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Abstract

Stevens, Warren D., 1998.  RocFall: a Tool for Probabilistic Analysis, Design of Remedial
Measures and Prediction of Rockfalls.  A thesis submitted in conformity with the
requirements for the degree of Master of Applied Science, Graduate Department of
Civil Engineering, University of Toronto.

Accurate prediction of rockfalls is practically impossible.  Variability in slope geometry,

poorly defined initial conditions, uncertain material properties (especially coefficients of

restitution) and an analysis method that is sensitive to minor changes in these parameters are

contributing factors that make accurate prediction extremely difficult.  Performing

probabilistic simulation and statistical analyses has proven to be an effective and acceptable

method for overcoming these difficulties and thereby enabling the production of rational

engineering designs.

The computer program RocFall is a tool to assist engineers with probabilistic simulation of

rockfalls and the design of remedial measures.  This thesis details the difficulties with

rockfall analyses and explains how RocFall can be used to overcome these difficulties.  This

thesis presents the equations and the algorithm used by the program to simulate the rockfalls.

Essential to the use of a computer program in engineering practice, this thesis also presents a

thorough verification of the program’s output.
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1.  Introduction

The accurate prediction of rockfalls is practically impossible.  An engineer attempting to

perform a rockfall analysis will encounter a number of difficulties.  The slope geometry is

highly variable.  The location where the rocks begin is often unknown.  The slope material

can be variable or the relevant material properties not well known.  The calculations used to

simulate the rockfall events are sensitive to small changes in these parameters.  Taken

together, these factors all contribute to make accurate prediction of rockfalls extremely

difficult.  Determination of a single factor of safety, or creation of a design that is certain to

prevent all rockfalls, are generally not realistic goals.  This thesis will begin by detailing the

difficulties that are encountered when performing a rockfall analysis and present a solution to

those difficulties.

Employing probability and statistics in the analysis of rockfall simulations has proven to be

an effective and acceptable method for dealing with these difficulties.  The goal of this thesis

was to create a tool to assist engineers with the probabilistic analysis of rockfalls, the result of

which is the program RocFall1.  RocFall is a robust, easy-to-use computer program that

performs a probabilistic simulation of rockfalls and can be used to design remedial measures

and test their effectiveness.  An overview of the RocFall program is presented, with a focus

on how RocFall helps to deal with the difficulties identified above.

The final section of this thesis presents a verification of the program’s results and the

computer code that is used to calculate the motion of the rocks.  The verification is contained

in the first appendix and the computer code is contained in the second appendix.

The majority of the effort necessary to prepare this thesis was devoted to the creation and

coding of the RocFall program.  A great deal of effort was required to ensure that the

program was robust, correct, fully functional and easy-to-use.  RocFall meets these

objectives.

                                                          
1  RocFall is available from Rocscience Inc. Rocscience can be found on the internet at:
www.rocscience.com or can be contacted by telephone: 1-416-698-8217, or by fax: 1-416-698-0908
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2.  Difficulties with Rockfall Analyses

Prediction of rockfalls is a difficult task.  Slopes that are at risk of rockfall often have highly

variable geometry.  The location and mass of the rocks that will, eventually, become the

rockfall are uncertain.  The materials that make up the slope can vary considerably from one

section of the slope to the other and the relevant material properties are usually not well

known.  The equations used to simulate the rockfalls are sensitive to small changes in these

parameters.  Each of these difficulties will be discussed in more detail below.

The responsibility for the sensitivity of the simulation to small changes in these parameters

does not lie entirely with the computer program or the equations used; the physical process of

a rockfall is sensitive to small changes in these parameters as well.

2.1  Slope Geometry

Since the area at risk of rockfalls is often very large (e.g. a long mountain highway), the slope

geometry can vary considerably along this distance.  Performing a detailed survey and

analysis of the entire area is usually not feasible for budgetary reasons.  Often the engineer is

only able to obtain a survey of a few cross sections, those that appear to be most at risk of

rockfalls.  Therefore, the geometry used in the simulation is not always exact.

Even when the slope geometry is well known, most rockfall simulations are sensitive to small

changes in the slope geometry.  For example, if a small block of rock were to slide down a

long inclined section of slope (gaining considerable speed along the way), the slope geometry

at the end of the inclined section plays a super-critical role in determining the trajectory of

the rock.  If the edge of the slope were to drop-off quickly, the rock would simply fall off the

end, landing fairly close to the edge of the slope.  Alternatively, if the rock were to encounter

a small “ramped” section, the rock could be deflected up and away from the slope.  When this

occurs, the rock can land quite far from the slope.  Trajectories like these are the most

important to predict, because they can send rocks far away from the slope and well above the

height of any realistic barriers.
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2.2  Material Properties

The materials that constitute the slope can vary considerably from the crest of the slope to the

toe and from cross-section to cross-section.  Even when the material is uniform, the material

properties relevant to the rockfall analysis (the coefficients of restitution) may not be well

known.

Typical values for the coefficient of normal restitution (RN) used in rockfall analyses range

from 0.3 to 0.5.  Typical values used for the coefficient of tangential restitution (RT) range

from 0.8 to 0.95.  Vegetated areas and soft soils occupy the lower end of the ranges, and

bedrock and asphalt the higher end.  Unfortunately, the algorithm used for the rockfall

simulation is sensitive to small changes in the coefficients of restitution.  For example, a

slope segment with RN = 0.4 will exhibit behaviour that is very different from the same slope

segment with RN = 0.5.

To make matters worse, the value of the coefficient of restitution can be highly variable

within a small section of the slope.  For example, an area that contained mainly loose gravel

with a few sections of exposed bedrock would exhibit very different behaviour depending on

whether the falling rocks were to strike a section of bedrock (RN = 0.5) or a section of gravel

(RN = 0.35).

Most engineers are familiar with the concept of “friction angle”, and would be able to specify

the friction angle of each slope segment with a good degree of certainty.  The typical engineer

is much less familiar with coefficients of restitution and does not have a great deal of

certainty about what values are appropriate in each situation.  In fact, most engineers have a

difficult time accurately determining coefficients of restitution a priori.  A popular method

for determining coefficients of restitution is to perform a back-analysis after a rockfall has

occurred. Usually the field data for this back analysis provides an endpoint for the rock (this

will be obvious), a mass for the rock (easy to measure), a starting point (the original location

of the rock may appear less weathered), and the location of a few impact points (marks or

dents along the slope profile).  The empirical values for the coefficients of restitution are

determined by adjusting the coefficients of restitution in the computer program, until the

program is able to reproduce the same impact locations and rock endpoints that occurred in
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the field.  This technique is fairly crude and the engineer is usually left with a good deal of

uncertainty about the proper values for the coefficients of restitution.

2.3  Initial Conditions

Most slopes that pose a risk of rockfall are quite steep and have a large number of loose rocks

or debris along the entire slope profile.  This implies that a rock can start from almost

anywhere along the slope. While small variations in the initial position of the rocks are not as

critical in determining the trajectory of the rock, as the material properties or the slope

geometry, they are still significant.

Naturally occurring slopes often exhibit a large degree of variation in the mass of the rocks

that comprise a rockfall.  Virtually all naturally occurring slopes have a number of very small

(under 5 kg) rocks scattered around.  The size of the largest rocks varies widely, and depends

entirely on the local conditions, but it is not uncommon for the mass of the rocks to vary by

three orders of magnitude from the smallest rock to the largest.  Determining a mass for the

rocks is important if barriers are used for remedial measures, since barrier capacities are

specified in units of energy.

2.4  Probabilistic Analysis

This combination of uncertainty about input parameters and sensitivity to those parameters

requires the use of some additional technique to turn this pseudo-analysis into a valid

scientific effort.  Performing probabilistic simulation of rockfalls, combined with a proper

statistical analysis has proven to be an effective and acceptable method for dealing with these

difficulties.

It is impractical to perform a probabilistic analysis by hand (performing enough simulations

to create a statistically valid data set would be extremely time consuming).  The purpose of

this thesis was to produce a computer program that could perform a probabilistic simulation

of rockfalls, which could then be used in the context of a proper statistical analysis.

Despite all of the difficulties rockfall prediction is faced with it does have one thing in its

favour - the particle analysis that is used to simulate the rockfalls requires very little computer
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time.  A typical computer today (a 200 MHz Pentium) can perform approximately 50 particle

simulations per second.  This speed of calculation allows the engineer to resort to probability

to aid in the prediction of rockfalls.  If the coefficients of restitution (or some other

parameter) are not well known, but an expected range can be determined, then a large number

of analyses can be performed, randomly sampling from this range.  This will produce a

distribution of outcomes, based on the sampled range of input.  This distribution can be

analysed and a probable outcome is obtained.

2.5  Solution to the Difficulties

The variability in the slope geometry, the uncertain material properties, and the unknown

initial conditions can all be taken into account using a probabilistic approach. The application

of the probabilistic approach to solving the difficulties presented in the previous sections, is

detailed below.

Slope Geometry  The uncertainty about the slope geometry could be modelled by

assigning a random distribution to the location of each of the slope vertices.  This can be used

to simulate the change of the slope geometry from one section of slope to the other.  This can

also be used to determine the sensitivity of the current slope profile to changes in the location

of vertices, which is helpful when determining where remedial measures would be of most

use.

Material Properties  The area of gravel and exposed bedrock that was discussed in the

preceding section could be modelled with a large standard deviation for the coefficient of

normal restitution (RN).  The range for RN could be large enough so that the low end of the

range (the gravel) and the high end of the range (the bedrock) would both be covered by the

distribution.

Initial Conditions  The uncertainty about the initial location of the rock could be modelled

by randomly starting the rocks at various locations along the slope profile.  Typically,

locations near the crest of the slope are chosen, because the rocks beginning at these locations

have the most potential energy and are likely to be the most hazardous.  The mass of the

rocks could be specified with a standard deviation that includes the largest blocks that are

likely to come free and the small debris that will fall from the slope.
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2.6  Conclusion

When using the results from a probabilistic analysis, it is usually wise to be conservative with

the design.  This is a prudent choice because, as with any statistical simulation, the actual

outcome is not guaranteed to be in the range predicted by the simulation, and the “worst case”

may not have appeared in the simulation.  For example, a barrier that was adequate to catch

all the rocks run in the simulation, may not be tall enough to catch a rock that is in the

extreme “tail” of a distribution.

How conservative the design must be depends entirely on the application.  For example,

when designing an infrequently-used logging road it may be sufficient to catch ninety-five

percent of the rocks predicted by the simulation (in order to keep the road free of debris).

Alternatively, when designing the slope beside a busy highway it may be required that the

design catch all of the rocks predicted by the simulation, and include an additional measure of

conservatism.
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3.  RocFall: Overview & Details

The primary goal of this thesis was to create a tool to assist engineers with the probabilistic

analysis of rockfalls.  The result of this work is the program RocFall.  RocFall is a robust,

easy-to-use program that can be used to simulate almost all rockfall events.  RocFall can be

also be used to design remedial measures and test their effectiveness.  RocFall employs a

particle analysis for the calculation of the rock movement, which will be discussed in much

more detail in the following chapter.  This chapter will outline the major features of RocFall

and detail how they are useful to the engineer who is performing a probabilistic rockfall

analysis.

The simplest simulation that can be performed in RocFall has two essential components: a

slope and a rock.  More advanced simulations can include barriers and incorporate random

variation in the mass, velocity and position of the rock, and random variation in the location

and material properties of each segment of the slope.

RocFall produces many forms of output to assist with statistical analyses and to aid in the

design of remedial measures.  RocFall produces plots displaying the maximum velocity,

kinetic energy and bounce-height of the rocks, along the length of the entire slope profile

(referred to as “envelopes” in the program).  These envelopes are useful when deciding where

remedial measures should be placed.  The program also produces histograms displaying the

distribution of the velocity, kinetic energy and bounce-height of the rocks at any location

along the slope profile (referred to as “data collectors” in the program).  The data collectors

are useful when designing the remedial measures (e.g. deciding the capacity of a barrier).

3.1  Slope

The slope creation process in RocFall is relatively unrestricted; virtually any slope geometry

can be modelled.  The slope profile can contain any number of overhanging sections.  The

slope can be made up of any number of segments and each segment can have different

material properties (i.e. RN, RT, φ).  It is important to be able to model overhanging sections

because the slopes that are at risk of rockfall are the same slopes that are most likely to

contain overhanging sections.
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3.2  Random Variables

One of the requirements of a probabilistic analysis tool is to be able to specify some of the

input parameters as random distributions when the simulation is performed.  In order to

provide a thorough probabilistic analysis, almost all of the parameters in RocFall can be

defined by either a constant value or by a random variable.  The mass of the rock, the initial

position of the rock, the velocity of the rock, the location of each of the slope vertices and the

coefficients of restitution and friction angle (for each slope segment and for each barrier) can

all be defined by random variables.  Each distribution is specified separately and each

distribution is independent of all the others.

Although it is unlikely that all of these items will be assigned a random distribution at the

same time, this feature allows the program user to perform a sensitivity study on any of the

input parameters.  Determining the most sensitive parameter in the simulation is very useful

when deciding where remedial measures would be most effective.  If the remedial measure

can be taken on the most sensitive parameter, this will provide the most economical design.

The only parameter that cannot be assigned a distribution is the location of the barriers.  If

barriers are going to be employed in a design, the location will be known (and usually

specified) by the program user, so varying the location is not necessary.

3.3  Vertex Variation

Assigning a normal distribution to the slope vertices allows the engineer to statistically

simulate the effect of the variation in the slope geometry, as it changes from cross-section to

cross-section.  This can be thought of as simulating the three-dimensional shape of the slope.

This feature is also useful if the exact location of the vertices is not known.  This can occur if

the slope geometry was scaled-off of a diagram produced for some other reason (e.g. highway

construction) and is not exact, or if the model geometry is supposed to represent many similar

(but not identical) cross-sections.

Assigning a random distribution to a vertex can also be used to determine the sensitivity of

the current slope profile to changes in the location of vertices.  This is the most useful
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application of this feature and can often be helpful when determining where remedial

measures would be of most use. For example, if it were found that the location of the rock

endpoints is particularly sensitive to the location of one of the benches on a slope, removing

the bench (or otherwise changing the geometry) would be the best choice for the remedial

measure.

3.4  Initial Conditions for the Rocks

Before a simulation can begin, the initial location, velocity and mass of the rocks must be

defined.  This section will detail how these initial conditions are specified.

The starting location for the rocks can be specified anywhere on or above the slope surface

(i.e. anywhere, except underground).  The starting location can be defined by a single point in

space (referred to as a “point seeder” in the program).  In this case, all of the rocks will begin

the simulation at the same location.  This would be useful if the engineer was modelling two

parallel roadways (one further up the slope than the other), and the majority of rockfalls were

caused by debris originating at the side of the higher road.  Placing the point seeder at the side

of the higher road would model this situation quite well.

The starting location can also be defined by a poly-line (referred to as a “line seeder” in the

program).  The initial position of each rock is determined by randomly generating a location

somewhere along the length of the poly-line.  The location generated has equal probability of

being generated at any location along the poly-line (i.e. a uniform distribution).  This method

of “line seeding” is useful when the engineer is uncertain exactly where the rockfall will be

initiated, but would like to specify a likely range for the starting points (e.g. along one of the

upper segments of the slope.)

3.5  Multiple Seeders

Any number and combination of point seeders and line seeders can be added to the

simulation.  Regardless of how many seeders are present, only one rock is generated at a

time, and the generation is independent of the generation of the other rocks in the simulation.
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When there are multiple point seeders present, or a combination of point seeders and line

seeders, the rock will start from any one of the seeders with equal probability.  When there

are multiple line seeders present, the user of the program is allowed to choose between two

options.  The first option is to have the rock start with equal probability on any of the seeders

(this is the same probability behaviour as described above).  The second option is to have the

rock location generated with a probability proportional to the length of the seeder (relative to

the other seeders).  For example, if there are three seeders present, with lengths of 1 m , 3 m,

and 6 m then the probability that the rock with begin on each of the seeders, respectively, is

0.1, 0.3 and 0.6.

The mass, initial horizontal velocity and initial vertical velocity of the rocks can each be

specified by a constant value or sampled from a random distribution.  The sampling of the

mass and velocity are independent of the sampling technique that is used to generate the

location of the rock.

3.6  Data Collectors

In order to assist with the design of remedial measures, RocFall provides an ability to

determine the current state of the rocks as they pass certain locations on the slope (referred to

as a “data collector” in the program).  A data collector is a single line segment that can be

placed anywhere along the slope profile.  The data collector records the position, velocity and

kinetic energy of every rock that passes through the data collector during the simulation.

After the simulation has been performed, the data collectors can present a distribution of the

velocity, kinetic energy and position of the all the rocks that passed the data collector.

The data collectors are useful for determining the distribution of velocity, kinetic energy and

bounce-height at a certain location.  This information is useful when designing barriers.

Once the location for the barrier has been decided, a data collector can be placed at the

location, and the simulation re-run.  The data collector will display the distribution of kinetic

energy of the rocks that passed through the data collector.  This can be used to specify the

required capacity of the barrier.  The data collector will also display the distribution of

bounce-height of the rocks.  This can be used to specify the required height of the barrier.
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Checking all of the data collectors requires a substantial amount of effort during the course of

a simulation.  Since the envelopes use (invisible) data collectors to gather their information, it

is not uncommon for there to be 500 data collectors present in each simulation.  This involves

performing 500 parabola-line intersections each time the rock strikes a slope segment or

barrier.  In the course of a typical simulation, checking the data collectors requires the

parabola-line intersection routine to be executed tens of millions of times.

3.7  Envelopes

The program produces three “envelopes”: the kinetic energy envelope, the velocity envelope

and the bounce-height envelope.  Each envelope is defined by the maximum value (e.g.

maximum velocity) at a number of evenly spaced horizontal locations along the slope profile.

The kinetic energy envelope measures the highest kinetic energy that any rock attained while

passing each horizontal location.  The velocity envelope measures the highest velocity that

any rock attained while passing each horizontal location.  The bounce-height graph measures

the maximum height that any rock reached minus the slope height at each horizontal location

(i.e. the maximum height above the slope).  Any horizontal location that is not crossed by a

rock is given a value of zero when creating the envelope.

The envelopes provide an overview of the condition of the rocks as they travel from one

section of the slope to the other.  The envelopes are very helpful in determining where

remedial measures, particularly barriers, would be most effective.  If there are few restrictions

on the placement of a barrier, a good choice of location would be at a local minimum on the

bounce-height envelope.  This is a good choice of location because it is a section of the slope

where the rocks are not likely to be travelling far above the ground, and the barrier would not

have to be very tall to be able to intercept all of the rocks.

Since the envelopes only display the maximum value, at any location, it is typical to use a

data collector in combination with the envelope. The data collector can be used to determine

the distribution of energies at a specific location once the envelopes have been used to narrow

down a location of interest.

The data that is required to create the envelopes is gathered by placing a number of vertical

data collectors (invisible to the program user) equally spaced along the length of the slope
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profile.  The number of locations is specified by the program user in the “number of intervals

to use when plotting” option in RocFall.

3.8  Location of Rock Endpoints

The location of the rock endpoints is, arguably, the most important single piece of output

from the program.  This is considered an essential piece of output because it is usually the

final location of the rocks that determines whether a design is successful or not.  The

adequacy of a design can often be summarised in a yes or no question (e.g. did the rocks

reach the highway, or not?)

The location of the rock endpoints is presented as a distribution.  The distribution can either

be displayed graphically in the program or pasted into another program for further statistical

analysis.

3.9  Barriers

Barriers are modelled in the program very much like a slope segment that happens to be

attached at an odd angle to the remainder of the slope.  The barriers and slope segments are

both modelled by a straight line and have the same set of material properties (RN, RT, φ). The

rock bounces and slides on the barriers in the same manner as the slope segments.

The barriers must have one end attached to a slope vertex.  The other end must be placed such

that the barrier does not intersect any of the other barriers or any slope segments (i.e. the

barrier must have one end on the ground and not intersect any other items).  These restrictions

were required because crossing barriers, and barriers suspended in the air, provided too many

“special cases” where the rock might become trapped.

The simulation of remedial measures, such as a barrier, is useful to the engineer because it

allows them to test their design with more simulation.  For example, a barrier proposed as the

final design could be placed in the simulation and a sensitivity analysis performed.  This

study would reveal the required conditions for the design to fail.  The likelihood of the

conditions that brought about the failure could be evaluated and the adequacy of the design

decided.



13

4. Particle Algorithm

RocFall employs a particle analysis to calculate the movement of the rock.  This chapter will

detail the particle model as it is used in RocFall: the assumptions that are made, the equations

that are used, and the algorithm that was used to implement the model in RocFall.  The C++

implementation of the particle algorithm is presented in much more detail in Appendix B.

A simpler version of this particle model was originally presented by Hoek (1987). The

algorithm presented here uses the same assumptions about the slope and the rock as Hoek,

but places fewer restrictions on the model.  This algorithm permits overhanging sections of

the slope, uphill sliding, sliding on any slope segment and the inclusion of barriers in the

simulation.

The particle model is a fairly crude model of the physical process of a rockfall.  The particle

model neglects the effects that the size, shape and angular momentum of the particle have on

the outcome.  However, the particle model does have the advantage of being extremely quick

to calculate, which allows sensitivity analyses to be performed.  Since the input for most

rockfall analyses is so poorly defined, it is equally important to determine the sensitivity of

the results as it is to determine the results themselves.

4.1  The Algorithm

There are three distinct sections to the particle analysis: The particle algorithm, the projectile

algorithm, and the sliding algorithm.  The particle algorithm makes sure all of the simulation

parameters are valid, sets up all of the initial conditions in preparation for the projectile and

sliding algorithms and then starts the projectile algorithm.  The remainder of the simulation

(until the rock comes to rest) is spent in either the projectile algorithm or the sliding

algorithm.  The projectile algorithm is used to calculate the movement of the rock while the

rock is travelling through the air, bouncing from one point on the slope to another.  The

sliding algorithm is used to calculate the movement of the rock while the rock is in contact

with the slope.  Because the velocity of the rock has to be very low before the rock will leave

the projectile algorithm, the majority of the simulation is spent in the projectile algorithm.  A

better understanding of these three algorithms and the interaction between them can be gained



14

by looking at Figures 4.1, 4.2 and 4.3.  Thorough examples of the use of these algorithms can

be found in the first two chapters of the verification appendix.

The largest problem that was encountered when implementing the particle analysis was the

numerical instabilities of the projectile algorithm.  These problems are explained in much

more detail in the following chapter.

4.2  Assumptions

Each rock is modelled as a particle.  The particle may be thought of as an infinitesimal circle,

since the size of the rock does not play a role in the algorithm, but the equations used in the

sliding algorithm imply a circular shape.  Because each rock is assumed to be infinitely small,

there is no interaction between particles, only with the slope segments and barriers.  Because

there is no interaction between particles, each rock behaves as if it were the only rock present

in the simulation.

Although the rocks are not considered to have any size (for the purpose of interaction with

other rocks, the slope or barriers) they are considered to have a mass.  The mass it is not used

in any of the equations used to calculate the motion of the rocks, it is only used to calculate

the kinetic energy when creating the graphs and presenting results.  The mass is determined at

the beginning of the simulation and stays constant throughout the simulation.  The rocks

cannot break or split into multiple pieces during the simulation.  The mass can be specified by

a constant value or samples sampled from a random distribution.

The frictional resistance of the air is not taken into account in any of the equations.  It is

assumed that the rocks are massive enough and travelling at low enough speeds that this can

be ignored.  Incorporating air resistance would make the analysis much more complicated

and would have little effect on the outcome of the simulation.

The slope is modelled as one continuous group of straight line segments, connected end to

end.  In order to be considered valid, a slope segment cannot cross any other slope segments,

and vertices cannot be coincident.  Otherwise, the geometry is unrestricted.  The barriers and

data collectors are modelled as single straight line segments.
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4.3  Projectile Algorithm

The projectile algorithm assumes that the rock has some velocity (even a small velocity) that

will move it, through the air, from its present location to a new location where the rock will

strike another object (which can be further along the same object).  The path the rock will

take through the air is, because of the force of gravity, a parabola.

The essence of the projectile algorithm is finding the location of intersection between a

parabola (the path of the rock) and a line segment (a slope segment or a barrier).  Once the

intersection point is found, the impact is calculated according to the coefficients of restitution.

If, after the impact, the rock is still moving fast enough the process begins again, with the

search for next intersection point.  In this context “fast enough” is defined as the minimum

velocity (VMIN) and is specified by the program user at the beginning of the simulation. The

minimum velocity defines the transition point between the projectile state and the state where

the rock is moving too slowly to be considered a projectile and should instead be considered

rolling, sliding or stopped.  The outcome of the simulation and the time it takes to perform

each simulation are not particularly sensitive to changes in VMIN.

4.4  Equations

Using the parametric form of the equations (for the parabola and the line) is beneficial when

overhanging sections of the slope or barriers are permitted.  The parametric form of the

equations is advantageous because the parabolic path of the rock, may intersect multiple

slope segments and barriers, and the order of intersection must be determined.  Since the rock

only really impacts the first intersection point, finding the smallest value of the parameter

used in the parabolic equations provides a simple method for determining the correct

intersection.

The equations used for the projectile calculations are listed below:

The parametric equation for a line:

uXXXx )( 121 −+=  (4.1)
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uYYYy )( 121 −+=  u ∈[0,1] (4.2)

where:

X1, Y1 is the first endpoint of the line

X2, Y2 is the second endpoint of the line

The parametric equation for a parabola:

00 XtVx X += (4.3)

00
2

2

1
YtVgty Y ++= t ∈[0,∞] (4.4)

where:

g is the acceleration due to gravity (sign is negative)

X0, Y0 is the initial position of the rock

VX0, VY0 is the initial velocity of the rock

The parametric equations for the velocity of the particle:

0XXB VV = (4.5)

gtVV YYB += 0 (4.6)

where:

VXB, VYB is the velocity of the rock at any

point along the parabolic path, before impact

Equating the points of the parabola and line equations (i.e. x = x and y = y) and rearranging

into the familiar form 02 =++ cbxax gives:

[ ] [ ] 0)(
2

1
011000

2 =−+−+−+
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= is the slope of the line segment (4.8)

Equation 4.7 can be solved for t using the quadratic equation:
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2

42 −±−= (4.9)

where:

ga
2

1= (4.10)

00 XY qVVb −= (4.11)

)( 0110 XXqYYc −+−= (4.12)

During each pass through the algorithm, the parabola formed by the rock trajectory is

checked with every segment of the slope and with every barrier.  All of the slope segments

and barriers that have a valid intersection with the parabola are inserted into a list.  The list is

then sorted by the value of the t parameter to determine the correct intersection.

Once the correct intersection is determined, the velocity just prior to impact is calculated

according to equations 4.5 and 4.6.  These velocities are transformed into components normal

and tangential to the slope according to:

)sin()()cos()( θθ XBYBNB VVV −= (4.13)

)cos()()sin()( θθ XBYBTB VVV += (4.14)

where:

VNB, VTB are the velocity components of the rock, before impact,

in the normal and tangential directions, respectively

θ is the slope of the line segment

The impact is calculated, using the coefficients of restitution, according to:

NBNNA VRV = (4.15)

TBTTA VRV = (4.16)

where:

RN is the coefficient of normal restiution ∈[0,1]

RT is the coefficient of tangential restiution ∈[0,1]

VNA , VTA are the velocity components of the rock, after impact,

in the normal and tangential directions, respectively
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The post-impact velocities are transformed back into horizontal and vertical components

according to:

)cos()()sin()( θθ TANAXA VVV += (4.17)

)cos()()sin()( θθ NATAYA VVV −= (4.18)

where:

VXA, VYA are the velocity components of the rock, after impact,

in the horizontal and vertical directions, respectively

Once the correct intersection is determined and the velocities have been calculated, all of the

data collectors are checked for intersection with the parabola (in a manner similar to checking

the slope segments).  Any data collector with a parametric value (the value of t) less than the

value of the actual intersection is informed of the rock’s trajectory.  The location, velocity

and kinetic energy of the rock, at the moment it passes the data collector, are recorded by the

data collector.

The velocity of the rock is then calculated and compared to VMIN.  If it is greater than VMIN

the process starts over again, with the search for the next intersection point.  If the velocity is

less than VMIN the rock can no longer be considered a particle, and is sent into the sliding

algorithm.

4.5  Sliding Algorithm

The sliding algorithm is used to calculate the movement of the rocks after they have exited

the projectile algorithm.  The rocks can slide on any segment of the slope and on any barrier.

For the purpose of the sliding algorithm, the slope segment or barrier that the rock slides on,

consists of a single straight-line segment that has properties of slope angle (θ) and friction

angle (φ).  The friction angle can be specified by a constant value or sampled from a random

distribution.

The rock can begin sliding at any location along the segment and may have an initial velocity

that is directed upslope or downslope.  Only the velocity component tangential to the slope is

considered in the equations.
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Once the sliding is initiated, the algorithm used depends on whether the initial velocity is

upslope or downslope.  The algorithm used when the initial velocity is downslope will be

explained first.

4.6  Sliding Downslope

When the initial velocity of the rock is downslope (or zero) the behaviour of the rock depends

on the relative magnitudes of the friction angle (φ) and the slope angle (θ).

θ = φ If the slope angle is equal to the friction angle, the driving force (gravity) is equal to

the resisting force (friction) and the rock will slide off the downslope end of the segment,

with a velocity equal to the initial velocity (i.e. VEXIT = V0).  There is a special case when

V0 = 0; in this case, the rock does not move, and the simulation ends.

θ > φ If the slope angle is greater than the friction angle, the driving force is greater than

the resisting force and the rock will slide off the downslope endpoint with an increased

velocity.  The speed with which the rock leaves the slope segment is calculated by:

sgkVVEXIT 22
0 −= (4.19)

where:

VEXIT is the velocity of the rock at the end of the segment

V0 is the initial velocity of the rock, tangential to the segment

s is the distance from the initial location to the endpoint of the segment

g is the acceleration due to gravity (-9.81m/s/s)

k is )tan()cos()sin( φθθ −±

where:

θ is the slope of the segment

φ is the friction angle of the segment

± is + if the initial velocity of the rock is downslope or zero

± is − if the initial velocity of the rock is upslope
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θ < φ If the slope angle is less than the friction angle, the resisting force is greater than the

driving force and the rock will decrease in speed.  The rock may come to a stop on the

segment, depending on the length of the segment and the initial velocity of the rock.

Assuming that the segment is infinitely long, a stopping distance is calculated.  The distance

is found by setting the exit velocity (VEXIT) to zero in equation 4.19 and rearranging:

gk

V
s

2

2
0= (4.20)

The distance from the initial location of the rock to the end of the segment is calculated.  If

the stopping distance is greater than the distance to the end of the segment, then the rock will

slide off of the end of the segment.  In this case, the exit velocity is calculated using equation

4.19.  If the stopping distance is less than the distance to the end of the segment then the rock

will stop on the segment and the simulation is stopped.  The location where the rock stops is a

distance of s downslope from the initial location.

4.7  Sliding Upslope

When sliding uphill both the frictional force and the gravitational force act to decrease the

velocity of the particle.  Assuming that the segment is infinitely long, the particle will

eventually come to rest.  The stopping distance is calculated using equation 4.20 and the

distance from the initial location of the rock to the upslope end of the segment is calculated.

If the stopping distance is greater than the distance to the end of the segment, the rock will

slide off of the end of the segment.  In this case, the exit velocity is calculated using equation

4.19.  If the stopping distance is less than the distance to the end of the segment the rock

comes to rest and the simulation is stopped.

If the rock slides up and stops it is then inserted into the downslope sliding algorithm.  If the

segment is steep enough to permit sliding (i.e. θ > φ) then the rock will slide off the bottom

end of the segment.  If the segment is not steep enough, then the location where the rock

stopped moving (after sliding uphill) is taken as the final location and the simulation is

stopped.
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5.  Numerical Instabilities

A lot of time and effort was required to solve the numerical instability problems in RocFall.

This chapter outlines some of the difficulties that were encountered when the particle

algorithm was implemented and the solution to those difficulties.

It is the author’s experience that writing an engineering program that works ninety five

percent of the time (a few situations not being handled properly) requires less than half of the

time and effort required to write a program that handles all of the situations properly.  It is

important for a program that performs probabilistic simulations to work correctly in all cases.

Since each simulation has a slightly different outcome, and hundreds of simulations are

performed, a problem that occurs only once in a thousand simulations, will be noticed very

quickly.

5.1  Impossible situations

It is trivial to construct a case that is analytically valid (if not realistic) that could cause an

unsuspecting rockfall algorithm to continue indefinitely.  For example, dropping a rock with

zero initial velocity onto a horizontal surface with RN = 1 would cause the rock to bounce up

and down − forever.  This would cause the program to enter an endless calculation loop, and

stop responding to the user (otherwise known as a “crash”).  While this example is contrived,

it is possible for the user of the program to inadvertently specify a similar situation.

Since the goal was to construct a robust program, this possibility of this situation, and similar

situations, was handled.  Each rock is given a certain amount of real time (not to be confused

with simulation time, which will usually be much longer) to finish all of its calculations.

Since the amount of real time permitted for the calculations (approximately 10 s) is many

times larger than the typical solution time (approximately 0.02 s) whenever a simulation

“time’s out” the reason is almost always that the conditions specified are “impossible” and

convergence (the rock stopping) will never occur.
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5.2  Numerical instabilities

One of the equations used to find the parabola-line intersection (equation 4.8) is unstable in

two situations (the instability is caused by the (X2 - X1) term in the denominator).  The first

instability is encountered when the length of the line segment approaches zero.  This problem

was solved by the forcing the program user to enter geometry such that each of the slope

segments is at least 1 mm in length.

The second instability is encountered when the line segment is vertical.  Noting that the

parameter u can be removed from equation 4.1 when the line is vertical solved this problem.

When the parameter u is removed and the horizontal location is equated (i.e. x = x) with

equation 4.3 (the parabola equation), these equations can be solved for t.

0

01 )(

XV

XX
t

−
= (4.21)

The solution is now stable, for all cases except when the line is vertical and the rock has zero

initial horizontal velocity (VX0).  When this occurs, there is no intersection between the

parabola and the line, and the instability is avoided.

The non-parametric versions of the parabola-line intersection were unstable for horizontal

velocities close to zero, which is a much more common occurrence than vertical slope

segments.  This is another reason why the parametric versions of the equations are superior to

the slope, y-intercept form of the equations.

5.3 Machine Error

When equation 4.9 (the quadratic equation) is solved in the projectile algorithm the two roots

represent the starting point and ending point of the trajectory. A difficulty presents itself

because “machine error” will cause the root at the beginning of the trajectory to have a

parameter that is not exactly zero.  When the bounce-height becomes extremely small, it can

become difficult to determine which root represents the beginning and which represents the

end.  This difficulty was solved by offsetting the rock slightly below the segment, before each

trajectory, and taking the smallest positive root as the beginning point.
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6.  Recommendations

RocFall is an ongoing project.  While the user-interface of the program can always be

improved, these recommendations focus on the calculation aspect of the program.  The

recommendations are listed in order of desirability:

1. Gathering of empirical data for the coefficients of restitution

The outcome of a rockfall simulation is very dependent on the values used for the coefficients

of restitution.  Unfortunately, appropriate values are not always well known and a lot of time

is usually spent determining what values should be used.  Gathering a large sample of

previously used values in one location, similar to the work of Tomory (1997), would be

extremely useful.  Gathering this data would require a substantial amount of time and effort.

2.  Mass-based “plasticity” function for the coefficient of restitution

This would involve varying the coefficient of restitution based on the mass of the rock (i.e.

more massive rocks would use lower coefficients of restitution when the impact was

calculated). This would not require much work to implement.

3.  “Breakable” barriers

This would require very little effort to add to the current program (in fact, most of the code

has already been written).  The reason it was not added is that the outgoing velocity (after the

rock has passed through the barrier) is difficult to define.  It was thought that the velocity

vector of the rock would be changed (tending towards the normal of the barrier, perhaps).

Further research into this behaviour should be performed before this feature is added.

4.  Three-dimensional particle analysis

This would require a large amount of effort, but is within the realm of possibility.  The factor

limiting the usefulness of this type of model would likely be the lack of input data (i.e. this

would require a large number of cross sections, which might not be available).

5.  Consider angular velocity and/or shape effects in the particle model

Although desirable, this would require re-writing and re-verifying the entire calculation

section of the program.  This would require a substantial amount of work.
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7.  Conclusion

7.1  Final Product

The final product of this work is the program RocFall.  RocFall is a robust, easy-to-use

program that is capable of simulating rockfalls on a wide variety of slope geometries, and has

been used by dozens of engineers over the course of the last six months. The implementation

of the particle analysis is extremely robust and has proven to be stable for all of the realistic

and pathological cases that have been attempted.

The goal of this thesis was to create a tool to assist engineers with the probabilistic analysis of

rockfalls and the design of remedial measures. RocFall meets these objectives.

7.2  Verification

Essential to the use of a computer program in engineering practice, this thesis presents a

thorough verification of the program’s output. This verification can be found in appendix A.

The verification was placed in an appendix because it is lengthy and it was meant to be

readable separate from the body of the thesis.  This was done so that an engineer that is using

the program can refer to the verification, without having to read the entire thesis.

7.3  The Program

RocFall was written with Microsoft Visual C++ 5.0 using the Microsoft Foundation Classes

(MFC) class library.  The complete RocFall program consists of slightly more than 26,000

lines of code contained in approximately 400 files.  It would be impractical, and of little

value, to print out and include all of these files, as this would expand the thesis by more than

800 pages.  Instead, only those files that relate to the particle analysis have been included in

this thesis.  A thorough explanation of the calculation engine used by the particle analysis,

and a guide to its use, is presented in appendix B.
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