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Abstract

Stevens, Warren D., 1998. RocFall: a Tool for Probabilistic Analysis, Design of Remedial
Measures and Prediction of Rockfalls. A thesis submitted in conformity with the
requirements for the degree of Master of Applied Science, Graduate Department of
Civil Engineering, University of Toronto.

Accurate prediction of rockfallsis practically impossible. Variability in slope geometry,
poorly defined initial conditions, uncertain material properties (especialy coefficients of
regtitution) and an analysis method that is sensitive to minor changes in these parameters are
contributing factors that make accurate prediction extremely difficult. Performing
probabilistic ssimulation and statistical analyses has proven to be an effective and acceptable
method for overcoming these difficulties and thereby enabling the production of rational

engineering designs.

The computer program RocFall is atool to assist engineers with probabilistic simulation of
rockfalls and the design of remedial measures. Thisthesis details the difficulties with
rockfall analyses and explains how RocFall can be used to overcome these difficulties. This
thesis presents the equations and the algorithm used by the program to simulate the rockfalls.
Essential to the use of a computer program in engineering practice, thisthesis also presents a

thorough verification of the program’s output.
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List of Symbols

Ah = height of the rock above the slope

(0} = friction angle of the line segment

V] = mean of anormal distribution

0 = dope of the line segment

o = standard deviation of anormal distribution

a = coefficient of the quadratic term in the quadratic equation
b = coefficient of the linear term in the quadratic equation

c = constant term in the quadratic equation

g = acceleration dueto gravity, sign is negativein all equations
Hs = height of the dope

k = friction & slope angle coefficient in the dliding algorithm

KEx =kinetic energy of the rock immediately after impact
KEg =kinetic energy of the rock immediately before impact
KEreak = kinetic energy of therock at the peak of the trgjectory

m = additive constant coefficient for arandom variable

n = multiplicative constant coefficient for arandom variable

q = tangent of the, slope of the line segment in the diding algorithm

Ry = coefficient of normal restitution

Rr = coefficient of tangential restitution

S = distance the rock slides on the slopein the sliding algorithm

S = distance from theinitial position of the rock to the end of the line segment
Si =first in apair of successive samples from a uniform distribution

S = second in apair of successive samples from a uniform distribution

t = parameter in the parametric form of the parabola equations



List of Symbols

Va = velocity of the rock immediately after impact

Vg = velocity of the rock immediately before impact

Vereck = Velocity of the rock between steps in the projectile algorithm

Vexr = Vvelocity of therock at the end of the line segment in the diding algorithm
Vwin = minimum velocity still considered to be moving

Vna = Vveocity of the rock immediately after impact, normal to the line

Vas = Velocity of the rock immediately before impact, normal to the line
Veeak = Velocity of the rock at the peak of the parabolic path

Via = Vvelocity of the rock immediately after impact, tangential to theline
Vg =velocity of the rock immediatdly before impact, tangential to theline
Vxo = initial horizontal velocity of the rock

Vxa  =horizonta velocity of the rock immediately after impact

Vys = horizonta velocity of the rock immediately before impact

Vyo  =initia vertical velocity of the rock

Vya  =vertica velocity of the rock immediately after impact

Vyg = vertical velocity of the rock immediately before impact

X = arandom variable

X = horizontal location of the rock

Xo = initial horizontal location of the rock

X1 = horizontal location of the first vertex of the line segment

Xz = horizontal location of the second vertex of the line segment

X, = horizontal location of the intersection between the parabola and the line
Yo = initial vertical location of the rock

Y, = vertica location of the first vertex of the line segment

Y, = vertica location of the second vertex of the line segment

Y, = vertica location of the intersection between the parabola and the line
y = vertica location of the rock

Zj = sample from anormal distribution



1. Introduction

The accurate prediction of rockfalsis practically impossible. An engineer attempting to
perform arockfall analysis will encounter anumber of difficulties. The dope geometry is
highly variable. The location where the rocks begin is often unknown. The slope material
can be variable or the relevant material properties not well known. The calculations used to
simulate the rockfall events are sensitive to small changes in these parameters. Taken
together, these factors all contribute to make accurate prediction of rockfals extremely
difficult. Determination of asingle factor of safety, or creation of a design that is certain to
prevent all rockfalls, are generally not redlistic goals. Thisthesiswill begin by detailing the
difficulties that are encountered when performing a rockfall analysis and present a solution to

those difficulties.

Employing probability and statisticsin the analysis of rockfall simulations has proven to be
an effective and acceptable method for dealing with these difficulties. The goa of thisthesis
was to create atool to assist engineers with the probabilistic analysis of rockfalls, the result of
which isthe program RocFaIIEl. RocFall isarobust, easy-to-use computer program that
performs a probabilistic simulation of rockfalls and can be used to design remedial measures
and test their effectiveness. An overview of the RocFall program is presented, with afocus
on how RocFall helpsto dea with the difficulties identified above.

The final section of thisthesis presents a verification of the program’s results and the
computer code that is used to calculate the motion of the rocks. The verification is contained

in the first appendix and the computer code is contained in the second appendix.

The magjority of the effort necessary to prepare this thesis was devoted to the creation and
coding of the RocFall program. A great dedl of effort was required to ensure that the
program was robust, correct, fully functional and easy-to-use. RocFall meets these

objectives.

! RocFall is available from Rocscience Inc. Rocscience can be found on the internet at:
WWW.rocscience.com or can be contacted by telephone: 1-416-698-8217, or by fax: 1-416-698-0908



2. Difficulties with Rockfall Analyses

Prediction of rockfallsisadifficult task. Slopesthat are at risk of rockfall often have highly
variable geometry. The location and mass of the rocks that will, eventually, become the
rockfall are uncertain. The materialsthat make up the slope can vary considerably from one
section of the slope to the other and the relevant materia properties are usually not well
known. The equations used to simulate the rockfalls are sensitive to small changes in these
parameters. Each of these difficulties will be discussed in more detail below.

The responsibility for the sensitivity of the ssimulation to small changes in these parameters
does not lie entirely with the computer program or the eguations used; the physical process of

arockfall is sengtive to small changes in these parameters as well.

2.1 Slope Geometry

Sincethe area at risk of rockfallsis often very large (e.g. along mountain highway), the slope
geometry can vary considerably along this distance. Performing a detailed survey and
analysis of the entire areais usually not feasible for budgetary reasons. Often the engineer is
only ableto obtain a survey of afew cross sections, those that appear to be most at risk of

rockfalls. Therefore, the geometry used in the simulation is not always exact.

Even when the slope geometry iswell known, most rockfall simulations are sensitive to small
changesin the ope geometry. For example, if asmall block of rock were to dide down a

long inclined section of slope (gaining considerable speed along the way), the slope geometry

at the end of the inclined section plays a super-critical role in determining the trajectory of

therock. If the edge of the slope were to drop-off quickly, the rock would simply fall off the

end, landing fairly close to the edge of the dope. Alternatively, if the rock were to encounter

a small “ramped” section, the rock could be deflected up and away from the slope. When this
occurs, the rock can land quite far from the slope. Trajectories like these are the most
important to predict, because they can send rocks far away from the slope and well above the

height of any realistic barriers.



2.2 Material Properties

The materials that congtitute the dope can vary considerably from the crest of the slope to the
toe and from cross-section to cross-section. Even when the materia is uniform, the material
properties relevant to the rockfall analysis (the coefficients of restitution) may not be well

known.

Typica valuesfor the coefficient of normal restitution (Ry) used in rockfall analyses range
from 0.3t0 0.5. Typical values used for the coefficient of tangential restitution (Ry) range
from 0.8 t0 0.95. Vegetated areas and soft soils occupy the lower end of the ranges, and
bedrock and asphalt the higher end. Unfortunately, the algorithm used for the rockfall
simulation is sensitive to small changesin the coefficients of restitution. For example, a
slope segment with Ry = 0.4 will exhibit behaviour that is very different from the same slope
segment with Ry = 0.5.

To make matters worse, the value of the coefficient of restitution can be highly variable
within asmall section of the dlope. For example, an areathat contained mainly loose gravel
with afew sections of exposed bedrock would exhibit very different behaviour depending on
whether the falling rocks were to strike a section of bedrock (Ry = 0.5) or a section of gravel
(Ry =0.35).

Most engineers are familiar with the concept of “friction angle”, and would be able to specify
the friction angle of each slope segment with a good degree of certainty. The typical engineer
is much less familiar with coefficients of restitution and does not have a great deal of
certainty about what values are appropriate in each situation. In fact, most engineers have a
difficult time accurately determining coefficients of restituteopriori. A popular method

for determining coefficients of restitution is to perform a back-analysis after a rockfall has
occurred. Usually the field data for this back analysis provides an endpoint for the rock (this
will be obvious), a mass for the rock (easy to measure), a starting point (the original location
of the rock may appear less weathered), and the location of a few impact points (marks or
dents along the slope profile). The empirical values for the coefficients of restitution are
determined by adjusting the coefficients of restitution in the computer program, until the

program is able to reproduce the same impact locations and rock endpoints that occurred in



thefield. Thistechniqueisfairly crude and the engineer is usualy left with a good deal of

uncertainty about the proper values for the coefficients of restitution.

2.3 Initial Conditions

Most slopesthat pose arisk of rockfall are quite steep and have alarge number of loose rocks
or debris along the entire dope profile. Thisimpliesthat arock can start from almost
anywhere along the slope. While small variationsin the initial position of the rocks are not as
critical in determining the trgjectory of the rock, as the material properties or the slope
geometry, they are still significant.

Naturally occurring slopes often exhibit alarge degree of variation in the mass of the rocks
that comprise arockfall. Virtualy al naturally occurring slopes have a number of very small
(under 5 kg) rocks scattered around. The size of the largest rocks varies widely, and depends
entirely on the local conditions, but it is not uncommon for the mass of the rocks to vary by
three orders of magnitude from the smallest rock to the largest. Determining a mass for the
rocksisimportant if barriers are used for remedial measures, since barrier capacities are

specified in units of energy.

2.4 Probabilistic Analysis

This combination of uncertainty about input parameters and sensitivity to those parameters
requires the use of some additional technique to turn this pseudo-analysisinto avalid
scientific effort. Performing probabilistic simulation of rockfalls, combined with a proper
statistical analysis has proven to be an effective and acceptable method for dealing with these

difficulties.

It isimpractical to perform a probahilistic anaysis by hand (performing enough simulations
to create a statistically valid data set would be extremely time consuming). The purpose of
this thesis was to produce a computer program that could perform a probabilistic ssimulation
of rockfalls, which could then be used in the context of a proper statistical analysis.

Despite al of the difficulties rockfall prediction is faced with it does have one thing in its

favour - the particle analysis that is used to simulate the rockfalls requires very little computer



time. A typical computer today (a 200 MHz Pentium) can perform approximately 50 particle
simulations per second. This speed of calculation allows the engineer to resort to probability
to aid in the prediction of rockfalls. If the coefficients of restitution (or some other
parameter) are not well known, but an expected range can be determined, then alarge number
of analyses can be performed, randomly sampling from this range. Thiswill produce a
distribution of outcomes, based on the sampled range of input. This distribution can be
analysed and a probable outcome is obtained.

2.5 Solution to the Difficulties

The variability in the dope geometry, the uncertain material properties, and the unknown
initial conditions can all be taken into account using a probabilistic approach. The application
of the probabilistic approach to solving the difficulties presented in the previous sections, is
detailed below.

Slope Geometry The uncertainty about the slope geometry could be modelled by
assigning a random distribution to the location of each of the dope vertices. This can be used
to simulate the change of the slope geometry from one section of dopeto the other. Thiscan
also be used to determine the sensitivity of the current slope profile to changesin the location
of vertices, which is helpful when determining where remedial measures would be of most

use.

Material Properties Thearea of gravel and exposed bedrock that was discussed in the
preceding section could be modelled with alarge standard deviation for the coefficient of
normal restitution (Ry). The range for Ry could be large enough so that the low end of the
range (the gravel) and the high end of the range (the bedrock) would both be covered by the
distribution.

Initial Conditions The uncertainty about theinitial location of the rock could be modelled
by randomly starting the rocks at various locations along the slope profile. Typically,
locations near the crest of the slope are chosen, because the rocks beginning at these locations
have the most potential energy and are likely to be the most hazardous. The mass of the
rocks could be specified with a standard deviation that includes the largest blocks that are
likely to come free and the small debris that will fall from the slope.



2.6 Conclusion

When using the results from a probabilistic analysis, it is usually wise to be conservative with

the design. Thisisaprudent choice because, as with any statistical simulation, the actual

outcome is not guaranteed to be in the range predicted by the simulation, and the “worst case”
may not have appeared in the simulation. For example, a barrier that was adequate to catch
all the rocks run in the simulation, may not be tall enough to catch a rock that is in the

extreme “tail” of a distribution.

How conservative the design must be depends entirely on the application. For example,
when designing an infrequently-used logging road it may be sufficient to catch ninety-five
percent of the rocks predicted by the simulation (in order to keep the road free of debris).
Alternatively, when designing the slope beside a busy highway it may be required that the
design catch all of the rocks predicted by the simulation, and include an additional measure of

conservatism.



3. RocFall: Overview & Detalls

The primary goal of thisthesis was to create atool to assist engineers with the probabilistic
analysis of rockfalls. Theresult of thiswork isthe program RocFall. RocFall isarobust,
easy-to-use program that can be used to smulate almost all rockfall events. RocFall can be
a so be used to design remedia measures and test their effectiveness. RocFall employs a
particle analysis for the calculation of the rock movement, which will be discussed in much
more detail in the following chapter. This chapter will outline the major features of RocFall
and detail how they are useful to the engineer who is performing a probabilistic rockfall

analysis.

The simplest smulation that can be performed in RocFall has two essential components: a
slope and arock. More advanced simulations can include barriers and incorporate random
variation in the mass, velocity and position of the rock, and random variation in the location

and material properties of each segment of the slope.

RocFall produces many forms of output to assist with statistical analyses and to aid in the

design of remedial measures. RocFall produces plots displaying the maximum velocity,

kinetic energy and bounce-height of the rocks, along the length of the entire dope profile

(referred to as “envelopes” in the program). These envelopes are useful when deciding where
remedial measures should be placed. The program also produces histograms displaying the
digribution of the velocity, kinetic energy and bounce-height of the rocks at any location

along the slope profile (referred to as “data collectors” in the program). The data collectors

are useful when designing the remedial measures (e.g. deciding the capacity of a barrier).

3.1 Slope

The slope creation process in RocFall is relatively unrestricted; virtually any slope geometry
can be modelled. The slope profile can contain any number of overhanging sections. The
slope can be made up of any number of segments and each segment can have different
material properties (i.e.\R Ry, ¢9). It is important to be able to model overhanging sections
because the slopes that are at risk of rockfall are the same slopes that are most likely to

contain overhanging sections.



3.2 Random Variables

One of the requirements of a probabilistic analysistool isto be able to specify some of the
input parameters as random distributions when the simulation is performed. In order to
provide athorough probabilistic analysis, ailmost al of the parametersin RocFall can be
defined by either a constant value or by arandom variable. The mass of the rock, the initial
position of the rock, the velocity of the rock, the location of each of the slope vertices and the
coefficients of restitution and friction angle (for each slope segment and for each barrier) can
all be defined by random variables. Each distribution is specified separately and each
distribution is independent of all the others.

Although it is unlikely that all of these items will be assigned arandom distribution at the

same time, this feature allows the program user to perform a sensitivity study on any of the
input parameters. Determining the most sensitive parameter in the simulation is very useful
when deciding where remedial measures would be most effective. If the remedia measure

can be taken on the most sensitive parameter, this will provide the most economical design.

The only parameter that cannot be assigned a distribution is the location of the barriers. If
barriers are going to be employed in a design, the location will be known (and usually

specified) by the program user, so varying the location is not necessary.

3.3 Vertex Variation

Assigning anormal distribution to the slope vertices alows the engineer to statistically
simulate the effect of the variation in the slope geometry, as it changes from cross-section to

cross-section. This can be thought of as simulating the three-dimensional shape of the slope.

Thisfeature is aso useful if the exact location of the vertices is not known. This can occur if
the dope geometry was scaled-off of a diagram produced for some other reason (e.g. highway
construction) and is not exact, or if the model geometry is supposed to represent many similar

(but not identical) cross-sections.

Assigning arandom distribution to a vertex can also be used to determine the sensitivity of

the current slope profile to changes in the location of vertices. Thisisthe most useful



application of this feature and can often be helpful when determining where remedial
measures would be of most use. For example, if it were found that the location of the rock
endpointsis particularly sensitive to the location of one of the benches on a slope, removing
the bench (or otherwise changing the geometry) would be the best choice for the remedial
measure.

3.4 Initial Conditions for the Rocks

Before a simulation can begin, theinitial location, velocity and mass of the rocks must be
defined. This section will detail how these initial conditions are specified.

The starting location for the rocks can be specified anywhere on or above the slope surface

(i.e. anywhere, except underground). The starting location can be defined by a single point in

space (referred to as a “point seeder” in the program). In this case, all of the rocks will begin
the simulation at the same location. This would be useful if the engineer was modelling two
parallel roadways (one further up the slope than the other), and the majority of rockfalls were
caused by debris originating at the side of the higher road. Placing the point seeder at the side

of the higher road would model this situation quite well.

The starting location can also be defined by a poly-line (referred to as a “line seeder” in the
program). The initial position of each rock is determined by randomly generating a location
somewhere along the length of the poly-line. The location generated has equal probability of
being generated at any location along the poly-line (i.e. a uniform distribution). This method
of “line seeding” is useful when the engineer is uncertain exactly where the rockfall will be
initiated, but would like to specify a likely range for the starting points (e.g. along one of the

upper segments of the slope.)
3.5 Multiple Seeders
Any number and combination of point seeders and line seeders can be added to the

simulation. Regardless of how many seeders are present, only one rock is generated at a

time, and the generation is independent of the generation of the other rocks in the simulation.



When there are multiple point seeders present, or a combination of point seeders and line
seeders, the rock will start from any one of the seeders with equal probability. When there
are multiple line seeders present, the user of the program is allowed to choose between two
options. The first option isto have the rock start with equal probability on any of the seeders
(thisisthe same probability behaviour as described above). The second option is to have the
rock location generated with a probability proportional to the length of the seeder (relative to
the other seeders). For example, if there are three seeders present, with lengthsof 1 m, 3 m,
and 6 m then the probability that the rock with begin on each of the seeders, respectively, is
0.1,0.3and 0.6.

Themass, initial horizontal velocity and initial vertical velocity of the rocks can each be
specified by a constant value or sampled from arandom distribution. The sampling of the
mass and velocity are independent of the sampling technique that is used to generate the

location of the rock.

3.6 Data Collectors

In order to assist with the design of remedial measures, RocFall provides an ability to

determine the current state of the rocks asthey pass certain locations on the slope (referred to

as a “data collector” in the program). A data collector is a single line segment that can be
placed anywhere along the slope profile. The data collector records the position, velocity and
kinetic energy of every rock that passes through the data collector during the simulation.
After the simulation has been performed, the data collectors can present a distribution of the

velocity, kinetic energy and position of the all the rocks that passed the data collector.

The data collectors are useful for determining the distribution of velocity, kinetic energy and
bounce-height at a certain location. This information is useful when designing barriers.
Once the location for the barrier has been decided, a data collector can be placed at the
location, and the simulation re-run. The data collector will display the distribution of kinetic
energy of the rocks that passed through the data collector. This can be used to specify the
required capacity of the barrier. The data collector will also display the distribution of

bounce-height of the rocks. This can be used to specify the required height of the barrier.

10



Checking all of the data collectors requires a substantial amount of effort during the course of
asimulation. Since the envelopes use (invisible) data collectors to gather their information, it
is not uncommon for there to be 500 data collectors present in each smulation. Thisinvolves
performing 500 parabola-line intersections each time the rock strikes a slope segment or
barrier. In the course of atypical simulation, checking the data collectors requires the
parabola-line intersection routine to be executed tens of millions of times.

3.7 Envelopes

The program produces three “envelopes”: the kinetic energy envelope, the velocity envelope
and the bounce-height envelope. Each envelope is defined by the maximum value (e.g.
maximum velocity) at a number of evenly spaced horizontal locations along the slope profile.
The kinetic energy envelope measures the highest kinetic energy that any rock attained while
passing each horizontal location. The velocity envelope measures the highest velocity that
any rock attained while passing each horizontal location. The bounce-height graph measures
the maximum height that any rock reached minus the slope height at each horizontal location
(i.e. the maximum heiglabove the slope). Any horizontal location that is not crossed by a

rock is given a value of zero when creating the envelope.

The envelopes provide an overview of the condition of the rocks as they travel from one
section of the slope to the other. The envelopes are very helpful in determining where
remedial measures, particularly barriers, would be most effective. If there are few restrictions
on the placement of a barrier, a good choice of location would be at a local minimum on the
bounce-height envelope. This is a good choice of location because it is a section of the slope
where the rocks are not likely to be travelling far above the ground, and the barrier would not

have to be very tall to be able to intercept all of the rocks.

Since the envelopes only display the maximum value, at any location, it is typical to use a
data collector in combination with the envelope. The data collector can be used to determine
the distribution of energies at a specific location once the envelopes have been used to narrow

down a location of interest.

The data that is required to create the envelopes is gathered by placing a number of vertical

data collectors (invisible to the program user) equally spaced along the length of the slope

11



profile. The number of locations is specified by the program user in the “number of intervals

to use when plotting” option in RocFall.

3.8 Location of Rock Endpoints

The location of the rock endpoints is, arguably, the most important single piece of output
from the program. This is considered an essential piece of output because it is usually the
final location of the rocks that determines whether a design is successful or not. The
adequacy of a design can often be summarised in a yes or no question (e.g. did the rocks
reach the highway, or not?)

The location of the rock endpoints is presented as a distribution. The distribution can either
be displayed graphically in the program or pasted into another program for further statistical

analysis.

3.9 Barriers

Barriers are modelled in the program very much like a slope segment that happens to be
attached at an odd angle to the remainder of the slope. The barriers and slope segments are
both modelled by a straight line and have the same set of material propertigs, (). The

rock bounces and slides on the barriers in the same manner as the slope segments.

The barriers must have one end attached to a slope vertex. The other end must be placed such
that the barrier does not intersect any of the other barriers or any slope segments (i.e. the
barrier must have one end on the ground and not intersect any other items). These restrictions
were required because crossing barriers, and barriers suspended in the air, provided too many
“special cases” where the rock might become trapped.

The simulation of remedial measures, such as a barrier, is useful to the engineer because it
allows them to test their design with more simulation. For example, a barrier proposed as the
final design could be placed in the simulation and a sensitivity analysis performed. This
study would reveal the required conditions for the design to fail. The likelihood of the
conditions that brought about the failure could be evaluated and the adequacy of the design
decided.
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4. Particle Algorithm

RocFall employs a particle analysis to cal culate the movement of the rock. This chapter will
detail the particle model asit isused in RocFall: the assumptions that are made, the equations
that are used, and the algorithm that was used to implement the model in RocFall. The C++

implementation of the particle algorithm is presented in much more detail in Appendix B.

A simpler version of this particle model was originally presented by Hoek (1987). The
agorithm presented here uses the same assumptions about the dope and the rock as Hoek,
but places fewer restrictions on the model. This algorithm permits overhanging sections of
the dope, uphill diding, sliding on any slope segment and the inclusion of barriersin the

simulation.

The particle model isafairly crude model of the physical process of arockfall. The particle
model neglects the effects that the size, shape and angular momentum of the particle have on
the outcome. However, the particle model does have the advantage of being extremely quick
to calculate, which allows sensitivity analyses to be performed. Since the input for most
rockfall analysesis so poorly defined, it is equally important to determine the sensitivity of

theresults asit is to determine the results themsel ves.

4.1 The Algorithm

There are three distinct sections to the particle analysis: The particle algorithm, the projectile
agorithm, and the sliding algorithm. The particle algorithm makes sure al of the simulation
parameters are valid, sets up al of theinitial conditionsin preparation for the projectile and
dliding algorithms and then starts the projectile agorithm. The remainder of the simulation
(until the rock comes to rest) is spent in either the projectile algorithm or the diding
agorithm. The projectile algorithm is used to calculate the movement of the rock while the
rock istravelling through the air, bouncing from one point on the dope to another. The
sliding algorithm is used to cal cul ate the movement of the rock while the rock isin contact
with the slope. Because the velocity of the rock has to be very low before the rock will leave
the projectile algorithm, the majority of the simulation is spent in the projectile algorithm. A

better understanding of these three algorithms and the interaction between them can be gained
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by looking at Figures 4.1, 4.2 and 4.3. Thorough examples of the use of these algorithms can

be found in the first two chapters of the verification appendix.

The largest problem that was encountered when implementing the particle analysis was the
numerical instabilities of the projectile algorithm. These problems are explained in much
more detail in the following chapter.

4.2 Assumptions

Each rock is modelled as a particle. The particle may be thought of as an infinitesimal circle,
since the size of the rock does not play arole in the algorithm, but the equations used in the
sliding agorithm imply acircular shape. Because each rock is assumed to be infinitely small,
there is no interaction between particles, only with the slope segments and barriers. Because
there is no interaction between particles, each rock behaves asif it were the only rock present

in the ssimulation.

Although the rocks are not considered to have any size (for the purpose of interaction with
other rocks, the dope or barriers) they are considered to have amass. The massit is not used
in any of the equations used to calculate the maotion of the racks, it is only used to calculate
the kinetic energy when creating the graphs and presenting results. The massis determined at
the beginning of the simulation and stays constant throughout the simulation. The rocks
cannot break or split into multiple pieces during the smulation. The mass can be specified by

a congtant value or samples sampled from arandom distribution.

Thefrictiona resistance of the air is not taken into account in any of the equations. Itis
assumed that the rocks are massive enough and travelling at low enough speeds that this can
beignored. Incorporating air resi stance would make the analysis much more complicated

and would have little effect on the outcome of the simulation.

The slope is modelled as one continuous group of straight line segments, connected end to
end. In order to be considered valid, a dope segment cannot cross any other slope segments,
and vertices cannot be coincident. Otherwise, the geometry is unrestricted. The barriers and

data collectors are modelled as single straight line segments.
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4.3 Projectile Algorithm

The projectile algorithm assumes that the rock has some velocity (even a small velocity) that
will moveit, through the air, from its present |ocation to a new location where the rock will
strike another object (which can be further along the same object). The path the rock will
take through the air is, because of the force of gravity, a parabola.

The essence of the projectile algorithm is finding the location of intersection between a

parabola (the path of the rock) and aline segment (a dlope segment or abarrier). Oncethe
intersection point is found, the impact is cal culated according to the coefficients of restitution.

If, after the impact, the rock is still moving fast enough the process begins again, with the

search for next intersection point. In this context “fast enough” is defined as the minimum
velocity (Vuin) and is specified by the program user at the beginning of the simulation. The
minimum velocity defines the transition point between the projectile state and the state where
the rock is moving too slowly to be considered a projectile and should instead be considered
rolling, sliding or stopped. The outcome of the simulation and the time it takes to perform

each simulation are not particularly sensitive to changegiiq V

4.4 Equations
Using the parametric form of the equations (for the parabola and the line) is beneficial when
overhanging sections of the slope or barriers are permitted. The parametric form of the
equations is advantageous because the parabolic path of the rock, may intersect multiple
slope segments and barriers, and the order of intersection must be determined. Since the rock
only really impacts the first intersection point, finding the smallest value of the parameter
used in the parabolic equations provides a simple method for determining the correct
intersection.
The equations used for the projectile calculations are listed below:

The parametric equation for a line:

x=X; +(X, = X)u 4.1
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y=Y, +(Y, =Y)u u[o,1] (4.2)
where:
X1, Y1 isthefirst endpoint of theline

X2, Y2 isthe second endpoint of the line

The parametric equation for a parabola

X=Vy ot + X, (4.3
= % ot® +Vt +Y, t 0[0,00] (4.4
where:

g isthe acceleration due to gravity (sign is negative)
Xo, Yoistheinitial position of the rock

Vxo, Vyoistheinitial velocity of the rock

The parametric equations for the velocity of the particle:

Vs =Vxo (4.5)
Vig =Vyo + 0t (4.6)
where:

Ve, Vyg isthe velocity of therock at any
point along the parabolic path, before impact

Equating the points of the parabola and line equations (i.e. x = x and y = y) and rearranging

into the familiar form ax? +bx + ¢ = 0 gives:

i
%géz'*'wvo _quo]t+[Y0 _Y1+Q(X1_Xo)]=o 4.7)
where:
q :M isthe dope of the line segment (4.8)
(Xz - Xl)

Equation 4.7 can be solved for t using the quadratic equation:
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-b++/b? -4ac

t= 49
oa (4.9
where:
1
a== 410
59 (4.10)
b=V, —aVy, (4.11)
c=Yo =Y. +d(X; = Xo) (4.12)

During each pass through the algorithm, the parabolaformed by the rock tragjectory is
checked with every segment of the dlope and with every barrier. All of the slope segments
and barriers that have a valid intersection with the parabola are inserted into alist. Thelistis
then sorted by the value of thet parameter to determine the correct intersection.

Once the correct intersection is determined, the velocity just prior to impact is calculated
according to equations 4.5 and 4.6. These velocities are transformed into components normal

and tangential to the slope according to:

Vie = (Vyg) cos(6) = (V) Sin(6) (4.13)
Vrg = (Vi) SIN(6) + (Vg ) COS(6) (4.14)
where:

Ve, V1 are the velocity components of the rock, before impact,
in the normal and tangential directions, respectively

8 isthe slope of the line segment

Theimpact is calculated, using the coefficients of restitution, according to:

Via = RV (4.15)
Via = ReVrg (4.16)
where:

Ry isthe coefficient of normal restiution 0J[0,1]
Ry isthe coefficient of tangential restiution [[0,1]
Va , V1a arethe velocity components of the rock, after impact,

in the normal and tangential directions, respectively
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The post-impact velocities are transformed back into horizontal and vertical components

according to:
Vigs = (Vs SIN(6) + (Vi) cOS(6) (4.17)
Vya = (V1a) SiN(6) = (Vya) cOS(6) (4.18)
where:

Vxa, Vya arethe velocity components of the rock, after impact,
in the horizontal and vertica directions, respectively

Once the correct intersection is determined and the velocities have been calculated, al of the

data collectors are checked for intersection with the parabola (in a manner similar to checking

the dope segments). Any data collector with a parametric value (the value of t) less than the

value of the actual intersection is informed of the rock’s trajectory. The location, velocity

and kinetic energy of the rock, at the moment it passes the data collector, are recorded by the

data collector.

The velocity of the rock is then calculated and compareq,tg. Mf it is greater than M
the process starts over again, with the search for the next intersection point. If the velocity is
less than Y the rock can no longer be considered a particle, and is sent into the sliding

algorithm.

4.5 Sliding Algorithm

The sliding algorithm is used to calculate the movement of the rocks after they have exited
the projectile algorithm. The rocks can slide on any segment of the slope and on any barrier.
For the purpose of the sliding algorithm, the slope segment or barrier that the rock slides on,
consists of a single straight-line segment that has properties of slope@ragid {riction

angle (p). The friction angle can be specified by a constant value or sampled from a random

distribution.
The rock can begin sliding at any location along the segment and may have an initial velocity

that is directed upslope or downslope. Only the velocity component tangential to the slope is

considered in the equations.
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Once the diding isinitiated, the algorithm used depends on whether the initial velocity is
upsiope or downslope. The algorithm used when the initia velocity is downdope will be
explained first.

4.6 Sliding Downslope

When theinitial velocity of the rock is downslope (or zero) the behaviour of the rock depends
on the relative magnitudes of the friction angle (¢) and the dope angle (8).

8 =@ Iftheslopeangleisequal to the friction angle, the driving force (gravity) is equal to
the resisting force (friction) and the rock will dide off the downslope end of the segment,
with avelocity equal to theinitia velocity (i.e. Vexit = Vo). Thereisaspecial case when

Vo = 0; in this case, the rock does not move, and the simulation ends.

0> ¢ If theslope angleis greater than the friction angle, the driving force is greater than
the resisting force and the rock will dide off the downslope endpoint with an increased

velocity. The speed with which the rock leaves the slope segment is calculated by:

Vear =+VE — 2sgk (4.19)

where:

Vexr isthevelocity of the rock at the end of the segment

Vo istheinitial velocity of the rock, tangential to the segment
s isthe distance from the initial location to the endpoint of the segment
g isthe acceleration dueto gravity (-9.81m/g/s)
k is £ sin(6) — cos(6) tan(¢)
where:

8 isthe slope of the segment
@isthefriction angle of the segment
tis+if theinitial velocity of the rock is downslope or zero

+ is—if theinitia velocity of therock is upslope
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8 <@ If theslope angleislessthan thefriction angle, theresisting forceis greater than the
driving force and the rock will decrease in speed. The rock may come to a stop on the
segment, depending on the length of the segment and the initial velocity of the rock.

Assuming that the segment isinfinitely long, a stopping distance is calculated. The distance
isfound by setting the exit velocity (Vex 1) to zero in equation 4.19 and rearranging:

2
:;/_;k (4.20)
The distance from theinitial location of the rock to the end of the segment is calculated. If
the stopping distance is greater than the distance to the end of the segment, then the rock will
dlide off of the end of the segment. In this case, the exit velocity is calculated using equation
4.19. If the stopping distance is less than the distance to the end of the segment then the rock
will stop on the segment and the simulation is stopped. The location where the rock stopsisa

distance of sdowndope from the initial location.
4.7 Sliding Upslope

When dliding uphill both the frictional force and the gravitational force act to decrease the
velocity of the particle. Assuming that the segment isinfinitely long, the particle will
eventually cometo rest. The stopping distance is calculated using equation 4.20 and the
distance from the initial location of the rock to the upslope end of the segment is calcul ated.
If the stopping distance is greater than the distance to the end of the segment, the rock will
slide off of the end of the segment. In this case, the exit velocity is calculated using equation
4.19. If the stopping distance is less than the distance to the end of the segment the rock

comes to rest and the simulation is stopped.

If the rock slides up and stopsit is then inserted into the downslope diding algorithm. If the
segment is steep enough to permit diding (i.e. © > @) then the rock will slide off the bottom
end of the segment. If the segment is not steep enough, then the location where the rock
stopped moving (after sliding uphill) istaken as the final location and the simulation is
stopped.
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5. Numerical Instabilities

A lot of time and effort was required to solve the numerical instability problemsin RocFall.
This chapter outlines some of the difficulties that were encountered when the particle
a gorithm was implemented and the solution to those difficulties.

It is the author’s experience that writing an engineering program that works ninety five
percent of the time (afew situations not being handled properly) requires less than half of the
time and effort required to write a program that handles all of the situations properly. Itis
important for a program that performs probabilistic simulations to work correctly in all cases.
Since each simulation has a dightly different outcome, and hundreds of simulations are
performed, a problem that occurs only once in athousand simulations, will be noticed very

quickly.

5.1 Impossible situations

Itistrivial to construct acase that isanaytically valid (if not realistic) that could cause an
unsuspecting rockfall algorithm to continue indefinitely. For example, dropping arock with

zero initial velocity onto a horizontal surface with Ry = 1 would cause the rock to bounce up

and down - forever. Thiswould cause the program to enter an endless calculation loop, and

stop responding to the user (otherwise known as a “crash”). While this example is contrived,

it is possible for the user of the program to inadvertently specify a similar situation.

Since the goal was to construct a robust program, this possibility of this situation, and similar
situations, was handled. Each rock is given a certain amount of real time (not to be confused
with simulation time, which will usually be much longer) to finish all of its calculations.

Since the amount of real time permitted for the calculations (approximately 10 s) is many
times larger than the typical solution time (approximately 0.02 s) whenever a simulation
“time’s out” the reason is almost always that the conditions specified are “impossible” and

convergence (the rock stopping) will never occur.
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5.2 Numerical instabilities

One of the equations used to find the parabola-line intersection (equation 4.8) isunstable in
two situations (the instability is caused by the (X, - X,) termin the denominator). Thefirst
instability is encountered when the length of the line segment approaches zero. This problem
was solved by the forcing the program user to enter geometry such that each of the slope
segmentsisat least 1 mm in length.

The second instability is encountered when the line segment is vertical. Noting that the
parameter u can be removed from equation 4.1 when the lineis vertical solved this problem.
When the parameter u is removed and the horizontal location is equated (i.e. x = X) with
equation 4.3 (the parabol a equation), these equations can be solved for t.

t:M

(4.21)
VXO

The solution is now stable, for all cases except when the lineis vertical and the rock has zero
initial horizontal velocity (Vxo). When this occurs, there is no intersection between the
parabolaand the line, and the instability is avoided.

The non-parametric versions of the parabol a-line intersection were unstable for horizontal
velocities close to zero, which is a much more common occurrence than vertical slope
segments. Thisis another reason why the parametric versions of the equations are superior to
the dope, y-intercept form of the equations.

5.3 Machine Error

When equation 4.9 (the quadratic equation) is solved in the projectile algorithm the two roots
represent the starting point and ending point of the trgjectory. A difficulty presents itself

because “machine error” will cause the root at the beginning of the trajectory to have a
parameter that is nekactly zero. When the bounce-height becomes extremely small, it can
become difficult to determine which root represents the beginning and which represents the
end. This difficulty was solved by offsetting the ratightly below the segment, before each

trajectory, and taking the smallest positive root as the beginning point.
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6. Recommendations

RocFall isan ongoing project. While the user-interface of the program can always be
improved, these recommendations focus on the calculation aspect of the program. The

recommendations are listed in order of desirability:

1. Gathering of empirical data for the coefficients of restitution

The outcome of arockfall simulation is very dependent on the values used for the coefficients
of restitution. Unfortunately, appropriate values are not always well known and alot of time
isusually spent determining what values should be used. Gathering alarge sample of
previously used values in one location, similar to the work of Tomory (1997), would be

extremely useful. Gathering this data would require a substantial amount of time and effort.

2. Mass-based “plasticity” function for the coefficient of restitution

Thiswould involve varying the coefficient of restitution based on the mass of the rock (i.e.
more massive rocks would use lower coefficients of restitution when the impact was
calculated). This would not require much work to implement.

3. “Breakable” barriers

Thiswould require very little effort to add to the current program (in fact, most of the code
has already been written). The reason it was not added is that the outgoing velocity (after the
rock has passed through the barrier) is difficult to define. 1t was thought that the vel ocity
vector of the rock would be changed (tending towards the normal of the barrier, perhaps).
Further research into this behaviour should be performed before this feature is added.

4. Three-dimensional particle analysis

Thiswould require alarge amount of effort, but is within the realm of possibility. The factor
limiting the usefulness of this type of model would likely be the lack of input data (i.e. this

would require alarge number of cross sections, which might not be available).

5. Consider anqular velocity and/or shape effects in the particle model

Although desirable, this would require re-writing and re-verifying the entire calculation
section of the program. Thiswould require a substantial amount of work.
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7. Conclusion

7.1 Final Product

Thefinal product of thiswork isthe program RocFall. RocFall isarobust, easy-to-use
program that is capable of simulating rockfalls on awide variety of slope geometries, and has
been used by dozens of engineers over the course of the last six months. The implementation
of the particle analysis is extremely robust and has proven to be stable for al of the redistic

and pathological casesthat have been attempted.

The goa of thisthesiswasto create atool to assist engineers with the probabilistic analysis of
rockfalls and the design of remedial measures. RocFall meets these objectives.

7.2 Verification

Essential to the use of a computer program in engineering practice, thisthesis presents a
thorough verification of the program’s output. This verification can be found in appendix A.
The verification was placed in an appendix because it is lengthy and it was meant to be
readable separate from the body of the thesis. Thiswas done so that an engineer that isusing

the program can refer to the verification, without having to read the entire thesis.

7.3 The Program

RocFall was written with Microsoft Visual C++ 5.0 using the Microsoft Foundation Classes
(MFC) classlibrary. The complete RocFall program consists of slightly more than 26,000
lines of code contained in approximately 400 files. It would be impractical, and of little
value, to print out and include all of these files, as this would expand the thesis by more than
800 pages. Instead, only those files that relate to the particle analysis have been included in
thisthesis. A thorough explanation of the calculation engine used by the particle analysis,

and aguidetoitsuse, is presented in appendix B.

27



References

Anten, H. and Rorres, C. Elementary Linear Algebra 6th Edition. John Wiley & Sons
Inc., New York.

Azzoni, A., Barbera, G.L., Zaninetti, A., Anaysis and Prediction of Rockfalls Using a
Mathematical Modédl. Int. J. Rock. Mech. Min. Sci & Geomech, Elsevier Science Ltd. Great
Britain, Vol 32 No 8 pp 709-724 1995.

CanaeR.P., Charpa, S.C., Numerica Methods for Engineers. Second Edition. McGraw-Hill
Publishing Company. New Y ork.

Corkum, B. 1986. The Discrete Element Method in Geotechnical Engineering. Department of
Civil Engineering, University of Toronto, Toronto, Ontario, Canada.

Hoek, E. 1984. Acceptable Risks and Practical Decisions in Rock Engineering. Department
of Civil Engineering, University of Toronto, Toronto, Ontario, Canada.

Hoek, E. 1987. RockFall - A Program for the Analysis of Rockfalls from Slopes. Department
of Civil Engineering, University of Toronto, Toronto, Ontario, Canada.

Hoek, E. 1994. Course Notes for Rock Engineering (CIV 529S). Evert Hoek Consulting
Engineer Ltd, North Vancouver, British Columbia, Canada.

Hoek, E. 1996. Report on Tuen Mun Highway Widening Shui On - Balfour Bestty JV
Contract Hong Kong. Evert Hoek Consulting Engineer Ltd, North Vancouver, British
Columbia, Canada.

Pfeiffer, T.J., and Bowen, T.D., Computer Simulation of Rockfalls. Bulletin of the
Association of Engineering Geologists Vol. XXVI, No. 1, 1989 p 135-146.

Ross, Sheldon M., 1987. Introduction to Probability and Statistics for Engineers and
Scientists. John Wiley & Sons Inc., New Y ork.

Salvador, Tony. 1989. Rockfall. University of Toronto, Toronto, Ontario, Canada.
Santo, A. and Budetta, P. 1994. Morphostructural Evolution and Related Kinematics of
Rockfallsin Campania (southern Italy): A case study. Engineering Geology 36 Elsevier
Science Ltd. Great Britain, pp.197-210.

Stevens, W. 1996. Rockfall 4.0 Software for the Analysis of Falling Rocks on a Steep Slope.
B.A.Sc. Thesis. Department of Civil Engineering, University of Toronto, Ontario, Canada.

Stevens, W. 1997. The rockfall files: A guide to the On-going Investigation of Rockfalls at
the University of Toronto. Department of Civil Engineering, University of Toronto, Toronto,
Ontario, Canada.

Tomory, Paul B. 1997. Analysis of Split Set Bolt Performance. M.A.Sc. Thesis. Department
of Civil Engineering, University of Toronto, Toronto, Ontario, Canada.

28



	Appendix A - Probability Verification
	4.1  The Algorithm



