so that the simulation 

did not end before the four steps were complete. Other numbers used in this example (e.g. the mass of 

the rock) were selected primarily for their ease in manual calculations.  
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1.1.2. RocFall2 Analysis 

Slope Geometry and Material Properties 

The location of the slope vertices and the coefficients of restitution for each slope segment are presented 

in the following table: 

Table 1.1-1: Slope Geometry and Materials 

 X-Coordinate Y-Coordinate 
Normal Coefficient 

of Restitution 
𝑹𝑵 

Tangential 
Coefficient of 
Restitution 

𝑹𝑻 

Vertex 1 0 60   

Segment 1   0.5 0.8 

Vertex 2 7 39   

Segment 2   0.5 0.8 

Vertex 3 19 40   

Segment 3   0.5 0.8 

Vertex 4 26 22   

Segment 4   0.6 0.9 

Vertex 5 38 20   

Segment 5   0.6 0.9 

Vertex 6 46 0   

Segment 6   0.4 0.6 

Vertex 7 89 0   

 

Initial Conditions 

The rock starts at location 𝑋0 = 0 m, 𝑌0 = 60 m (which coincides with the first slope vertex). The rock was 

given an initial velocity of 𝑉𝑋0 = 7 m/s, 𝑉𝑌0 = 2 m/s and a mass of 10 kg. 

Enter the seeder and slope geometry values from Table 1.1-1 into RocFall2.  

Note: Ensure that Consider rotational velocity and both Scale Rn by Velocity and Scale Rn 

by Mass are unchecked under Project Settings. 
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The RocFall2 model looks like this: 

 

Figure 1.1-1: RocFall2 Rock Trajectory Model Results 

 

Figure 1.1-2: Rock Trajectory in Comparison Program 
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1.1.3. Analytical Solution 

Equations and Sample Calculations 

The projectile algorithm consists, mainly, of the process of determining the intersection between a 

parabola (the path the rock follows while it is in the air) and a line segment (one of the slope segments). 

The location of the parabola-line intersection is the roots of the quadratic equation: 

[
1

2
𝑔] 𝑡2 + [𝑉𝑌0 − 𝑞𝑉𝑋0]𝑡 + [𝑌0 − 𝑌1 + 𝑞(𝑋1 − 𝑋0)] = 0 

 

(1) 

Each step consists of determining the necessary parameters and solving the quadratic equation to find 

the intersection point. Once the intersection point is found, the impact is calculated. If the rock has 

enough velocity after the impact, as determined by a comparison to the minimum velocity (𝑉𝑀𝐼𝑁), another 

step is initiated. 

In the interest of brevity, the process of searching for the slope segment where the impact occurs has 

been left out of the verification. 

Step 1: 

The rock starts at location 𝑋0 = 0 m, 𝑌0 = 60 m (which coincides with the first slope vertex). The rock was 

given an initial velocity of 𝑉𝑋0 = 7 m/s, 𝑉𝑌0 = 2 m/s. The necessary parameters are determined, and the 

quadratic equation is solved to find the time of intersection with the second slope segment: 

𝑡 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

−(1.417) ± √(1.417)2 − 4(−4.90)(21.58)

2(−4.90)
≅ −1.959 𝑜𝑟 2.25 s 

 

(2) 

Where: 

𝑞 =
(𝑌2 − 𝑌1)

(𝑋2 − 𝑋1)
=

(40 − 39)

(19 − 7)
≅ 0.0833 

𝑎 =
1

2
𝑔 ≅ −4.90 

𝑏 = 𝑉𝑌0 − 𝑞𝑉𝑋0 = 2 − (0.0833)(7) ≅ 1.417 

𝑐 = 𝑌0 − 𝑌1 + 𝑞(𝑋1 − 𝑋0) = 60 − 39 + (0.0833)(7 − 0) ≅ 21.58 

𝑡 = -1.959 s is rejected because 𝑡 must lie in the range [0, ∞].  

The intersection point and pre-intersection velocity are found by substituting 𝑡 back into the following 

kinematic equations: 

𝑋𝐼 = 𝑉𝑋0𝑡 + 𝑋0 = (7)(2.25) + 0 = 15.732 𝑚 

 

(3) 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌0𝑡 + 𝑌0 =

1

2
(−9.81)(2.25)2 + (2)(2.25) + 60 = 39.728 m 

 

(4) 
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𝑉𝑋𝐵 = 𝑉𝑋0 = 7 
m

s
 

 

(5) 

𝑉𝑌𝐵 = 𝑉𝑌0 + 𝑔𝑡 = 2 + (−9.81)(2.25) = −20.0 
m

s
 

 

(6) 

The velocities are transformed into components normal and tangential to the slope segment: 

𝜃 = tan−1 𝑞 = tan−1(0.0833) = 4.77° (7) 

𝑉𝑁𝐵 = 𝑉𝑌𝐵 cos 𝜃 − 𝑉𝑋𝐵sin𝜃 = (−20.0) cos( 4.77) − (7) sin( 4.77) = −20.5 
m

s
 

 

(8) 

𝑉𝑇𝐵 = 𝑉𝑌𝐵 sin 𝜃 + 𝑉𝑋𝐵 cos 𝜃 = (−20.0) cos( 4.77) + (7) sin( 4.77) = 5.31 
m

s
 

 

(9) 

The impact velocities are calculated by multiplying by the normal and tangential velocities with its 

corresponding coefficients of restitution: 

𝑉𝑁𝐴 = 𝑅𝑁𝑉𝑁𝐵 = 0.5(−20.5) = −10.28 
m

s
 

 

(10) 

𝑉𝑇𝐴 = 𝑅𝑇𝑉𝑇𝐵 = 0.8(5.31) = 4.25 
m

s
 

 

(11) 

The velocities are transformed back into vertical and horizontal components: 

𝑉𝑋𝐴 = 𝑉𝑁𝐴 sin 𝜃 + 𝑉𝑇𝐴 cos 𝜃 = (−10.28) sin( 4.77) + (4.25) cos( 4.77) = 3.38 
m

s
 

 

(12) 

𝑉𝑌𝐴 = 𝑉𝑇𝐴 sin 𝜃 − 𝑉𝑁𝐴 cos 𝜃 = (4.25) sin( 4.77) − (−10.28) cos( 4.77) = 10.59 
m

s
 (13) 

Step 1 is complete. The velocity of the rock, after impact, is calculated: 

𝑉𝐶𝐻𝐸𝐶𝐾 = √𝑉𝑋𝐴
2 + 𝑉𝑌𝐴

2 = √(3.38)2 + (10.59)2 = 11.12 
m

s
 

(14) 

Since the velocity of the rock, 𝑉𝐶𝐻𝐸𝐶𝐾  (= 11.12 m/s) is greater than the minimum velocity, 𝑉𝑀𝐼𝑁  (= 1.0 m/s), 

the rock is still considered to be moving. Since the rock is still moving, the simulation must continue for at 

least one more step. 

Step 2: 

The final rock conditions for Step 1 are used as the initial conditions for Step 2. That is: 

𝑋0(𝑠𝑡𝑒𝑝2) = 𝑋𝐼(𝑠𝑡𝑒𝑝1) 

𝑌0(𝑠𝑡𝑒𝑝2) = 𝑌𝐼(𝑠𝑡𝑒𝑝1) 
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𝑉𝑋0(𝑠𝑡𝑒𝑝2) = 𝑉𝑋𝐴(𝑠𝑡𝑒𝑝1) 

𝑉𝑌0(𝑠𝑡𝑒𝑝2) = 𝑉𝑌𝐴(𝑠𝑡𝑒𝑝1) 

The necessary parameters are determined, and the quadratic equation is solved to find the time to 

intersection with the fourth slope segment: 

𝑡 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

−(11.16) ± √(11.16)2 − 4(−4.90)(16.02)

2(−4.90)
≅ −0.998 𝑜𝑟 3.27 s 

Where: 

𝑞 =
(𝑌2 − 𝑌1)

(𝑋2 − 𝑋1)
=

(20 − 22)

(38 − 26)
≅ −0.1667 

𝑎 =
1

2
𝑔 ≅ −4.90 

𝑏 = 𝑉𝑌0 − 𝑞𝑉𝑋0 = 10.59 − (−0.1667)(3.38) ≅ 11.16 

𝑐 = 𝑌0 − 𝑌1 + 𝑞(𝑋1 − 𝑋0) = 39.73 − 22 + (−0.1667)(26 − 15.7) ≅ 16.02 

𝑡 = -0.998 s is rejected because 𝑡 must lie in the range [0, ∞]. The intersection point and pre-impact 

velocity are determined:  

𝑋𝐼 = 𝑉𝑋0𝑡 + 𝑋0 = (3.38)(3.27) + 15.73 = 26.800 m 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌0𝑡 + 𝑌0 =

1

2
(−9.81)(3.27)2 + (11.16)(3.27) + 39.7 = 21.867 m 

𝑉𝑋𝐵 = 𝑉𝑋0 = 3.38 
m

s
 

𝑉𝑌𝐵 = 𝑉𝑌0 + 𝑔𝑡 = 11.16 + (−9.81)(3.27) = −21.5 
m

s
 

The velocities are transformed into components normal and tangential to the slope segment: 

𝜃 = tan−1 𝑞 = −9.46° 

𝑉𝑁𝐵 = 𝑉𝑌𝐵 cos 𝜃 − 𝑉𝑋𝐵 sin 𝜃 = (−21.5) cos(−9.46) − (3.38) sin(−9.46) = −20.6 
m

s
 

𝑉𝑇𝐵 = 𝑉𝑌𝐵 sin 𝜃 + 𝑉𝑋𝐵 cos 𝜃 = (−21.5) sin(−9.46) + (3.38) cos(−9.46) = 6.87 
m

s
 

The impact is calculated by multiplying by the coefficients of restitution: 

𝑉𝑁𝐴 = 𝑅𝑁𝑉𝑁𝐵 = 0.6(−20.6) = −12.4 
m

s
 

𝑉𝑇𝐴 = 𝑅𝑇𝑉𝑇𝐵 = 0.8(6.87) = 6.18 
m

s
 

The velocities are transformed back into vertical and horizontal components: 

𝑉𝑋𝐴 = 𝑉𝑁𝐴 sin 𝜃 + 𝑉𝑇𝐴 cos 𝜃 = (−12.4) sin(9.46) + (6.18) cos(9.46) = 8.14 
m

s
 

𝑉𝑌𝐴 = 𝑉𝑇𝐴 sin 𝜃 + 𝑉𝑁𝐴 cos 𝜃 = (6.18) sin(9.46) − (−12.4) cos(9.46) = 11.21 
m

s
 

Step 2 is complete. The velocity of the rock, after impact, is calculated: 
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𝑉𝐶𝐻𝐸𝐶𝐾 = √𝑉𝑋𝐴
2 + 𝑉𝑌𝐴

2 = √(8.14)2 + (11.21)2 = 13.85 
m

s
 

Since the velocity of the rock, 𝑉𝐶𝐻𝐸𝐶𝐾  (= 13.85 m/s) is greater than the minimum velocity, 𝑉𝑀𝐼𝑁  (= 1.0 m/s), 

the rock is still considered to be moving. Since the rock is still moving, the simulation must continue for at 

least one more step. 

Step 3: 

In a similar fashion to the previous step, the final rock conditions for Step 2 are used as the initial 

conditions for Step 3. The necessary parameters are determined, and the quadratic equation is solved to 

find the time to intersection with the sixth slope segment: 

𝑡 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

−(11.21) ± √(11.21)2 − 4(−4.90)(21.87)

2(−4.90)
≅ −1.229 𝑜𝑟 3.54 s 

Where: 

𝑞 =
(𝑌2 − 𝑌1)

(𝑋2 − 𝑋1)
=

(0 − 0)

(89 − 46)
= 0 

𝑎 =
1

2
𝑔 ≅ −4.90 

𝑏 = 𝑉𝑌0 − 𝑞𝑉𝑋0 = 11.21 − (0)(8.12) ≅ 11.21 

𝑐 = 𝑌0 − 𝑌1 + 𝑞(𝑋1 − 𝑋0) = 21.9 − 0 + (0)(46 − 26.8) ≅ 21.9 

𝑡 = -1.229 s is rejected because 𝑡 must lie in the range [0, ∞].  

The intersection point and pre-impact velocity are determined:  

𝑋𝐼 = 𝑉𝑋0𝑡 + 𝑋0 = (8.12)(3.54) + 26.8 = 55.642 m 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌0𝑡 + 𝑌0 =

1

2
(−9.81)(3.54)2 + (11.21)(3.54) + 21.9 = 0.000 m 

𝑉𝑋𝐵 = 𝑉𝑋0 = 8.12 
m

s
 

𝑉𝑌𝐵 = 𝑉𝑌0 + 𝑔𝑡 = 11.21 + (−9.81)(3.54) = −23.55 
m

s
 

The velocities are transformed into components normal and tangential to the slope segment: 

𝜃 = tan−1 𝑞 = 0.0° 

𝑉𝑁𝐵 = 𝑉𝑌𝐵 cos 𝜃 − 𝑉𝑋𝐵 sin 𝜃 = (−23.55) cos(0) − (8.12) sin(0) = −23.5 
m

s
 

𝑉𝑇𝐵 = 𝑉𝑌𝐵 sin 𝜃 + 𝑉𝑋𝐵 cos 𝜃 = (−23.55) sin(0) + (8.12) cos(0) = 8.14 
m

s
 

The impact is calculated by multiplying by the coefficients of restitution: 

𝑉𝑁𝐴 = 𝑅𝑁𝑉𝑁𝐵 = 0.4(−23.5) = −9.42 
m

s
 

𝑉𝑇𝐴 = 𝑅𝑇𝑉𝑇𝐵 = 0.6(8.14) = 4.88 
m

s
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The velocities are transformed back into vertical and horizontal components: 

𝑉𝑋𝐴 = 𝑉𝑁𝐴 sin 𝜃 + 𝑉𝑇𝐴 cos 𝜃 = (−9.42) sin(0) + (4.88) cos(0) = 4.88 
m

s
 

𝑉𝑌𝐴 = 𝑉𝑇𝐴 sin 𝜃 − 𝑉𝑁𝐴 cos 𝜃 = (4.88) sin(0) − (−9.42) cos(0) = 9.42 
m

s
 

Step 3 is complete. The velocity of the rock, after impact, is calculated: 

𝑉𝐶𝐻𝐸𝐶𝐾 = √𝑉𝑋𝐴
2 + 𝑉𝑌𝐴

2 = √(4.88)2 + (9.42)2 = 10.6 
m

s
 

Since the velocity of the rock, 𝑉𝐶𝐻𝐸𝐶𝐾  (= 10.6 m/s) is greater than the minimum velocity, 𝑉𝑀𝐼𝑁  (= 1.0 m/s), 

the rock is still considered to be moving. Since the rock is still moving, the simulation must continue for at 

least one more step. 

Step 4: 

The final rock conditions for Step 3 are used as the initial conditions for Step 4. The necessary 

parameters are determined, and the quadratic equation is solved to find the time to intersection with the 

sixth slope segment: 

𝑡 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

−(9.42) ± √(9.42)2 − 4(−4.90)(0)

2(−4.90)
≅ 0 𝑜𝑟 1.921 s 

Where: 

𝑞 =
(𝑌2 − 𝑌1)

(𝑋2 − 𝑋1)
=

(0 − 0)

(89 − 46)
= 0 

𝑎 =
1

2
𝑔 ≅ −4.90 

𝑏 = 𝑉𝑌0 − 𝑞𝑉𝑋0 = 9.42 − (0)(4.88) ≅ 9.42 

𝑐 = 𝑌0 − 𝑌1 + 𝑞(𝑋1 − 𝑋0) = 0 − 0 + (0)(46 − 55.6) = 0 

𝑡 = 0 s is rejected because this is the starting point of the trajectory (we are already at that root).  

The intersection point and pre-impact velocity are determined: 

𝑋𝐼 = 𝑉𝑋0𝑡 + 𝑋0 = (4.88)(1.921) + 55.6 = 65.021 m 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌0𝑡 + 𝑌0 =

1

2
(−9.81)(1.921)2 + (9.42)(1.921) + 0 = 0.000 m 

𝑉𝑋𝐵 = 𝑉𝑋0 = 4.88 
m

s
 

𝑉𝑌𝐵 = 𝑉𝑌0 + 𝑔𝑡 = 9.42 + (−9.81)(1.921) = −9.42 
m

s
 

The velocities are transformed into components normal and tangential to the slope segment: 

𝜃 = tan−1 𝑞 = 0.0° 

𝑉𝑁𝐵 = 𝑉𝑌𝐵 cos 𝜃 − 𝑉𝑋𝐵 sin 𝜃 = (−9.42) cos(0) − (4.88) sin(0) = −9.42 
m

s
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𝑉𝑇𝐵 = 𝑉𝑌𝐵 sin 𝜃 + 𝑉𝑋𝐵 cos 𝜃 = (−9.42) sin(0) + (4.88) cos(0) = 4.88 
m

s
 

The impact is calculated by multiplying by the coefficients of restitution: 

𝑉𝑁𝐴 = 𝑅𝑁𝑉𝑁𝐵 = 0.4(−9.42) = −3.77 
m

s
 

𝑉𝑇𝐴 = 𝑅𝑇𝑉𝑇𝐵 = 0.6(4.88) = 2.93 
m

s
 

The velocities are transformed back into vertical and horizontal components: 

𝑉𝑋𝐴 = 𝑉𝑁𝐴 sin 𝜃 + 𝑉𝑇𝐴 cos 𝜃 = (−3.77) sin(0) + (2.93) cos(0) = 2.93 
m

s
 

𝑉𝑌𝐴 = 𝑉𝑇𝐴 sin 𝜃 − 𝑉𝑁𝐴 cos 𝜃 = (2.93) sin(0) − (−3.77) cos(0) = 3.77 
m

s
 

Step 4 is complete. The velocity of the rock, after impact, is calculated: 

𝑉𝐶𝐻𝐸𝐶𝐾 = √𝑉𝑋𝐴
2 + 𝑉𝑌𝐴

2 = √(2.93)2 + (3.77)2 = 4.77 
m

s
 

Since the velocity of the rock, 𝑉𝐶𝐻𝐸𝐶𝐾  (= 4.77 m/s) is greater than the minimum velocity, 𝑉𝑀𝐼𝑁  (= 1.0 m/s), 

the rock is still considered to be moving. Since the rock is still moving, the simulation must continue for at 

least one more step.  

However, the hand calculations will not continue because they are very similar to Step 4, and will not 

provide much further verification, only repetition. 

 

1.1.4. Results 

The same geometry and parameters were input into RocFall2 and a simulation was performed. The 

results from RocFall2 were compared to the manual calculations. The results from the sample 

calculations were identical to the RocFall2 results for all practical purposes. The impact locations 

calculated by hand agreed with the program results up to the third decimal place in all cases (i.e. less 

than 0.5 mm difference, everywhere). Therefore, the projectile algorithm seems to be working correctly. 

Although coordinate output was not available from the comparison program, the graphical output matches 

that of RocFall2 (as can be seen by comparing Figure 1.1-1 and Figure 1.1-2). This correlation is a good 

indication that the programs are performing the calculations as desired. Since the comparison program 

produces results that are very similar to the results produced by RocFall2, and the theoretical basis (the 

equations used) for the two programs are the same, it is reasonable to conclude that both programs are 

working correctly. The comparison of the results produced by these two programs does not prove the 

validity of the equations; however, it does provide greater confidence that the equations were properly 

coded into the programs. 

 

1.1.5. Input Files 

RocFall_LumpMass_Verification_#1_Projectile.fal8  
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1.2. RocFall2 Verification Problem #2 – Sliding  

[RocFall2 Build 8.007] 

1.2.1. Problem Description 

The purpose of this verification is to confirm that the sliding algorithm used by the program is working 

correctly. The sliding algorithm is used to calculate the motion of the rocks while they are in contact with 

the slope surface. The sliding algorithm is executed every time the rock stops moving. This stopping 

occurs, and thus the sliding algorithm is executed, at least once every simulation. Along with the projectile 

algorithm, the sliding algorithm determines the position and velocity of the rock. Any errors in the sliding 

algorithm would produce erroneous locations and velocities in the output. Therefore, it is essential that 

the sliding algorithm work correctly. 

The sliding verification consists of four very similar examples that were designed to test every potential 

situation that the sliding algorithm might encounter. No statistics were used in this verification (i.e. only 

mean values were used, and all standard deviations were set to 0). 

In order to guard against numerical instability; at the beginning of each simulation the program offsets the 

rock slightly into the analysis area (i.e. slightly into the “air”) and allows it to fall under the influence of 

gravity. The offset generated by the program, for the geometry used in this verification, was less than 

0.02 mm. This “offsetting” requires the program to execute the projectile algorithm, at least once, before 

entering the sliding algorithm. This causes the program's results to differ slightly when compared to the 

manual calculations.  

It should be noted that this “offsetting” will have a minimal effect on the outcome of a typical simulation. 

Since the offset is usually very small (0.02 mm in this case) and it is only applied once, at the beginning of 

the simulation, it will have a negligible effect on most simulations. 

 

1.2.2. RocFall2 Analysis 

Slope Geometry and Material Properties 

The coefficient of tangential restitution (𝑅𝑇) was set to 1 and the coefficient of normal restitution (𝑅𝑁) was 

set to 0 in all cases. The choice of 𝑅𝑁 = 0 was made in order to force the program to initiate the sliding 

algorithm, immediately after the first pass through the projectile algorithm. The choice of 𝑅𝑇 = 1 was made 

in order to minimise the change in tangential velocity during the pass through the projectile algorithm. 

The location of the slope vertices and the coefficients of restitution for each slope segment are presented 

in the following table: 

Table 1.2-1: Slope Geometry and Materials 

 X-Coordinate Y-Coordinate 
Normal Coefficient 

of Restitution 
𝑹𝑵 

Tangential 
Coefficient of 
Restitution 

𝑹𝑻 

Vertex 1 0 1   

Segment 1   0 1 

Vertex 2 1 1   

Segment 2   0 1 

Vertex 3 3 5   
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Segment 3   0 1 

Vertex 4 8 6.5   

Segment 4   0 1 

Vertex 5 12 0   

 

Initial Conditions 

The rocks were started at 𝑋0 = 6.5 m, 𝑌0 = 6.05 m (which lie on Segment 3) in all four cases. Because the 

rocks were placed directly on Segment 3 and were given a velocity that was tangential to the surface, all 

sliding occurred on Segment 3.  

It will be useful to note that the slope of the segment on which sliding occurs (Segment 3) is: 

𝜃 = tan−1 (
6.5 − 5

8 − 3
) ≅ 16.7° 

The initial velocity of the rocks and the friction angle of the slope are the only parameters that changed, 

depending on the case being considered. The difference between the four cases are summarized in a 

table: 

Table 1.2-2: Difference Between Cases 

Case 

Initial 
Horizontal 
Velocity 

𝑽𝑿𝟎 

Initial Vertical 
Velocity 

𝑽𝒀𝟎 

Friction 
Angle of 
Slope 

𝝓 

Description 

1 -1.0 -0.3 10 Sliding downhill and off of the segment 

2 -1.0 -0.3 18 Sliding downhill and stopping 

3 3.7 1.11 10 Sliding uphill and off end of segment 

4 3.7 1.11 18 Sliding uphill and stopping 

 

Enter the seeder and slope geometry values from Table 1.1-1 into RocFall2.  

Note: Ensure that Consider rotational velocity and both Scale Rn by Velocity and Scale Rn 

by Mass are unchecked under Project Settings. 

The RocFall2 model looks like this: 
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Figure 1.2-1: RocFall2 Model Geometry 

1.2.3. Analytical Solution 

Case 1: Sliding Downhill and Off of the Segment 

This case was designed to test the behaviour of the program when the initial velocity of the rock was in 

the downslope direction, and the conditions were such that the rock would slide off the downslope end of 

the segment. The rock was given an initial velocity of 𝑉𝑋0 = -1 m/s, 𝑉𝑌0 = -0.3 m/s. The friction angle of the 

slope was set at 10°. Since the slope angle is greater than the friction angle, the rock will slide off of the 

end of the segment. The exit velocity was calculated as follows: 

𝑉𝐸𝑋𝐼𝑇 = √𝑉0
2 − 2𝑠𝑔𝑘 = √(1.044)2 − 2(3.654)(−9.81)(0.1185) ≅ 3.095 

m

s
 

(15) 

 Where: 

𝑉0 = √𝑉𝑋0
2 + 𝑉𝑌0

2 = √(−1)2 + (−0.3)2 ≅ 1.044 
m

s
 

𝑠 = √(𝑋1 − 𝑋0)2 + (𝑌1 − 𝑌0)2 = √(3 − 6.5)2 + (5 − 6.05)2 ≅ 3.654 m 

𝑘 = sin 𝜃 − cos 𝜃 tan 𝜙 = sin(16.67) − cos(16.67) tan(10) = 0.1185 
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Figure 1.2-2: RocFall2 Rock Trajectory Model Results (Case 1) 

 

Figure 1.2-3: RocFall2 Data Collector Translational Velocity (Case 1) 
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In order to check the program's results, a Data Collector was added in RocFall2. The Data Collector 

was added from coordinates (3, 4.5) to coordinates (3, 5.5). The results were graphed using the Graph 

Collector Data option and selecting Translational Velocity in RocFall2. The exit velocity was obtained 

from the graph.  

The results are presented in the following table: 

Table 1.2-3: Comparison of Results (Case 1) 

 Hand Calculation RocFall2 Difference 

Exit Velocity 3.095 3.098 0.1% 

 

The results are very similar. The reason for the difference is that, in the program the rock gains some 

velocity falling from its offset position and starts with a velocity slightly greater than the value that was 

used in the hand calculations. 

Case 2: Sliding Downhill and Stopping 

This case was designed to test the behaviour of the program when the initial velocity of the rock was in 

the downslope direction, and the conditions were such that the rock would be slowed by friction and stop 

before reaching the downslope end of the segment. The rock was given an initial velocity of 𝑉𝑋0 = -1 m/s, 

𝑉𝑌0 = -0.3 m/s. The friction angle of the slope was set at 18°. Since the angle of the slope is less than the 

friction angle the rock will slow down, and depending on the length of the segment, stop before reaching 

the end of the segment. A calculation is made to see how far the rock will slide before stopping: 

𝑠 =
𝑉0

2

2𝑔𝑘
=

(1.044)2

2(−9.81)(−0.0239)
= 2.328 m 

 

(16) 

Where: 

𝑉0 = √𝑉𝑋0
2 + 𝑉𝑌0

2 = √(−1)2 + (−0.3)2 ≅ 1.044 
m

s
 

𝑘 = sin 𝜃 − cos 𝜃 tan 𝜙 = sin(16.67) − cos(16.67) tan(18) = −0.0239 

The rock will stop moving at a point 2.328 m downslope of where it began sliding. A check is made to see 

if the rock will reach the end of the segment before it stops sliding. The distance to the end of the 

segment is calculated: 

𝑠𝐷 = √(𝑋0 − 𝑋1)2 + (𝑌0 − 𝑌1)2 = √(6.5 − 3)2 + (6.05 − 5)2 ≅ 3.65 m 

 

(17) 

Since the stopping distance, 𝑠 (= 2.328 m) is less than the distance to the end of the segment, 𝑆𝐷 (= 3.65 

m) the rock will stop before sliding off of the end of the segment. The location where the rock stopped is 

calculated: 

𝑋 = 𝑋0 − 𝑠 cos 𝜃 = 6.5 − (2.328) cos(16.67) = 4.27 m 

 

(18) 

𝑌 = 𝑌0 − 𝑠 sin 𝜃 = 6.05 − (2.328) sin(16.67) = 5.38 m (19) 
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Figure 1.2-4: RocFall2 Rock Trajectory Model Results (Case 2) 

 

In order to check the program's results the simulation was performed in RocFall2. The results were 

graphed using the Export Path Details option in RocFall2. The location of the rock endpoint was 

obtained from the text file that was generated from Impact and Ground Events Details.  

The results are presented in the following table: 

Table 1.2-4: Comparison of Results (Case 2) 

 Hand Calculation RocFall2 Difference 

X-Coordinate of Endpoint 4.270 4.207 1.5% 

Y-Coordinate of Endpoint 5.381 5.362 0.4% 

 
The results are very similar. The reason for the difference was found by stepping through the program as 

it executed. All values were identical to the manual calculations except for the value of 𝑉0. The value of 𝑉0 

in the program was 1.118 m/s. The value calculated by hand was 1.044 m/s. The higher value of 𝑉0 in the 

program was caused by the rock being offset into the analysis area at the beginning of the simulation and 

then gaining some velocity by falling under the influence of gravity. 

Case 3: Sliding Uphill and Off of the Segment 

This case was designed to test the behaviour of the program when the initial velocity of the rock was in 

the upslope direction and the conditions were such that the rock would slide off the upslope end of the 

segment. The rock was given an initial velocity of 𝑉𝑋0 = 3.7 m/s, 𝑉𝑌0 = 1.11 m/s. The friction angle of the 

slope was set at 10°. The exit velocity is calculated: 

𝑉𝐸𝑋𝐼𝑇 = √𝑉0
2 − 2𝑠𝑔𝑘 = √(3.863)2 − 2(1.566)(−9.81)(−0.4562) ≅ 0.953 

m

s
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Where: 

𝑉0 = √𝑉𝑋0
2 + 𝑉𝑌0

2 = √(3.7)2 + (1.11)2 ≅ 3.863 
m

s
 

𝑠 = √(𝑋2 − 𝑋0)2 + (𝑌2 − 𝑌0)2 = √(8 − 6.5)2 + (6.5 − 6.05)2 ≅ 1.566 m 

𝑘 = − sin 𝜃 − cos 𝜃 tan 𝜙 = − sin(16.67) − cos(16.67) tan(10) = −0.4562 

 

Figure 1.2-5: RocFall2 Rock Trajectory Model Results (Case 3) 

 

In order to check the results from the program a Data Collector was added in RocFall2. The Data 

Collector was added from coordinates (8, 6) to coordinates (8, 7). The results were graphed using the 

Graph Collector Data option and selecting Translational Velocity in RocFall2. The exit velocity was 

obtained from the graph.  
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Figure 1.2-6: RocFall2 Data Collector Translational Velocity (Case 3) 

 

The results are presented in the following table: 

Table 1.2-5: Comparison of Results (Case 3: Sliding Uphill and Off of the Segment) 

 Hand Calculation RocFall2 Difference 

Exit Velocity 0.953 0.984 3.1% 

 
The results are similar. The reason for the difference was found by stepping through the program as it 

executed. All of the values in the program were identical to the manually calculated values except for 𝑉0 

and 𝑠. The value of s in the program was 1.548 m (vs.1.566 m for the hand calculation). The value of 𝑉0 in 

the program was 3.849 m/s (vs. 3.863 m/s for the hand calculation). The lower values of 𝑉0 and 𝑠 in the 

program were caused by the rock being offset into the analysis area and then gaining some velocity and 

changing position during the fall from the offset position. 

Case 4: Sliding Uphill and Stopping 

This case was designed to test the behaviour of the program when the initial velocity of the rock was in 

the upslope direction, and the conditions were such that the rock would slow down and stop before it 

reached the upslope end of the segment. The rock was given an initial velocity of 𝑉𝑋0 = 3.7 m/s, 𝑉𝑌0 = 

1.11 m/s. The friction angle of the slope was set at 18°. Since the angle of the slope is less than the 

friction angle the rock will slow down, and depending on the length of the segment, stop before reaching 

the end of the segment. A calculation is made to see how far the rock will slide before stopping: 

𝑠 =
𝑉0

2

2𝑔𝑘
=

3.8632

2(−9.80665)(−0.599)
= 1.271 m 
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Where: 

𝑉0 = √(3.7)2 + (1.11)2 ≅ 3.863 
m

s
 

𝑘 = − sin 𝜃 − cos 𝜃 tan 𝜙 = − sin(16.67) − cos(16.67) tan(18) = −0.599 

The rock will stop moving at a point 1.271 m upslope of where it began sliding. A check is made to see if 

the rock with reach the end of the segment before it stops sliding. The distance to the end of the segment 

is calculated: 

𝑠𝐷 = √(𝑋0 − 𝑋2)2 + (𝑌0 − 𝑌2)2 = √(6.5 − 8)2 + (6.05 − 6.5)2 ≅ 1.570 m 

Since the stopping distance, 𝑠 (= 1.271 m) is less than the distance to the end of the segment, 𝑠𝐷 (= 1.570 

m) the rock will stop before reaching the end of the segment. The location where the rocks stops is 

calculated: 

𝑋 = 𝑋0 + 𝑠 cos 𝜃 = 6.5 + (1.271) cos(16.67) = 7.717 m 

𝑌 = 𝑌0 − 𝑠 sin 𝜃 = 6.05 + (1.271) sin(16.67) = 6.415 m 

 

Figure 1.2-7: RocFall2 Rock Trajectory Model Results (Case 4) 

In order to check the program's results the simulation was performed in RocFall2. The results were 

graphed using the Export Path Details option in RocFall2. The location of the rock endpoint was 

obtained from the text file that was generated from Impact and Ground Events Details.  

The results are presented in the following table: 
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Table 1.2-6: Comparison of Results (Case 4) 

 Hand Calculation RocFall2 Difference 

X-Coordinate of Endpoint 7.717 7.727 1.3% 

Y-Coordinate of Endpoint 6.415 6.418 0.05% 

 

The results are very similar. The reason for the difference was found by stepping through the program as 

it executed. All of the values in the program were identical to the manual calculations except for the value 

of 𝑉0. The value of 𝑉0 in the program was 3.850 m/s (vs. 3.863 m/s for hand calculation). This was caused 

by the rock being “offset into the analysis area” and then gaining some velocity by falling under the 

influence of gravity 

 

1.2.4. Results 

There is one additional case that has not been can be presented: the case where the rock slides uphill, 

stops, and then slides back down and off the downslope end of the segment. This was not presented as a 

separate case because it is dealt with in the program by treating it as two separate cases that have been 

considered (Case 4 followed by Case 1). 

The sliding algorithm seems to be working correctly. In each of the four cases the difference between the 

manual calculations and the results produced by RocFall2 were explained by the “offsetting”, and not by 

errors in the sliding algorithm. 

The results are presented as they are (with the slight difference caused by the offsetting), so that anyone 

using RocFall2 could duplicate the verification cases. Although the results from the manual calculations 

could have been duplicated exactly (by inserting the values directly into the sliding algorithm) this was not 

done, because this option is only available to the program developer and not to someone using RocFall2. 

Considering how poorly defined many of the significant quantities (such as 𝑅𝑇) are, the consequences of 

moving the initial rock position a few hundredths of a millimeter at the beginning of each simulation can 

be ignored in the majority of simulations. 

 

1.2.5. Input Files 

RocFall_LumpMass_Verification_#2_Sliding_case1.fal8 
RocFall_LumpMass_Verification_#2_Sliding_case2.fal8 
RocFall_LumpMass_Verification_#2_Sliding_case3.fal8 
RocFall_LumpMass_Verification_#2_Sliding_case4.fal8  
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1.3. RocFall2 Verification Problem #3 – Probability 

[RocFall2 Build 8.007] 

1.3.1. Problem Description 

The purpose of this verification is to confirm that the program is generating random numbers properly and 

applying statistics correctly. Random numbers are generated and used many different times during each 

simulation. If the random numbers were not being generated and applied correctly the analysis would not 

be statistically valid, and rational decisions could not be made based on the output. Almost all analyses 

performed with RocFall2 rely on the probabilistic nature of the program. Therefore, it is important to verify 

that these components are working correctly. 

It is difficult to perform the verification of a random system. By definition, a random system should not be 

replicable; however, replication is the basis for most verification. Since the results from the program could 

not be replicated when the initial conditions were specified by a random distribution, all of the other 

verification models performed did not include a random element. This made it difficult to test the coupling 

of the random number generation with the algorithms that use the random numbers. 

This example was designed to verify that the random number generation is being performed correctly, 

and that the coupling of the random number generation with the other parts of the program (e.g. the 

projectile algorithm) was executed correctly. Since it would be very difficult to duplicate a random 

procedure by hand (generating enough random samples by hand to create a statistically valid data set 

would be extremely time consuming), this was not done. The example was constructed so as to generate 

a result that could be duplicated by hand. This duplication was not achieved by reproducing each 

individual result, as was done with the other verification models, but rather by reproducing the result in the 

collective form of a random distribution. 

 

1.3.2. RocFall2 Analysis 

Random Number Generation 

It is important to remember that RocFall2, like most computer programs, only generates pseudo-random 

numbers (pseudo-random implies that there is some sort of pattern to the numbers).  

The number generator is “seeded” at the beginning of each simulation. This “seeding” provides a starting 

point from which to begin the pseudo-random generation. A Default Seed or Custom Seed may be 

specified for Random Number Generation. This ensures that with the same seed, results of the 

probabilistic rockfall simulations are reproducible.  

All random numbers generated in the program are sampled either from: 

• Normal distribution, 

• Uniform distribution, 

• Triangular distribution,  

• Beta distribution, 

• Exponential distribution, 

• Lognormal distribution, or 

• Gamma distribution. 

The samples are generated using either the Monte Carlo or Latin Hypercube sampling method. 
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Slope Geometry and Material Properties 

The example consists of a slope with two horizontal segments.  

The location of the slope vertices and the coefficients of restitution for each slope segment are presented 

in the following table: 

Table 1.3-1: Slope Geometry and Materials 

 
X-

Coordinate 
Y-Coordinate 

Normal Coefficient of 
Restitution 

𝑹𝑵 

Tangential Coefficient of 
Restitution 

𝑹𝑻 

Mean 𝝁 
Std. Dev. 

𝝈 
Mean 𝝁 

Std. Dev. 
𝝈 

Range 

Vertex 1 -1 0      

Segment 1   1 0 0.5 0.1 0 to 1 

Vertex 2 6 0      

Segment 2   0 0 0 0 - 

Vertex 3 19 0      

 

Initial Conditions 

The rocks begin by falling from a location that is slightly above the middle of the first segment. The 

parameters were chosen so that the location of the rock endpoints would form a normal distribution with 

statistical properties that could easily be determined by hand calculations. 

The rocks were started at 𝑋0 = 0 m, 𝑌0 = 4.903325 m. The rocks were given an initial velocity of 𝑉𝑋0 = 5 

m/s, 𝑉𝑌0 = 0 m/s.  

Deterministic Analysis 

The calculations were performed once, using the constant values, in order to ascertain the deterministic 

value for the location of the rock endpoints. The effect of the random variable (𝑅𝑇) was then applied, in 

order to determine the expected value and standard deviation of the location of rock endpoints. The 

deterministic results (without the random variable) are presented first. 

Enter the seeder and mean slope geometry values from Table 1.1-1 into RocFall2.  

Note: Ensure that Consider rotational velocity and both Scale Rn by Velocity and Scale Rn 

by Mass are unchecked under Project Settings. 
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The RocFall2 model looks like this: 

 

Figure 1.3-1: RocFall2 Rock Trajectory Model Results without Random Variable 

Probabilistic Analysis 

Enter the seeder and slope geometry values from Table 1.1-1 into RocFall2.  

Set the Number of Rocks to 500 under Seeder Properties. 

The coefficient of tangential restitution (𝑅𝑇) along the first segment is the only parameter in the example 

that has any statistical variation; all other parameters are constant. 𝑅𝑇 was given a standard deviation of 

0.1 (equivalent to a variance of 0.01). The choice of 𝑅𝑁 = 0 and 𝑅𝑇 = 0 for the second segment was done 

to ensure that the rocks stopped at their respective points of impact on the second segment. 𝑅𝑇 was 

chosen as the random variable because it is in the “middle” of the projectile algorithm. This was thought 

to be preferable to varying, say, the initial velocity of the rocks, which is only used at the beginning of the 

simulation. It was thought that because 𝑅𝑇 is in the “middle” of the calculations it may be more prone to 

error. 

Set the tangential coefficient of restitution to a Normal distribution and the Rel. Min. and Rel. Max to 0.5, 

to allow the values of the random variable to vary between 0 to 1. 

The sampling method is set to Monte-Carlo. The RocFall2 model looks like this: 
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Figure 1.3-2: RocFall2 Rock Trajectory Model Results with Random Variable 

Using the Graph Endpoints option in RocFall2, a distribution of rock path end locations is generated. 

The Number of Bins is set to 100. 

 

Figure 1.3-3: RocFall2 Endpoints Distribution with Random Variable 
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1.3.3. Analytical Solution 

Sample Calculations without Random Variable 

The rocks were started at 𝑋0 = 0 m, 𝑌0 = 4.903325 m. The rocks were given an initial velocity of 𝑉𝑋0 = 5 

m/s, 𝑉𝑌0 = 0 m/s. They will fall onto the first slope segment according to: 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌0𝑡 + 𝑌0 

Noting that 𝑉𝑌0 = 0 and intersection with the first slope segment implies 𝑌 = 0, the above equation can be 

solved for 𝑡: 

𝑡 = √
−2𝑌0

𝑔
= √

−2(4.903325)

−9.80665
= 1 s 

The intersection location and the velocity just before impact are calculated: 

𝑋𝐼 = 𝑉𝑋0𝑡 + 𝑋0 = 5(1) + 0 = 5 m 

𝑉𝑋𝐵 = 𝑉𝑋0 = 5 
m

s
 

𝑉𝑌𝐵 = 𝑉𝑌0 + 𝑔𝑡 = 0 + (−9.80665)(1) = −9.80665 
m

s
 

The pre-impact velocity is transformed into components normal and tangential to the slope segment: 

𝑞 =
(𝑌2 − 𝑌1)

(𝑋2 − 𝑋1)
=

(0 − 0)

(7 − (−1)
= 0 

𝜃 = tan−1 𝑞 = tan−1(0) = 0° 

𝑉𝑁𝐵 = 𝑉𝑌𝐵 cos 𝜃 − 𝑉𝑋𝐵 sin 𝜃 = (−9.80665) cos(0) − (5) sin(0) = −9.80665 
m

s
 

𝑉𝑇𝐵 = 𝑉𝑌𝐵 sin 𝜃 + 𝑉𝑋𝐵 cos 𝜃 = (−9.80665) sin(0) + (5) cos(0) = 5 
m

s
 

The post-impact velocity is calculated by multiplying by the coefficients of restitution: 

𝑉𝑁𝐴 = 𝑅𝑁𝑉𝑁𝐵 = 1.0(−9.80665) = −9.80665 
m

s
 

𝑉𝑇𝐴 = 𝑅𝑇𝑉𝑇𝐵 = 0.5(5) = 2.5 
m

s
 

 

(*) 

The velocities are transformed back into vertical and horizontal components: 

𝑉𝑋𝐴 = 𝑉𝑁𝐴 sin 𝜃 + 𝑉𝑇𝐴 cos 𝜃 = (−9.81) sin(0) + (2.5) cos(0) = 2.5 
m

s
 

 

(**) 

𝑉𝑌𝐴 = 𝑉𝑇𝐴 sin 𝜃 − 𝑉𝑁𝐴 cos 𝜃 = (2.5) sin(0) − (−9.80665) cos(0) = 9.80665 
m

s
 

The rock's intersection with the second slope segment is calculated. Noting that 𝑌0 = 0 and intersection 

with the second slope segment implies 𝑌 = 0, solve for 𝑡: 
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𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌0𝑡 + 𝑌0 

𝑡 =
−2𝑉𝑌0

𝑔
=

−2(9.80665)

−9.80665
= 2 𝑠 

The intersection location and the velocity of the rock, just prior to impact, are calculated:  

𝑉𝑋𝐵 = 𝑉𝑋0 = 2.5 
m

s
 

𝑉𝑌𝐵 = 𝑉𝑌0 + 𝑔𝑡 = 9.80665 + (−9.80665)(2) = −9.80665 
m

s
 

𝑋 = 𝑉𝑋0𝑡 + 𝑋0 = 2.5(2) + 5 = 10 m (***) 

 

Sample Calculations with Random Variable 

The deterministic result (𝑋 = 10 m) has been calculated above, using the constant values. The expected 

value and standard deviation of the rock endpoints will be calculated by applying statistical identities to 

the deterministic calculations. 

All of the parameters remain unchanged except the value of 𝑅𝑇 along the first slope segment. 𝑅𝑇 is 

changed from a constant of 0.5 to a normally distributed random variable with a mean of 0.5 and a 

standard deviation of 0.1. 

Before continuing, it will be useful to recall some statistical identities concerning expected value and 

variances. Proofs for these identities can be found in Ross (1987). 

𝜎(𝑥) = √𝑣𝑎𝑟(𝑥) 

 

(2.5.0 of Ross) 

𝐸[𝑚𝑥 + 𝑛] = 𝑚𝐸[𝑥] + 𝑛 

 

(2.5.2 of Ross) 

𝑉𝑎𝑟(𝑚𝑥 + 𝑛) = 𝑚2𝑉𝑎𝑟(𝑥) (2.6.2 of Ross) 

 

Where: 

𝑚 and 𝑛 are constants 

   is standard deviation 

 𝑥   is a random variable, 

𝐸[ ]   denotes expected value 

𝑉𝑎𝑟( )  denotes variance 

 
The trajectory of the rock will be re-calculated, incorporating the effect of the random variable. Since 𝑅𝑇 is 

the only parameter that has changed, the only equations that need to be recalculated are equations (*), 

(**), and (***).  

Equation (*) will be re-calculated, incorporating the random variable.  



 

 
 30 rocscience.com 

Substituting 𝑚 = 𝑉𝑇𝐵  , 𝑛 = 0, and 𝑥 = 𝑅𝑇 (expected value = 0.5, variance = 0.01) into the second and third 

statistical identities yields: 

𝐸[𝑉𝑇𝐵𝑅𝑇 + 0] = 𝑉𝑇𝐵𝐸[𝑅𝑇] + 0 

𝑉𝑎𝑟(𝑉𝑇𝐵𝑅𝑇 + 0) = 𝑉𝑇𝐵
2 𝑉𝑎𝑟(𝑅𝑇) 

Substituting 𝑉𝑇𝐴 = 𝑅𝑇𝑉𝑇𝐵, 𝑉𝑇𝐵 = 5, 𝐸[𝑅𝑇] = 0.5 and 𝑉𝑎𝑟(𝑅𝑇) = 𝜎2 = (0.1)2 = 0.01 yields: 

𝐸[𝑉𝑇𝐴] = 𝑉𝑇𝐵𝐸[𝑅𝑇] + 0 = 5[0.5] + 0 = 2.5 

𝑉𝑎𝑟(𝑉𝑇𝐴) = 𝑉𝑇𝐵
2 𝑉𝑎𝑟(𝑅𝑇) = 52(0.01) = 0.25 

𝑉𝑇𝐴 is now a random variable with an expected value of 2.5 and variance of 0.25.  

Equation (**) will now be recalculated incorporating 𝑉𝑇𝐴 (which is now a random variable). Substituting 

𝑚 = cos(0), 𝑛 = 𝑉𝑁𝐴 sin 𝜃, and 𝑥 = 𝑉𝑇𝐴 into the second and third statistical identities yields: 

𝐸[cos(0) 𝑉𝑇𝐴 + 𝑉𝑁𝐴 sin 𝜃] = cos(0) 𝐸[𝑉𝑇𝐴] + 𝑉𝑁𝐴 sin 𝜃 

𝑉𝑎𝑟(cos(0) 𝑉𝑇𝐴 + 𝑉𝑁𝐴 sin 𝜃) = (cos(0))2𝑉𝑎𝑟[𝑉𝑇𝐴] 

Substituting 𝑉𝑋𝐴 = 𝑉𝑁𝐴 sin 𝜃 + 𝑉𝑇𝐴 cos 𝜃, 𝑉𝑎𝑟(𝑉𝑇𝐴) = 0.25 and 𝑉𝑁𝐴 sin 𝜃 = 0 (Therefore, 𝜃 = 0): 

𝐸[𝑉𝑋𝐴] = 𝐸[𝑉𝑇𝐴] + 0 = 2.5 

𝑉𝑎𝑟(𝑉𝑋𝐴) = 𝑉𝑎𝑟(𝑉𝑇𝐴) = 0.25 

𝑉𝑋𝐴 is now a random variable with an expected value of 2.5 and variance of 0.25. Since the post-impact 

velocity of the first trajectory (𝑉𝑋𝐴) is equal to the initial velocity of the next trajectory (𝑉𝑋0), 𝑉𝑋0 is also a 

random variable with an expected value of 2.5 and variance of 0.25. 

Equation (***) will now be re-calculated incorporating 𝑉𝑋0 (which is now a random variable). Substituting 

𝑚 = 𝑡, 𝑛 = 𝑋0 and 𝑥 = 𝑉𝑋0 yields: 

𝐸[𝑡𝑉𝑋0 + 𝑋0] = 𝑡𝐸[𝑉𝑋0] + 𝑋0 

𝑉𝑎𝑟(𝑡𝑉𝑋0 + 𝑋0] = 𝑡2𝑉𝑎𝑟(𝑉𝑋0) 

Substituting 𝑡 = 2, 𝐸[𝑉𝑋0] = 2.5, 𝑉𝑎𝑟(𝑉𝑋0) = 0.25, 𝑋0 = 5, and 𝑋 =  𝑉𝑋0𝑡 + 𝑋0 yields: 

𝐸[𝑥] = (2)(2.5) + 5 = 10 

𝑉𝑎𝑟(𝑥) = (2)2(0.25) = 1 

The standard deviation is calculated from the variance by substituting 𝑥 = 𝑋 into the first statistical 

identity: 

𝜎(𝑥) = √𝑣𝑎𝑟( 𝑥) = 1 

Therefore, the expected value of 𝑋 (the horizontal coordinate of the endpoints) is 10 m and the variance 

and standard deviation of the endpoints is 1 m. Since 𝑋 is a normally distributed random variable, the 

distribution of the rock endpoints should take the shape of a typical normal distribution (a bell curve) with 

a center at 10 m. As can be seen by inspection of Figure 1.3-3, the distribution is of the correct shape. 
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1.3.4. Results 

The same geometry and parameters were entered into RocFall2 and five thousand simulations were 

performed. The results were graphed using the Graph Endpoints option in RocFall2. The data was 

extracted from the graph using the Copy Data option and pasted into a spreadsheet, where the statistical 

analysis was performed. The results from the program were compared to the manually calculated values. 

The results are summarized in a table: 

Table 1.3-2: Comparison of Distribution of Rock Endpoints  

 Hand Calculation 
RocFall2 
Result 

Difference 

Number of Samples - 500 - 

Mean 10 10.0564 -0.56% 

Standard Deviation 1 0.9896 1.04% 

Variance 1 0.9948 0.52% 

 

Note: Since the data is grouped, grouped methods of calculating mean, standard deviation, and 

variance must be applied. 

𝜇 =
𝑀𝑓

𝑛
 

 

(20) 

𝑠2 =
∑ 𝑀2𝑓 −

(∑ 𝑀𝑓)2

𝑛
𝑛 − 1

 

(21) 

Where: 

𝜇 is the grouped mean 

𝑠 is the grouped sample standard deviation 

𝑀 is the midpoint of the data group 

𝑓 is the frequency of the data group 

𝑛 is the number of samples 

 
The results from the program were very similar to the manual calculations. Given that this is a random 

process and exact answers cannot be expected, the program appears to be performing correctly; that is, 

the random numbers are being generated correctly and the calculations are using the random variables 

properly. 

 

1.3.5. Input Files 

RocFall_LumpMass_Verification_#3_Random_norandomvariable.fal8 
RocFall_LumpMass_Verification_#3_Random_withrandomvariable.fal8  
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1.4. RocFall2 Verification Problem #4 – Envelopes  

[RocFall2 Build 8.007] 

1.4.1. Problem Description 

The purpose of this verification is to confirm that the envelopes produced by the program are correct and 

that the graphs based on these envelopes are being generated properly. There are three envelopes in the 

program: the kinetic energy envelope, the velocity envelope, and the bounce-height envelope. Each 

envelope is defined by the maximum value (e.g. maximum velocity) at a number of evenly spaced 

horizontal locations along the slope profile. The kinetic energy envelope measures the highest kinetic 

energy that any rock attained while passing each horizontal location. The velocity envelope measures the 

highest velocity that any rock attained while passing each horizontal location. The bounce-height graph 

measures the maximum height that any rock reached, minus the slope height, at each horizontal location 

(i.e. the maximum height above the slope). These envelopes are often used to determine where remedial 

measures should be placed, so it is very important that they operate correctly. 

 

1.4.2. RocFall2 Analysis 

Slope Geometry and Material Properties 

In the process of completing this verification, we will take advantage of the fact that the projectile 

verification (RocFall2 Verification Problem #1 – Projectile) has already been performed.  

Slope Geometry and Material Properties 

The location of the slope vertices and the coefficients of restitution for each slope segment are presented 

in the following table: 

Table 1.4-1: Slope Geometry and Materials 

 X-Coordinate Y-Coordinate 
Normal Coefficient 

of Restitution 
𝑹𝑵 

Tangential 
Coefficient of 
Restitution 

𝑹𝑻 

Vertex 1 0 60   

Segment 1   0.5 0.8 

Vertex 2 7 39   

Segment 2   0.5 0.8 

Vertex 3 19 40   

Segment 3   0.5 0.8 

Vertex 4 26 22   

Segment 4   0.6 0.9 

Vertex 5 38 20   

Segment 5   0.6 0.9 

Vertex 6 46 0   

Segment 6   0.4 0.6 

Vertex 7 89 0   

 



 

 
 33 rocscience.com 

Initial Conditions 

The rock starts at location 𝑋0 = 0 m, 𝑌0 = 60 m (which coincides with the first slope vertex). The rock was 

given an initial velocity of 𝑉𝑋0 = 7 m/s, 𝑉𝑌0 = 2 m/s and a mass of 10 kg. 

Enter the seeder and slope geometry values from Table 1.1-1 into RocFall2.  

Note: Ensure that Consider rotational velocity and both Scale Rn by Velocity and Scale Rn 

by Mass are unchecked under Project Settings. 

 

The RocFall2 model looks like this: 

 

Figure 1.4-1 RocFall2 Rock Trajectory Model Results 
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Velocity and Kinetic Energy Envelopes 

Using the Graph Data on Slope option in RocFall2, the following Translational Velocity and 

Translational Kinetic Energy graphs were generated: 

 
Figure 1.4-2: RocFall2 Translational Velocity Graph 

 

 
Figure 1.4-3: RocFall2 Translational Kinetic Energy Graph 
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The Horizontal Locations was set to 1000 when plotting using the Distribution Graph option in 

RocFall2. This value was chosen so that the program would collect data for the envelopes at numerous 

locations, especially those locations that are close to the points of interest. 

We can see from inspection of Figure 1.4-2 and Figure 1.4-3 that the velocity and kinetic energy 

envelopes are of the correct shape. 

The velocity and kinetic energy envelopes have peaks and troughs at the correct locations and the 

curvature of each section appears to be correct. The discontinuities occur at the correct locations (where 

the rock impacts the slope and loses energy). Since the shape of the graphs appeared to be correct, the 

graphs were verified by checking the value of each graph at significant locations along the slope profile. 

The values were checked at locations just before, and just after, each discontinuity. The values were also 

checked at the peak of each rock trajectory (the troughs on the velocity and kinetic energy graphs). 

It is useful to note that at the peak of the rock's trajectory (the top of the parabola) the vertical velocity is 

zero. Since the horizontal velocity does not change while the rock is in the air, the only velocity that the 

rock possesses at the peak of the trajectory is its initial horizontal velocity. Therefore, the velocity at the 

peak of each parabolic path (the troughs of the velocity and kinetic energy envelopes) is equal to the 

post-impact velocity (𝑉𝑋𝐴) of the previous impact. 

 

1.4.3. Analytical Solution 

The calculations that were performed in the projectile verification will provide the velocity of the rock at all 

of the locations that will be of interest in this verification. 

Step 1: 

The velocity and kinetic energy just before the first impact (at 𝑋 ≅ 15.7 m) are calculated: 

(The velocities are taken from the corresponding step of the projectile verification problem, RocFall2 

Verification Problem #1 – Projectile). 

𝑉𝐵 = √𝑉𝑋𝐵
2 + 𝑉𝑌𝐵

2 = √(7)2 + (−20)2 = 21.19 
m

s
 

 

(22) 

𝐾𝐸𝐵 = 0.5𝑚𝑉𝐵
2 = 0.5(10)(21.19)2 = 2245 J 

 

(23) 

The velocity and kinetic energy just after the first impact are calculated: 

𝑉𝐴 = √𝑉𝑋𝐴
2 + 𝑉𝑌𝐴

2 = √(3.38)2 + (10.59)2 = 11.12 
m

s
 

 

(24) 

𝐾𝐸𝐴 = 0.5𝑚𝑉𝐴
2 = 0.5(10)(11.12)2 = 618 J 

 

(25) 
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The velocity and kinetic energy at the second peak of the rock trajectory (at 𝑋 ≅ 19.4 m) are calculated: 

𝑉𝑃𝐸𝐴𝐾 = 𝑉𝑋𝐴 = 3.38 
m

s
 

 

(26) 

𝐾𝐸𝑃𝐸𝐴𝐾 = 0.5𝑚𝑉𝑃𝐸𝐴𝐾
2 = 0.5(10)(3.38)2 = 57.1 J 

 

(27) 

A comparison of the results produced by manual calculation and by the program are presented in the 

following table: 

Table 1.4-2: Comparison of Velocity and Kinetic Energy Results for Step 1 

 Hand Calculation RocFall2 Difference 

𝑽𝑩 21.19 21.14 0.24% 

𝑽𝑨 11.12 11.06 0.54% 

𝑽𝑷𝑬𝑨𝑲 3.38 3.38 - 

𝑲𝑬𝑩 2245 2234 0.49% 

𝑲𝑬𝑨 618 612 0.97% 

𝑲𝑬𝑷𝑬𝑨𝑲 57.1 57.2 0.17% 

 

Step 2: 

The velocity and kinetic energy just before the second impact (at 𝑋 ≅ 26.8 m) are calculated: 

𝑉𝐵 = √𝑉𝑋𝐵
2 + 𝑉𝑌𝐵

2 = √(3.38)2 + (−21.5)2 = 21.76 
m

s
 

𝐾𝐸𝐵 = 0.5𝑚𝑉𝐵
2 = 0.5(10)(21.76)2 = 2367 J 

The velocity and kinetic energy just after the second impact are calculated: 

𝑉𝐴 = √𝑉𝑋𝐴
2 + 𝑉𝑌𝐴

2 = √(8.14)2 + (11.21)2 = 13.85 
m

s
 

𝐾𝐸𝐴 = 0.5𝑚𝑉𝐴
2 = 0.5(10)(13.85)2 = 959 J 

The velocity and kinetic energy at the third peak of the rock trajectory (at 𝑋 ≅ 36.1 m) are calculated: 

𝑉𝑃𝐸𝐴𝐾 = 𝑉𝑋𝐴 = 8.14 
m

s
 

𝐾𝐸𝑃𝐸𝐴𝐾 = 0.5𝑚𝑉𝑃𝐸𝐴𝐾
2 = 0.5(10)(8.14)2 = 331 J 
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A comparison of the results produced by hand calculation and by the program are presented in the 

following table: 

Table 1.4-3: Comparison of Velocity and Kinetic Energy Results for Step 2 

 Hand Calculation RocFall2 Difference 

𝑽𝑩 21.76 21.74 0.1% 

𝑽𝑨 13.85 13.78 0.5% 

𝑽𝑷𝑬𝑨𝑲 8.14 8.14 - 

𝑲𝑬𝑩 2367 2363 0.17% 

𝑲𝑬𝑨 959 949 1.0% 

𝑲𝑬𝑷𝑬𝑨𝑲 331 331 - 

Step 3 

The velocity and kinetic energy just before the third impact (at 𝑋 ≅ 55.6 m) are calculated: 

𝑉𝐵 = √𝑉𝑋𝐵
2 + 𝑉𝑌𝐵

2 = √(8.12)2 + (−23.55)2 = 24.91 
m

s
 

𝐾𝐸𝐵 = 0.5𝑚𝑉𝐵
2 = 0.5(10)(24.91)2 = 3103 J 

The velocity and kinetic energy just after the third impact are calculated: 

𝑉𝐴 = √𝑉𝑋𝐴
2 + 𝑉𝑌𝐴

2 = √(4.88)2 + (9.42)2 = 10.61 
m

s
 

𝐾𝐸𝐴 = 0.5𝑚𝑉𝐴
2 = 0.5(10)(10.61)2 = 563 J 

The velocity and kinetic energy at the fourth peak of the rock trajectory (at 𝑋 ≅ 60.3 m) are calculated: 

𝑉𝑃𝐸𝐴𝐾 = 𝑉𝑋𝐴 = 4.88 
m

s
 

𝐾𝐸𝑃𝐸𝐴𝐾 = 0.5𝑚𝑉𝑃𝐸𝐴𝐾
2 = 0.5(10)(4.88)2 = 119.1 J 

A comparison of the results produced by hand calculation and by the program are presented in the 

following table: 

Table 1.4-4: Comparison of Velocity and Kinetic Energy Results for Step 3 

 Hand Calculation RocFall2 Difference 

𝑽𝑩 24.91 24.90 0.04% 

𝑽𝑨 10.61 10.48 1.23% 

𝑽𝑷𝑬𝑨𝑲 4.88 4.88 - 

𝑲𝑬𝑩 3103 3099 0.13% 

𝑲𝑬𝑨 563 549 2.49% 

𝑲𝑬𝑷𝑬𝑨𝑲 119.1 119.2 0.08% 

Step 4: 

The velocity and kinetic energy just before the fourth impact (at x  55.6 m) are calculated: 

𝑉𝐵 = √𝑉𝑋𝐵
2 + 𝑉𝑌𝐵

2 = √(4.88)2 + (−9.42)2 = 10.61 
m

s
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𝐾𝐸𝐵 = 0.5𝑚𝑉𝐵
2 = 0.5(10)(10.61)2 = 563 J 

The velocity and kinetic energy just after the fourth impact are calculated: 

𝑉𝐴 = √𝑉𝑋𝐴
2 + 𝑉𝑌𝐴

2 = √(2.93)2 + (3.77)2 = 4.77 
m

s
 

𝐾𝐸𝐴 = 0.5𝑚𝑉𝐴
2 = 0.5(10)(4.77)2 = 111 J 

The velocity and kinetic energy at the fifth peak of the rock trajectory (at x  60.3 m) are calculated: 

𝑉𝑃𝐸𝐴𝐾 = 𝑉𝑋𝐴 = 2.93 𝑚/𝑠 

𝐾𝐸𝑃𝐸𝐴𝐾 = 0.5𝑚𝑉𝑃𝐸𝐴𝐾
2 = 0.5(10)(2.93)2 = 42.9 J 

A comparison of the results produced by hand calculation and by the program are presented in the 

following table: 

Table 1.4-5: Comparison of Velocity and Kinetic Energy Results for Step 4 

 Hand Calculation RocFall2 Difference 

𝑽𝑩 10.61 10.52 0.85% 

𝑽𝑨 4.77 4.67 2.1% 

𝑽𝑷𝑬𝑨𝑲 2.93 2.93 - 

𝑲𝑬𝑩 563 553 1.78% 

𝑲𝑬𝑨 111 109 1.80% 

𝑲𝑬𝑷𝑬𝑨𝑲 42.9 42.9 - 

 

Bounce-Height Envelope 

We can see by inspection of Figure 1.4-4 that the bounce-height envelope is of the correct shape. The 

curvature of each section appears to be correct and the peaks occur at the correct locations. The bounce-

height is also zero at the correct locations (where the rock impacts the slope). Since the shape of the 

bounce-height envelope appeared to be correct, the graph was verified by checking the value (the 

bounce-height) of the graph at significant locations along the slope profile. The value was checked at 

each of the slope vertices. The vertices offered a good place to check the values on the graph because 

they correspond to either an abrupt change in slope of the graph or a peak on the bounce-height 

envelope. 
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Figure 1.4-4: RocFall2 Bounce Height Graph 

 

The bounce-height at the second slope vertex is calculated: 

𝑡 =
(𝑋2 − 𝑋1)

𝑉𝑋

=
(7 − 0)

7
= 1 s 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌𝑡 + 𝑌0 =

1

2
(−9.81)(1)2 + 2(1) + 60 = 57.1 m 

∆ℎ = 𝑌𝐼 − 𝐻𝑆 = 57.1 − 39 = 18.100 m 

The bounce-height at the third slope vertex is calculated: 

𝑡 =
(𝑋2 − 𝑋1)

𝑉𝑋

=
(19 − 15.732)

3.38
= 0.967 s 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌𝑡 + 𝑌0 =

1

2
(−9.81)(0.967)2 + 10.59(0.967) + 39.728 = 45.380 m 

∆ℎ = 𝑌𝐼 − 𝐻𝑆 = 45.38 − 40 = 5.380 m 
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The bounce-height at the fourth slope vertex is calculated: 

𝑡 =
(𝑋2 − 𝑋1)

𝑉𝑋

=
(26 − 15.732)

3.38
= 3.04 s 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌𝑡 + 𝑌0 = 0.5(−9.81)(3.04)2 + 10.59(3.04) + 39.728 = 26.648 m 

∆ℎ = 𝑌𝐼 − 𝐻𝑆 = 26.648 − 22 = 4.648 m 

The bounce-height at the fifth slope vertex is calculated: 

𝑡 =
(𝑋2 − 𝑋1)

𝑉𝑋

=
(38 − 26.8)

8.14
= 1.38 s 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌𝑡 + 𝑌0 =

1

2
(−9.81)(1.38)2 + 11.21(1.38) + 21.867 = 28.008 m 

∆ℎ = 𝑌𝐼 − 𝐻𝑆 = 28.008 − 20 = 8.008 m 

The bounce-height at the sixth slope vertex is calculated: 

𝑡 =
(𝑋2 − 𝑋1)

𝑉𝑋

=
(46 − 26.8)

8.14
= 2.36 s 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌𝑡 + 𝑌0 =

1

2
(−9.81)(2.36)2 + 11.21(2.36) + 21.867 = 21.028 

m

s
 

∆ℎ = 𝑌𝐼 − 𝐻𝑆 = 21.028 − 0 = 21.028 m 

A comparison of the results produced by hand calculation and by the program are presented in the 

following table: 

Table 1.4-6: Comparison of Bounce Height Results 

Vertex Hand Calculation RocFall2 Difference 

2 18.1 18.06 0.22% 

3 5.38 5.37 0.19% 

4 4.648 4.719 1.50% 

5 8.008 8.010 0.03% 

6 21.028 20.999 0.14% 
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1.4.4. Results 

The results were very similar in all cases. The difference between the manual calculations and the values 

produced by RocFall2 were less than 2.5% in all cases, and typically much less. Therefore, it seems that 

the velocity envelope, the kinetic energy envelope, and the bounce-height envelope are all being 

produced correctly. 

The reason the results produced by RocFall2 do not correspond exactly to the manual calculations is 

because the points on the envelope are not at exactly the same locations as the points used for the 

manual calculations. The program collects data for the envelopes at a number of locations evenly spaced 

along the slope profile (the number of locations used in this example was 1000). Since the program only 

collects data at these points there will be many locations where there is no data (i.e. in the spaces 

between the envelope points). In these cases, the envelope value at the closest horizontal location was 

used.  

For example: The value for the bounce-height, by manual calculation, at 𝑋 = 46.000 m was 21.028 m. 

The program produced results at 𝑋 = 45.924 m (bounce-height = 20.929 m) and 𝑋 = 46.013 m (bounce-

height = 20.999 m). Since the peak value is at 46.000 m and the two locations produced by the program 

border this location, they will be slightly lower, and the results will not be exact.  

Increasing the number of locations used to collect data would have decreased the difference between the 

program results and the manual calculations. However, given the lack of certainty in much of the input 

data (e.g. 𝑅𝑇), the additional precision is of questionable value. 

 

1.4.5. Input Files 

RocFall_LumpMass_Verification_#4_Envelope.fal8  
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1.5. RocFall2 Verification Problem #5 – Angular Velocity 

[RocFall2 Build 8.007] 

1.5.1. Problem Description 

The purpose of this verification is to confirm that the angular velocity algorithm used by the program is 

working correctly.  

The example consists of a slope with two benches and a single rock that begins its travel at the crest of 

the slope. This example is identical to RocFall2 Verification Problem #1 – Projectile except that angular 

velocity has been considered in the equations. The rock was given an initial velocity and bounced a 

number of times before coming to rest at the base of the slope.  

The slope was created by making minor modifications to the geometry of an actual slope profile. The 

geometry was modified so that the impacts would occur on slope segments with a positive slope, a 

negative slope and a horizontal segment.  

The slope geometry and the input parameters were configured so that no sliding would occur. No 

statistics were incorporated into this verification (i.e. only mean values were used; all standard deviations 

were set to 0). Although rock trajectories in an actual simulation typically have dozens of steps, only the 

first four steps are followed here. This was done in the interest of brevity. 

The minimum velocity (𝑉𝑀𝐼𝑁) was set to 1 m/s. This minimum velocity was selected so that the simulation 

did not end before the four steps were complete. Other numbers used in this example (e.g. the mass of 

the rock) were selected primarily for their ease in manual calculations. 

 

1.5.2. RocFall2 Analysis 

The same geometry and parameters from RocFall2 Verification Problem #1 – Projectile were entered into 

RocFall2. 

Slope Geometry and Material Properties 

The location of the slope vertices and the coefficients of restitution for each slope segment are presented 

in the following table: 

Table 1.5-1: Slope Geometry and Materials 

 X-Coordinate Y-Coordinate 
Normal Coefficient 

of Restitution 
𝑹𝑵 

Tangential 
Coefficient of 
Restitution 

𝑹𝑻 

Vertex 1 0 60   

Segment 1   0.5 0.8 

Vertex 2 7 39   

Segment 2   0.5 0.8 

Vertex 3 19 40   

Segment 3   0.5 0.8 

Vertex 4 26 22   

Segment 4   0.6 0.9 

Vertex 5 38 20   

Segment 5   0.6 0.9 
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Vertex 6 46 0   

Segment 6   0.4 0.6 

Vertex 7 89 0   

 

Initial Conditions 

The rock starts at location 𝑋0 = 0 m, 𝑌0 = 60 m (which coincides with the first slope vertex). The rock was 

given an initial velocity of 𝑉𝑋0 = 7 m/s, 𝑉𝑌0 = 2 m/s and a mass of 10 kg. 

The rock was given an angular velocity 𝜔0  = 0 m/s. The rock is assumed to be a sphere with a density of 

2100 kg/m3 for purposes of calculating a radius and moment of inertia from the mass: 

𝑟 = √
3𝑚

4𝜋𝛾

3

= √
3 ⋅ 10

4 ⋅ 𝜋 ⋅ 2100

3

= 0.104 m 

 

(28) 

𝐼 =
2𝑚𝑟2

5
=

2 ⋅ 10 ⋅ 0.1042

5
= 0.0436 kg ∙ m2 

 

(29) 

 

As a basis for comparison, the same model is computed once with the consideration of rotational velocity 

and once without. 

Enter the seeder and slope geometry values from Table 1.1-1 into RocFall2.  

Note: Ensure that Consider rotational velocity and both Scale Rn by Velocity and Scale Rn 

by Mass are unchecked under Project Settings. 

The RocFall2 model looks like this: 
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Figure 1.5-1: RocFall2 Rock Trajectory Model Results (Angular Velocity Not Considered) 

Now, ensure that rotation velocity is considered. 

Note: Ensure that Consider rotational velocity is checked and both Scale Rn by Velocity and 

Scale Rn by Mass are unchecked under Project Settings. 

The RocFall2 model looks like this: 

 

Figure 1.5-2: RocFall2 Rock Trajectory Model Results (Angular Velocity Considered) 

 

1.5.3. Analytical Solution 

The angular velocity calculations are very similar to the projectile calculations. The difference between the 

two is between the steps where the velocity is transformed from horizontal and vertical components into 

normal and tangential components; and when it is transformed back into horizontal and vertical 

components. For a more detailed explanation of the steps involved in the projectile algorithm, please 

consult RocFall2 Verification Problem #1 – Projectile. 

Equations and Sample Calculations 

Step 1: 

The rock starts at location 𝑋0 = 0 m, 𝑌0 = 60 m (which coincides with the first slope vertex). The rock was 

given an initial velocity of 𝑉𝑋0 = 7 m/s, 𝑉𝑌0 = 2 m/s. The necessary parameters are determined, and the 

quadratic equation is solved to find the time of intersection with the second slope segment: 

𝑡 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

−(1.417) ± √(1.417)2 − 4(−4.90)(21.58)

2(−4.90)
≅ −1.958 𝑜𝑟 2.25 𝑠 
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Where: 

𝑞 =
(𝑌2 − 𝑌1)

(𝑋2 − 𝑋1)
=

(40 − 39)

(19 − 7)
≅ 0.0833 

𝑎 =
1

2
𝑔 ≅ −4.90 

𝑏 = 𝑉𝑌0 − 𝑞𝑉𝑋0 = 2 − (0.0833)7 ≅ 1.417 

𝑐 = 𝑌0 − 𝑌1 + 𝑞(𝑋1 − 𝑋0) = 60 − 39 + 0.0833(7 − 0) ≅ 21.58 

𝑡 = -1.958 s is rejected because 𝑡 must lie in the range [0, ∞]. The intersection point and pre-intersection 

velocity are found by substituting 𝑡 back into the following equations: 

𝑋𝐼 = 𝑉𝑋0𝑡 + 𝑋0 = 7(2.25) + 0 = 15.729 m 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌0𝑡 + 𝑌0 =

1

2
(−9.81)(2.25)2 + 2(2.25) + 60 = 39.727 m 

𝑉𝑋𝐵 = 𝑉𝑋0 = 7 
m

s
 

𝑉𝑌𝐵 = 𝑉𝑌0 + 𝑔𝑡 = 2 + (−9.81)2.25 = −20.04 
m

s
 

The velocities are transformed into components normal and tangential to the slope segment: 

𝜃 = tan−1 𝑞 = 4.77° 

𝑉𝑁𝐵 = 𝑉𝑌𝐵 cos 𝜃 − 𝑉𝑋𝐵 sin 𝜃 = (−20.04) cos(4.77) − (7) sin(4.77) = −20.6 
m

s
 

𝑉𝑇𝐵 = 𝑉𝑌𝐵 sin 𝜃 + 𝑉𝑋𝐵 cos 𝜃 = (−20.04) sin(4.77) + (7) cos(4.77) = 5.31 
m

s
 

The friction function (𝐹1) and scaling function (𝐹2) are calculated (the empirical constants 𝐶𝐹1 = 6.096 m/s 

(20 ft/s) and 𝐶𝐹2 = 76.2 m/s (250 ft/s) are used in these equations): 

𝐹1 = 𝑅𝑇 +
(1 − 𝑅𝑇)

[
𝑉𝑇𝐵 − 𝜔𝐵𝑟

𝐶𝐹1
]

2

+ 1.2

= 0.8 +
(1 − 0.8)

[
5.31 − (0)(0.104)

6.096
]

2

+ 1.2

= 0.9021 

 

(30) 

𝐹2 =
𝑅𝑇

[
𝑉𝑁𝐵

𝐶𝐹2𝑅𝑁
]

2

+ 1

=
0.8

[
−20.6

(76.2)(0.5)
]

2

+ 1

= 0.620 

 

(31) 

Calculate the outgoing velocities: 

𝑉𝑁𝐴 = 𝑅𝑁𝑉𝑁𝐵 = 0.5(−20.6) = −10.28 
m

s
 

𝑉𝑇𝐴 = √
𝑟2[𝐼𝜔𝐵

2 + 𝑚𝑉𝑇𝐵
2]𝐹1𝐹2

𝐼 + 𝑚𝑟2
 

= √
(0.104)2[0.0436(0)2 + (10)(5.31)2](0.9021)(0.620)

0.0436 + (10)(0.104)2
= 3.36 

m

s
 

(32) 
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𝜔𝐴 =
𝑉𝑇𝐴

𝑟
=

3.36

0.104
= 32.16 

rad

s
 

 

(33) 

The velocities are transformed back into vertical and horizontal components: 

𝑉𝑋𝐴 = 𝑉𝑁𝐴 sin 𝜃 + 𝑉𝑇𝐴 cos 𝜃 = (−10.28) sin(4.77) + (3.36) cos(4.77) = 2.49 
m

s
 

𝑉𝑌𝐴 = 𝑉𝑇𝐴 sin 𝜃 − 𝑉𝑁𝐴 cos 𝜃 = (3.36) sin(4.77) − (−10.28) cos(4.77) = 10.52 
m

s
 

Step 1 is complete. The velocity of the rock, after impact, is calculated: 

𝑉𝐶𝐻𝐸𝐶𝐾 = √𝑉𝑋𝐴
2 + 𝑉𝑌𝐴

2 = √(2.49)2 + (10.52)2 = 10.81 
m

s
  

Since the velocity of the rock, 𝑉𝐶𝐻𝐸𝐶𝐾  (= 10.81 m/s) is greater than the minimum velocity, 𝑉𝑀𝐼𝑁  (= 1.0 m/s), 

the rock is still considered to be moving. Since the rock is still moving, the simulation must continue for at 

least one more step. 

Step 2: 

The final rock conditions for Step 1 are used as the initial conditions for Step 2. That is: 

𝑋0(𝑠𝑡𝑒𝑝2) = 𝑋I(𝑠𝑡𝑒𝑝1) 

𝑌0(𝑠𝑡𝑒𝑝2) = 𝑌I(𝑠𝑡𝑒𝑝1) 

𝑉𝑋0(𝑠𝑡𝑒𝑝2) = 𝑉𝑋𝐴(𝑠𝑡𝑒𝑝1) 

𝑉𝑌0(𝑠𝑡𝑒𝑝2) = 𝑉𝑌𝐴(𝑠𝑡𝑒𝑝1) 

𝜔0(𝑠𝑡𝑒𝑝2) = 𝜔𝐴(𝑠𝑡𝑒𝑝1) 

 

The necessary parameters are determined, and the quadratic equation is solved to find the time to 

intersection with the third slope segment: 

𝑡 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

−(16.90) ± √(16.90)2 − 4(−4.90)(−8.683)

2(−4.90)
≅ 0.627 𝑜𝑟 2.824 s 

Where: 

𝑞 =
(𝑌2 − 𝑌1)

(𝑋2 − 𝑋1)
=

(22 − 40)

(26 − 19)
≅ −2.5714 

𝑎 =
1

2
𝑔 ≅ −4.90 

𝑏 = 𝑉𝑌0 − 𝑞𝑉𝑋0 = 10.52 − (−2.571)2.49 ≅ 16.93 

𝑐 = 𝑌0 − 𝑌1 + 𝑞(𝑋1 − 𝑋0) = 39.727 − 40 + (−2.5714)(19 − 15.729) ≅ −8.683 

𝑡 = 0.627 s is rejected because the slope is not defined at this time. The intersection point and pre-impact 

velocity are determined:  
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𝑋𝐼 = 𝑉𝑋0𝑡 + 𝑋0 = 2.49(2.824) + 15.729 = 22.764 m 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌0𝑡 + 𝑌0 =

1

2
(−9.81)(2.824)2 + 10.52(2.824) + 39.727 = 30.322 m 

𝑉𝑋𝐵 = 𝑉𝑋0 = 2.49 
m

s
 

𝑉𝑌𝐵 = 𝑉𝑌0 + 𝑔𝑡 = 10.52 + (−9.81)(2.824) = −17.18 
m

s
  

The velocities are transformed into components normal and tangential to the slope segment: 

𝜃 = tan−1 𝑞 = −68.75° 

𝑉𝑁𝐵 = 𝑉𝑌𝐵 cos 𝜃 − 𝑉𝑋𝐵 sin 𝜃 = (−17.18) cos(−68.75) − (2.49) sin(−68.75) = −3.90 
m

s
 

𝑉𝑇𝐵 = 𝑉𝑌𝐵 sin 𝜃 + 𝑉𝑋𝐵 cos 𝜃 = (−17.18) sin(−68.75) + (2.49) cos(−68.75) = 16.92 
m

s
 

The friction function (𝐹1) and scaling function (𝐹2) are calculated:  

𝐹1 = 𝑅𝑇 +
(1 − 𝑅𝑇)

[
𝑉𝑇𝐵 − 𝜔𝐵𝑟

𝐶𝐹1
]

2

+ 1.2

= 0.8 +
(1 − 0.8)

(
16.92 − (32.16)(0.104)

6.096
)

2

+ 1.2

= 0.8325 

𝐹2 =
𝑅𝑇

[
𝑉𝑁𝐵

𝐶𝐹2𝑅𝑁
]

2

+ 1

=
0.8

[
−3.90

(76.2)(0.5)
]

2

+ 1

= 0.7917 

Calculate the outgoing velocities: 

𝑉𝑁𝐴 = 𝑅𝑁𝑉𝑁𝐵 = 0.5(−3.90) = −1.953 
m

s
 

𝑉𝑇𝐴 = √
𝑟2[𝐼𝜔𝐵

2 + 𝑚𝑉𝑇𝐵
2]𝐹1𝐹2

𝐼 + 𝑚𝑟2
= √

(0.104)2[0.0436(32.16)2 + (10)(16.92)2](0.8325)(0.7917)

0.0436 + (10)(0.104)2
= 11.70 

m

s
 

𝜔𝐴 =
𝑉𝑇𝐴

𝑟
=

11.70

0.104
= 112.1 

rad

s
 

The velocities are transformed back into vertical and horizontal components: 

𝑉𝑋𝐴 = 𝑉𝑁𝐴 sin 𝜃 + 𝑉𝑇𝐴 cos 𝜃 = (−1.953) sin(−68.75) + (11.70) cos(−68.75) = 6.06 
m

s
 

𝑉𝑌𝐴 = 𝑉𝑇𝐴 sin 𝜃 − 𝑉𝑁𝐴 cos 𝜃 = (11.70) sin(−68.75) − (−1.953) cos(−68.75) = −10.19 
m

s
 

Step 2 is complete. The velocity of the rock, after impact, is calculated: 

𝑉𝐶𝐻𝐸𝐶𝐾 = √𝑉𝑋𝐴
2 + 𝑉𝑌𝐴

2 = √(6.06)2 + (−10.19)2 = 11.86 
m

s
  

Since the velocity of the rock, 𝑉𝐶𝐻𝐸𝐶𝐾  (= 11.86 m/s) is greater than the minimum velocity, 𝑉𝑀𝐼𝑁  (= 1.0 m/s), 

the rock is still considered to be moving. Since the rock is still moving, the simulation must continue for at 

least one more step. 
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Step 3: 

In a similar fashion to the previous step, the final rock conditions for Step 2 are used as the initial 

conditions for Step 3.  

The necessary parameters are determined, and the quadratic equation is solved to find the time to 

intersection with the fourth slope segment: 

𝑡 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

−(−9.185) ± √(−9.185)2 − 4(−4.90)(7.782)

2(−4.90)
≅ −2.506 𝑜𝑟 0.6332 𝑠 

Where: 

𝑞 =
(𝑌2 − 𝑌1)

(𝑋2 − 𝑋1)
=

(20 − 22)

(38 − 26)
= −0.1667 

𝑎 =
1

2
𝑔 ≅ −4.90 

𝑏 = 𝑉𝑌0 − 𝑞𝑉𝑋0 = −10.19 − (−0.1667)6.06 ≅ −9.185 

𝑐 = 𝑌0 − 𝑌1 + 𝑞(𝑋1 − 𝑋0) = 30.322 − 22 + (−0.1667)(26 − 22.764) ≅ 7.782 

𝑡 = -2.506 s is rejected because 𝑡 must lie in the range [0, ∞]. The intersection point and pre-impact 

velocity are determined: 

𝑋𝐼 = 𝑉𝑋0𝑡 + 𝑋0 = 6.06(0.6332) + 22.764 = 26.601 m 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌0𝑡 + 𝑌0 =

1

2
(−9.81)(0.6332)2 + (−10.19)(0.6332) + 30.322 = 21.900 m 

𝑉𝑋𝐵 = 𝑉𝑋0 = 6.06 
m

s
 

𝑉𝑌𝐵 = 𝑉𝑌0 + 𝑔𝑡 = −10.19 + (−9.81)(0.6332) = −16.41 
m

s
 

The velocities are transformed into components normal and tangential to the slope segment: 

𝜃 = tan−1 𝑞 = −9.4623° 

𝑉𝑁𝐵 = 𝑉𝑌𝐵 cos 𝜃 − 𝑉𝑋𝐵 sin 𝜃 = (−16.41) cos(−9.462) − (6.06) sin(−9.462) = −15.19 
m

s
 

𝑉𝑇𝐵 = 𝑉𝑌𝐵 sin 𝜃 + 𝑉𝑋𝐵 cos 𝜃 = (−16.41) sin(−9.462) + (6.06) cos(−9.462) = 8.67 
m

s
 

The friction function (𝐹1) and scaling function (𝐹2) are calculated:  

𝐹1 = 𝑅𝑇 +
(1 − 𝑅𝑇)

[
𝑉𝑇𝐵 − 𝜔𝐵𝑟

𝐶𝐹1
]

2

+ 1.2

= 0.8 +
(1 − 0.9)

(
8.67 − (112.1)(0.104)

6.096
)

2

+ 1.2

= 0.969 

𝐹2 =
𝑅𝑇

[
𝑉𝑁𝐵

𝐶𝐹2𝑅𝑁
]

2

+ 1

=
0.9

[
−15.19

(76.2)(0.6)
]

2

+ 1

= 0.810 
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Calculate the outgoing velocities: 

𝑉𝑁𝐴 = 𝑅𝑁𝑉𝑁𝐵 = 0.6(−15.19) = −9.112 
m

s
 

𝑉𝑇𝐴 = √
𝑟2[𝐼𝜔𝐵

2 + 𝑚𝑉𝑇𝐵
2]𝐹1𝐹2

𝐼 + 𝑚𝑟2
= √

(0.104)2[0.0436(112.1)2 + (10)(8.67)2](0.969)(0.810)

0.0436 + (10)(0.104)2
= 8.541 

m

s
 

𝜔𝐴 =
𝑉𝑇𝐴

𝑟
=

8.541

0.104
= 81.83 

rad

s
 

The velocities are transformed back into vertical and horizontal components: 

𝑉𝑋𝐴 = 𝑉𝑁𝐴 sin 𝜃 + 𝑉𝑇𝐴 cos 𝜃 = (−9.112) sin(−9.462) + (8.541) cos(−9.462) = 9.92 
m

s
 

𝑉𝑌𝐴 = 𝑉𝑇𝐴 sin 𝜃 − 𝑉𝑁𝐴 cos 𝜃 = (8.541) sin(−9.462) − (−9.112) cos(−9.462) = 7.58 
m

s
 

Step 3 is complete. The velocity of the rock, after impact, is calculated: 

𝑉𝐶𝐻𝐸𝐶𝐾 = √VXA
2 + VYA

2 = √(9.92)2 + (7.58)2 = 12.49 
m

s
  

Since the velocity of the rock, 𝑉𝐶𝐻𝐸𝐶𝐾  (=12.49 m/s) is greater than the minimum velocity, 𝑉𝑀𝐼𝑁  (= 1.0 m/s), 

the rock is still considered to be moving. Since the rock is still moving, the simulation must continue for at 

least one more step. 

Step 4: 

The final rock conditions for Step 3 are used as the initial conditions for Step 4. The necessary 

parameters are determined, and the quadratic equation is solved to find the time to intersection with the 

sixth slope segment: 

𝑡 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

−(7.584) ± √(7.584)2 − 4(−4.90)(21.90)

2(−4.90)
≅ −1.477 𝑜𝑟 3.023 s 

Where: 

𝑞 =
(𝑌2 − 𝑌1)

(𝑋2 − 𝑋1)
=

(0 − 0)

(89 − 46)
= 0 

𝑎 =
1

2
𝑔 ≅ −4.90 

𝑏 = 𝑉𝑌0 − 𝑞𝑉𝑋0 = 7.58 − (0)9.92 ≅ 7.584 

𝑐 = 𝑌0 − 𝑌1 + 𝑞(𝑋1 − 𝑋0) = 21.90 − 0 + 0(46 − 26.58) = 21.90 

t = -1.477 s is rejected because t must lie in the range [0, ∞]. The intersection point and pre-impact 

velocity are determined:  

𝑋𝐼 = 𝑉𝑋0𝑡 + 𝑋0 = 9.92(3.023) + 26.601 = 56.598 m 

𝑌𝐼 =
1

2
𝑔𝑡2 + 𝑉𝑌0𝑡 + 𝑌0 =

1

2
(−9.81)(3.023)2 + 7.58(3.023) + 21.900 = 0.000 m 

𝑉𝑋𝐵 = 𝑉𝑋0 = 9.92 
m

s
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𝑉𝑌𝐵 = 𝑉𝑌0 + 𝑔𝑡 = 7.58 + (−9.81)3.023 = −22.07 
m

s
 

The velocities are transformed into components normal and tangential to the slope segment: 

𝜃 = tan−1 𝑞 = 0.0° 

𝑉𝑁𝐵 = 𝑉𝑌𝐵 cos 𝜃 − 𝑉𝑋𝐵 sin 𝜃 = (−22.07) cos(0) − (9.92) sin(0) = −22.07 
m

s
 

𝑉𝑇𝐵 = 𝑉𝑌𝐵 sin 𝜃 + 𝑉𝑋𝐵 cos 𝜃 = (−22.07) sin(0) + (9.92) cos(0) = 9.92 
m

s
 

The friction function (𝐹1) and scaling function (𝐹2) are calculated:  

𝐹1 = 𝑅𝑇 +
(1 − 𝑅𝑇)

[
𝑉𝑇𝐵 − 𝜔𝐵𝑟

𝐶𝐹1
]

2

+ 1.2

= 0.8 +
(1 − 0.6)

[
9.92 − (81.83)(0.104)

6.096
]

2

+ 1.2

= 0.9197 

𝐹2 =
𝑅𝑇

[
𝑉𝑁𝐵

𝐶𝐹2𝑅𝑁
]

2

+ 1

=
0.6

[
−22.07

(76.2)(0.4)
]

2

+ 1

= 0.3936 

Calculate the outgoing velocities: 

𝑉𝑁𝐴 = 𝑅𝑁𝑉𝑁𝐵 = 0.5(−22.07) = −8.83 
m

s
 

𝑉𝑇𝐴 = √
𝑟2[𝐼𝜔𝐵

2 + 𝑚𝑉𝑇𝐵
2]𝐹1𝐹2

𝐼 + 𝑚𝑟2
= √

(0.104)2[(0.0436)(81.83)2 + (10)(9.92)2](0.9197)(0.3936)

0.0436 + (10)(0.104)2
= 5.74 

m

s
 

𝜔𝐴 =
𝑉𝑇𝐴

𝑟
=

5.74

0.104
= 55.04 

rad

s
 

The velocities are transformed back into vertical and horizontal components: 

𝑉𝑋𝐴 = 𝑉𝑁𝐴 sin 𝜃 + 𝑉𝑇𝐴 cos 𝜃 = (−8.83) sin(0) + (5.74) cos(0) = 5.74 
m

s
 

𝑉𝑌𝐴 = 𝑉𝑇𝐴 sin 𝜃 − 𝑉𝑁𝐴 cos 𝜃 = (5.74) sin(0) − (−8.83) cos(0) = 8.83 
m

s
 

Step 4 is complete. The velocity of the rock, after impact, is calculated: 

𝑉𝐶𝐻𝐸𝐶𝐾 = √𝑉𝑋𝐴
2 + 𝑉𝑌𝐴

2 = √(5.74)2 + (8.83)2 = 10.53 
m

s
  

Since the velocity of the rock, 𝑉𝐶𝐻𝐸𝐶𝐾  (= 10.53 m/s) is greater than the minimum velocity, 𝑉𝑀𝐼𝑁  (= 1.0 m/s), 

the rock is still considered to be moving. Since the rock is still moving, the simulation must continue for at 

least one more step. However, the hand calculations will not continue because they are very similar to 

Step 4, and will not provide much further verification, only repetition. 

1.5.4. Results 

The same geometry and parameters were input into RocFall2 and a simulation was performed. The 

results from RocFall2 were compared to the manual calculations. The results from the manual 

calculations were identical to the RocFall2 results for all practical purposes. The impact locations 

calculated by hand agreed with the program results up to the third decimal place in all cases (i.e. less 
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than 0.5 mm difference, everywhere). Therefore, the angular velocity algorithm seems to be working 

correctly.  

 

1.5.5. Input Files 

RocFall_LumpMass_Verification_#5_Angular.fal8 
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2. RocFall2 Collision Analysis Verification 

This document presents several lump mass rockfall examples, which have been used as collision 

verification problems for RocFall2. The results produced by RocFall2 agree very well with the results 

produced by the Colorado Rockfall Simulation Program (CRSP) in the following case studies.
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2.1. RocFall2 Verification Problem #1 – West Rifle Test Site  

[RocFall2 Build 8.009] 

2.1.1. Problem Description 

This exercise verifies the average bounce height and translational velocity using the results from the 

Colorado Rockfall Simulation Program (CRSP) [1].  CRSP calibrated its simulation using data collected 

from a 300 feet high hillside near Rifle, Colorado. The slope material consists of thin desert soil with rocky 

ledges and sparse vegetation. 100 spherical rocks were used in the CRSP example and 5000 spherical 

rocks are used in the RocFall2 analysis using the Lump Mass formulation. 

 

2.1.2. RocFall2 Analysis 

In the RocFall2 Project Settings dialog, make sure Consider angular velocity checkbox is selected. 

CRSP always considers angular velocity. When computing angular velocity in RocFall2, the moment of 

inertia of the rock is always assumed to be that of a sphere. In CRSP, you can choose between a sphere, 

cylinder, or disc. To compare with RocFall2, you must use the default spherical shape in CRSP. Under 

Scaling Functions pane, make sure the Scale Rn by Velocity checkbox is selected and the 𝐾 factor is 

30 ft/s for US imperial units or 9.144 m/s for metric units. CRSP always scales 𝑅𝑛 by velocity. Also, make 

sure that the Scale Rn by Mass checkbox is unselected. 

Another main difference between RocFall2 and CRSP is the definition of slope roughness. In CRSP, 

variation in slope geometry is done through a roughness parameter which varies the angle of the slope 

segment on contact with a rock. In RocFall2, one can statistically vary the angle of the slope segment in 

the Material Editor dialog. Slope roughness (𝑆) in CRSP can be translated to maximum slope variation 

angle (𝜃𝑚𝑎𝑥) with the following equation:  

𝜃𝑚𝑎𝑥 = tan−1 (
𝑆

𝑟
) 

 Where: 

  𝑆 is the slope roughness 

  𝑟 is the rock radius 

 

In RocFall2, you define the standard deviation of the slope roughness. RocFall2 assumes the actual 

slope angle at any point varies according to a normal distribution. To get similar results, set the standard 

deviation to be equal to half of 𝜃𝑚𝑎𝑥 (e.g., if the maximum slope variation is 10.3 degrees, set the 

standard deviation of the slope roughness in RocFall2 to 5.15 degrees). The reasoning behind this is 

simple: In a normal distribution, 95 percent of all values fall within 2 standard deviations of the mean. By 

setting the standard deviation equal to half the maximum slope variation, you are guaranteed that 95% of 

all sampled slope angles will fall in the range used by CRSP. 

Slope Geometry and Material Properties 

The location of the slope vertices and material parameters for all slope segments are presented in the 

following tables: 
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Table 2.1-1: Slope Geometry and Materials 

 X Y 
Normal 

Restitution 
𝑹𝑵 

Tangential 
Restitution 

𝑹𝑻 

Friction 
Angle 

𝝓 
(deg) 

Surface 
Roughness 
Std. Dev. 

(deg) 
Vertex 1 0 320     

Segment 1   0.25 0.82 1 5.15 

Vertex 2 8 314     

Segment 2   0.32 0.84 1 7.62 

Vertex 3 18 304     

Segment 3   0.32 0.84 1 9.99 

Vertex 4 34 290     

Segment 4   0.32 0.84 1 21.14 

Vertex 5 66 258     

Segment 5   0.3 0.84 1 9.99 

Vertex 6 92 240     

Segment 6   0.3 0.84 1 9.99 

Vertex 7 120 214     

Segment 7   0.3 0.83 1 9.99 

Vertex 8 199 164     

Segment 8   0.33 0.82 1 12.22 

Vertex 9 260 140     

Segment 9   0.33 0.82 1 9.99 

Vertex 10 269 133     

Segment 10   0.34 0.84 1 16.24 

Vertex 11 305 108     

Segment 11   0.34 0.84 1 14.31 

Vertex 12 335 87     

Segment 12   0.34 0.84 1 9.99 

Vertex 13 396 51     

Segment 13   0.34 0.85 1 5.15 

Vertex 14 410 49     

 

Initial Conditions 

The rock starts at location 𝑋0 = 1.32 ft, 𝑌0 = 325 to 330 ft, which is added as a Line Seeder in RocFall2. 

The rock was given an initial velocity of 𝑉𝑋0 = 1 ft/s, 𝑉𝑌0 = -1 ft/s. The rock has a radius of 2.2 ft, mass of 

7358 lb and density of 165 lb/ft3. 

Enter the seeder and slope geometry values from Table 2.1-1 into RocFall2.  
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The RocFall2 model looks like this: 

 

Figure 2.1-1: RocFall2 Model Geometry 

 

Figure 2.1-2: RocFall2 Rock Trajectory Model Results 
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Figure 2.1-3: RocFall2 Maximum Bounce Height Results 

 

Figure 2.1-4: RocFall2 Maximum Translational Velocity Results 

 



 

 
 58 rocscience.com 

2.1.3. Building a Compatible CRSP Model 

 

Figure 2.1-5: CRSP Rock Trajectory Model Results 

 

Figure 2.1-6: CRSP Maximum Bounce Height Results 
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Figure 2.1-7: CRSP Maximum Translational Velocity Results 

 

2.1.4. Results 

The maximum bounce height and translational velocity are presented in Figure 2.1-3, Figure 2.1-6, Figure 

2.1-4, and Figure 2.1-7. The results obtained from RocFall2 compare well with the CRSP model. 

 

2.1.5. Input Files 

RocFall_LumpMass_Verification_#1_West Rifle Slope.fal8 
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2.2. RocFall2 Verification Problem #2 – Glenwood Canyon  

[RocFall2 Build 8.009] 

2.2.1. Problem Description 

This exercise verifies the average bounce height and translational velocity using the results from the 

Colorado Rockfall Simulation Program (CRSP) [1].  CRSP calibrated its simulation using data collected 

from quartzite cliffs 750 ft above Interstate 70 (I-70) in Glenwood Canyon, Colorado. The study was for 

the design of rockfall mitigation after rockfall incidents damaged two retaining walls under construction. 

The upper third of the slope is granitic bedrock with sparse vegetation and a thin soil cover, while the 

other two thirds above I-70 is talus cover with scattered shrubs. 100 disk shaped rocks were used in the 

CRSP example and 5000 spherical rocks are used in the RocFall2 analysis using the Lump Mass 

formulation. 

 

2.2.2. RocFall2 Analysis 

In the original CRSP example, a disk-shaped rock with radius of 2.2 ft is used. In RocFall2, spheres are 

used. The only difference is the value of the moment of inertia (𝐼) when calculating angular velocities.  

For a disk: 𝐼 = 0.5𝑚𝑟2 ;  

For a sphere: 𝐼 = 0.4 × 𝑚𝑟2  

 Where: 

  𝐼 is the moment of inertia 

  𝑚 is the mass 

  𝑟 is the radius 

 
For a 2.2 ft radius disk, 𝐼 = 9102 lb-ft2. We will keep mass the same but enter an equivalent radius, so we 

have the same moment of inertia. The equivalent radius is 𝑟𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = 2.46 ft. To have a sphere with a 

radius 𝑟 = 2.46 ft and mass 𝑚 = 3761 lb, we need an adjusted density of 60.34 lb/ft3. These are 

modifications required to have the same mass and moment of inertia in order to simulate the same 

behavior as that of a disk as defined in the CRSP example. 

Surface roughness is calculated with the following equation using the original radius of 2.2 ft:  

𝜃𝑚𝑎𝑥 = tan−1 (
𝑆

𝑟
) 

 Where: 

  𝑆 is the slope roughness 

  𝑟 is the rock radius 

 
In the RocFall2 Project Settings dialog, make sure Consider angular velocity. Under Scaling 

Functions pane, make sure the Scale Rn by Velocity checkbox is selected, the 𝐾 factor is set to 30 ft/s 

for US imperial units or 9.144 m/s for metric units, and Scale Rn by Mass checkbox is unselected. 



 

 
 61 rocscience.com 

Slope Geometry and Material Properties 

The location of the slope vertices and material parameters for all slope segments are presented in the 

following tables: 

Table 2.2-1: Slope Geometry and Materials 

 X Y 
Normal 

Restitution 
𝑹𝑵 

Tangential 
Restitution 

𝑹𝑻 

Friction 
Angle 

𝝓 
(deg) 

Surface 
Roughness 
Std. Dev. 

(deg) 
Vertex 1 0 794     

Segment 1   0.35 0.85 1 17.14 

Vertex 2 224 620     

Segment 2   0.35 0.85 1 19.64 

Vertex 3 248 600     

Segment 3   0.35 0.85 1 24.33 

Vertex 4 306 530     

Segment 4   0.32 0.81 1 12.22 

Vertex 5 385 480     

Segment 5   0.32 0.81 1 12.22 

Vertex 6 500 390     

Segment 6   0.32 0.81 1 14.31 

Vertex 7 557 360     

Segment 7   0.31 0.8 1 8.83 

Vertex 8 848 157     

Segment 8   0.31 0.8 1 7.63 

Vertex 9 925 110     

Segment 9   0.31 0.82 1 12.22 

Vertex 10 933 95     

Segment 10   0.32 0.8 1 6.4 

Vertex 11 968 78     

Segment 11   0.4 0.9 1 1.3 

Vertex 12 1002 60     

Segment 12   0.32 0.8 1 12.22 

Vertex 13 1069 25     

Segment 13   0.32 0.82 1 2.6 

Vertex 14 1075 27     

Segment 14   0.4 0.9 1 1.3 

Vertex 15 1104 27     

Segment 15   0.32 0.82 1 12.22 

Vertex 16 1153 4     

 

Initial Conditions 

The rock starts at location 𝑋0 = 0 ft, 𝑌0 = 800 to 810 ft, which is added as a Line Seeder in RocFall2. The 

rock was given an initial velocity of 𝑉𝑋0 = 1 ft/s, 𝑉𝑌0 = -1 ft/s. The rock has a radius of 2.46 ft (equivalent), 

mass of 3761 lb and density of 60.34 lb/ft3. 

Enter the seeder and slope geometry values from Table 2.2-1 into RocFall2.  

The RocFall2 model looks like this: 
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Figure 2.2-1: RocFall2 Model Geometry 

 

Figure 2.2-2: RocFall2 Rock Trajectory Model Results 
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Figure 2.2-3: RocFall2 Maximum Bounce Height Results 

 

Figure 2.2-4: RocFall2 Maximum Translational Velocity Results 
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2.2.3. Building a Compatible CRSP Model 

 

Figure 2.2-5: CRSP Rock Trajectory Model Results 

 

Figure 2.2-6: CRSP Maximum Bounce Height Results 
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Figure 2.2-7: CRSP Maximum Translational Velocity Results 

 

2.2.4. Results 

The maximum bounce height and translational velocity are presented in Figure 2.2-3, Figure 2.2-4, Figure 

2.2-6, and Figure 2.2-7. The results obtained from RocFall2 compare well with the CRSP model. 

 

2.2.5. Input Files 

RocFall_LumpMass_Verification_#2_Glenwood Canyon.fal8 
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