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Abstract 

Application of Rigid Body Impact Mechanics and Discrete Element 
Modeling to Rockfall Simulation 

Doctor of Philosophy 2007 

PARHAM ASHAYER 

Department of Civil Engineering 

University of Toronto 

Numerical modeling can assist in predicting falling rock trajectories and reducing the 

destruction caused by rockfalls. The majority of existing rockfall simulations are based on 

particle or lumped-mass models that consider the falling rock as an infinitesimal particle with 

a concentrated mass. Hybrid models usually find the rock-slope contact point using 

techniques similar to those used in particle models, while incorporating some aspects of the 

rigid body collisions for bouncing. There are also some rigid body models that employ 

simplified mathematical impact models. In the framework of this thesis, the applications of 

rigid body theory and discrete element modeling to rockfall simulation are investigated. 

A modified version of the discrete element model (MDEM), which can model impacts using 

methods similar to low-compliance impact models, is offered. In this model, the normal 

linear dashpot is replaced by a nonlinear dashpot which dissipates the impact velocity based 

on the contact normal velocity. A mono-direction sliding unit is added to model low-

compliance impacts and the tangential dashpot is removed. Several numerical tests strongly 
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indicate that if shape geometries can be sufficiently approximated by a group of particles, the 

proposed MDEM can replicate the rebound velocities that are predicted by the application of 

low compliance rigid body impact models. 

Application of rigid body impact mechanics (RBIM), originally developed by Stronge, in 

rockfall simulation is studied and compared with other classical rockfall impact models. The 

effects of several parameters on widely-used coefficients of restitution are investigated 

including: rock geometry and slenderness, angle of impact, rock orientation, and slope 

material properties. 

A new geometrical rockfall simulation program, GeoRFS, based on rigid body mechanics in 

two-dimensional space, is developed, where rock geometry can vary from prisms with a 

randomly generated polygonal cross section to superellipsoids. 

The trajectories of different rock geometries (e.g., roll-out distances, bounce heights, 

velocities, and energies) during multiple impacts on flat and inclined impact surfaces are 

studied. The results strongly suggest that the provided simulation program can satisfactorily 

replicate the roll-out distances obtained from the in-situ tests performed by the Oregon 

Department of Transportation using different rock geometries. 

It is expected that the geometrical simulation tools introduced in this work will replace the 

particle impact model currently used in rockfall programs. 
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Î  rotation matrix 
Ikl inertial tensor 
k  spring stiffness in the system of one degree of freedom 
kr polar radius of gyration 
Kn , Ks , Kr normal, tangential, and rotational stiffness of the springs  
K0 the total initial kinetic energy 
M object’s mass 
n ellipsoid power 
nfractions the number of secondary timestep refinements 



 

 xxii

nx , ny contact normal vector components in two perpendicular directions 
n̂  contact normal vector  
N contact normal force 
pi i th component of impulse 
pc , pf , ps termination impulses for: normal velocity, contact, tangential velocity 
pc,crit , pf,crit , 
ps,crit 

critical termination impulses for: normal velocity, contact, tangential velocity 

p1, p3 tangential and normal impulses at the contact 
p̂  impulse vector 

nP  polygon nodal vector 

Pn polygon nodal coordinate 
r1 , r3 contact vector components 
rn the modified tangential contact vector in tangential direction 
ri i th component of contact vector 
r̂  object position vector 
R circle (sphere) radius 
Rn normal coefficient of restitution 
Rt tangential coefficient of restitution 
Rt,min minimum tangential coefficient of restitution 
RKinematic (Rv) kinematic (velocity) coefficient of restitution 
RKin kinetic coefficient of restitution 
REnergy (RE) energy coefficient of restitution 
RE,trans translation energy coefficient of restitution 
RE,tot total energy coefficient of restitution 

ER  average total retrieved energy 

ŝ  slip direction 
s sliding speed 
t time  
tc contact time 
TR , TS , TT transformation matrices of rotation, scaling, and translation 
v1 , v3 contact velocities in the tangential and normal directions 
v i i th component of contact velocity vector 
V object volume  
V1,min minimum value of rebound tangential velocity 
Varrest the threshold cut-off velocity 
Vi i th component of object velocity vector 
Vini,ver , Vini,hor initial object velocity in vertical and horizontal directions 



 

 xxiii

Vn1 , Vn2 approaching and rebound normal velocities 
Vt1 , Vt2 approaching and rebound tangential velocities 
vn , Vn normal velocities at the object center before and after impact 
ˆ ˆ,V v  incoming and outgoing object’s velocities 

vt , Vt tangential velocities at the object center before and after the impact 
vroll,tr rolling threshold velocity 

V̂  object velocity vector 

, ,,r n r tV V  average rebound normal and tangential velocities 

Wc work done by normal component of impulse during compression 
Wr work done by normal component of impulse during restitution 
x overlap in oscillating systems 
x, x0 object global coordinate in x axis, its initial value in x direction 
y, y0 object global coordinate in y axis, its initial value in y direction 
z, z0 object global coordinate in z axis, its initial value in z direction 
 
Greek symbols  
 
α rotational acceleration 
αc angle at which the stick situation changes to sliding 
β a , β b , β c  ,β d  indexes helping in defining the rebound velocities applying Stronge impact theory 
β1 , β2 toppling angles 

cβ  index helping in defining the rebound velocities applying Stronge impact theory 

β i configuration matrix components 
βsnd percentage of the diameter which results in the maximum acceptable overlap 
γ angle of incidence (impact) 
∆t time step 
∆tmax maximum time step 
ε ijk permutation number 

max
eε  energy coefficient of restitution 

Z, Z0 , Zf dimensionless velocity, its initial and final values 
η ratio of tangential and normal springs stiffness at a contact 
θ object orientation around the axis perpendicular to the plane 
λ ratio of the natural frequencies of tangential to normal direction 
µ friction coefficient 
µ c critical friction coefficient 



 

 xxiv

µ s sliding (friction) coefficient in Voigt-Kelvin module 
µ r rotational friction coefficient 
µ  friction coefficient used as stick condition 

ν Poisson ratio 
φ  sliding direction 
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CHAPTER  1 

INTRODUCTION AND OUTLINE 

Rockfalls occur when rocks or boulders detach from mountains or hills and tumble down. 

Rockfalls can pose significant hazards to infrastructures next to mountainous areas, and they 

are one of the events triggered by earthquakes which cause fatalities. Slopes that are at risk of 

rockfall have highly variable geometries. The location, mass, and shape of the rocks that 

might dislodge and fall are uncertain. Moreover, the materials that make up a slope can vary 

considerably from one section of a slope to another. Furthermore, the relevant material 

properties for the slopes are usually not well known. Performing probabilistic simulations of 

rockfalls, combined with proper statistical analyses, has proven to be an effective and 

acceptable method for predicting the rock path trajectories. A rockfall model is evaluated 

based on its ability to efficiently predict the velocity, frequency, bounce height, and run-out 

distance of falling rocks. With this information, the engineer can design remedial measures 

such as restraining nets and ditches. The movements of a falling rock can be classified as 

freefall, bouncing, sliding, toppling, or rolling. The falling trajectory is controlled mainly by 

the geometry of the slope, the rock shape, and the energy dissipated at each contact of the 

rock with the slope.  

Most of the existing rockfall simulation programs are based on particle models that consider 

the falling rock as an infinitesimal particle with a mass, called the lumped mass 

(stereomechanical) models. Other models involve hybrid methods relying on simplified 

assumptions. The most common hybrid methods are based on contact searching for the 

movement of a dimensionless object, and incorporating some aspects of rigid body impact 
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mechanics for bouncing. The literature also describes simulations which use simplified rigid 

body models. The work in this thesis applies a more sophisticated rigid body theory based on 

rigid body impact mechanics (RBIM) developed by Stronge (1994). Stronge’s theory 

captures all modes of rigid body movement. Due to the importance of rock geometry, in this 

work, single and multiple impacts of different rock geometries are investigated. The effects 

of rock slenderness, angle of impact, rock orientation at impact, and slope material properties 

on rebound velocities and energies are investigated. The correspondence between the model 

parameters and data from rockfall literature will be discussed and an in-situ rockfall test will 

be replicated.  

This thesis is structured in 7 chapters: 

Chapter 2 is devoted to providing the preliminaries needed in creating and understanding a 

rockfall simulation. The available theories in impact modeling are presented with the 

limitations and advantages of each theory. The essential definitions of the coefficients of 

restitution are presented along with the parameter values in the rockfall literature. 

In Chapter 3 the application of discrete element modeling (DEM) in rockfall simulation is 

investigated. This chapter introduces a modified version of discrete element modeling in 

which the normal linear dashpot is replaced with a nonlinear module. In this modified 

version, in the tangential direction, a mono-direction spring replaces the spring where the 

tangential dashpot is eliminated. The results of the impact of rigid body clumps using the 

modified module are compared with the impact results of similar objects using rigid body 

impact mechanics.  

Chapter 4 reviews rigid body impact mechanics, introduced by Stronge (1994), and offers a 

method for defining the slipping process in two-dimensional space. This model is compared 

with several available rigid body models in the rockfall literature. The classical definition of 

coefficients of restitution (COR) is challenged by introducing rock geometries. The effects of 

several parameters on the variation of COR are studied. The essential equations for rigid 

body rolling and toppling are also presented in this chapter. 
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In Chapter 5 the developed geometrical rockfall simulation program, GeoRFS, is introduced. 

Several basic assumptions and procedures used in the program are introduced including: 

modes of motion definition, rock geometries, contact search procedures, and time step 

criteria. In addition to a description of the application of class structure, the simulation 

pseudo-code is provided. Finally the application of the simulation in the new version of 

RocFall® is illustrated. 

In Chapter 6, the simulations created in this code are utilized to study the trajectories of 

different rock geometries during multiple impacts on flat and inclined impact surfaces. 

Several rock trajectory parameters including roll-out distances, bounce heights, velocities, 

and energies are studied during different stages of impact. The effect of rock orientation, 

impact angle, slope material parameters, and rock slenderness on the roll-out distances and 

energy levels after multiple impacts are investigated. As a case study, the in-situ experiments 

of Pierson et al. (2001), performed to develop design charts for dimensioning rockfall 

catchment areas adjacent to highways, were replicated using the new version of RocFall®. 

Conclusions and suggestions for further research work are summarized and outlined in 

Chapter 7. 
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CHAPTER  2  

ROCKFALL STUDIES – PRELIMINARIES AND 
LITERATURE REVIEW 

2.1 INTRODUCTION 

Rockfalls occur when rocks or boulders detach from mountains, hills, or rock cuts and 

tumble down. They can pose significant hazards to infrastructure such as highways, 

buildings, and open pit mines, and they can sometimes result in injury or death. Rockfalls can 

cause the same number of fatalities as all other forms of rock slope instability combined, 

Hoek (2007). Badger and Lowell (1992) stated that 45% of rock slope instabilities are related 

to rockfall phenomena. Hunger and Evans (1989) stated that 13 deaths were caused by 

rockfalls during the last 87 years prior to 1989 in Canada, all of them in British Columbia.  

Understanding rockfalls involves investigating two main stages: the triggering and the post-

failure stages. Researchers have pursued one or other of these directions. This research 

studies the post-failure procedure, disregarding the triggering process. 

Usually, rockfalls are initiated by some climatic, biological or mechanical events making a 

change in the active and passive forces on a piece of rock, as stated by Hoek (2007). These 

events may include: pore water pressure increase due to rain, freeze-thaw process in the cold 

climate, wind and sand erosion in dry climates, climate degradation or weathering of the 

rocks, earthquake vibrations, and mechanical disturbances from active construction zones.  
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The movements of a falling rock can be classified as freefall, bouncing, sliding, toppling, or 

rolling. Figure 2.1 demonstrates a rockfall trajectory next to a mountain slope. Recently, 

computer programs have become popular for modeling the trajectory of a falling rock. The 

most important, and yet very complicated, mode of motion is the impact mode. The most 

common models used in rockfall simulations are lumped-mass (or stereomechanical) models 

which are based on particle methods that concentrate the mass of a rock at an infinitesimal 

particle (Wu (1985), Fornaro et al. (1990), Evans et al. (1993), Giani et al. (1992), Hoek 

(1986), and Spagn et al. (1988)).  

Other models involve hybrid methods that utilize simplified impact models at the time of the 

impact of a particle and a surface such as the models offered by: Pfeiffer et al. (1989), 

Bozzolo et al. (1988), Azzoni et al. (1995), Stevens (1989) and Jones et al. (2000).  

A few rigid body models are offered in the rockfall literature which consider simplified rock 

geometries and use specific impact model such as: Descouedres et al. (1987) and Kobayashi 

et al. (1990). The different categories of impact models which potentially can be used in 

rockfall simulations are studied in the following section. 

Barrier (fence)

Rockfall trajectory 
Rolling-sliding

Rockfall trajectory 
Freefall

Falling rock

Infrastructure 
(Highway)

Rockfall trajectory 
Impact

 
Figure 2.1: Rockfall trajectory in a mountain slope next to a highway. 
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2.2 ROCKFALL IMPACT MODELS 

The collision of two approaching objects, or one object and an infinite surface, occurs at a 

surface referred to as the collision surface or impact area. For an infinitesimal time step, the 

relative velocities of some close parts of the two objects are negative, indicating that, for that 

brief point in time, the objects are in contact with each other. The mobilized contact forces, 

brought on by collision, push the two objects to separate from each other, causing the relative 

contact velocities to become positive. Any numerical model which tries to replicate the 

generation of the impulses at the contact point and predict the rebounding velocities is known 

as an impact model.  

The majority of the existing impact models study collisions which occur at low impact 

velocities. The deformations caused by this type of impact are imperceptible; impacts for 

which this is not the case are out of the scope of these types of models. Stronge (2000) has 

produced a list of the existing impact theories, reproduced here in Table 2.1. 

In stereomechanical or lumped-mass models the rebound velocities are a discontinuous 

function of the incident velocities, while in the other models the velocities are usually a 

function of either time or impulse. The computational cost of finding the contact point is 

usually higher in  rigid body models in comparison to lumped-mass models; however, the 

computational effort needed for lumped-mass and rigid body models is significantly lower 

than the effort needed in discrete element and continuum models. As a result, the rigid body 

models are an important candidate for rockfall probabilistic modeling, which is repetitive in 

nature. The application of rigid body mechanics in rockfall modeling is the main subject of 

this study, explored in Chapters 4 through 6. 

Hybrid models use the contact search procedures similar to lumped-mass models, while they 

use mathematical impulse models to calculate the rebound velocities. For hybrid models, 

both the contact search procedure and applying the impact equations are computationally 

effective. The first hybrid model was offered by Bozzolo et al. (1982) followed by several 

researchers such as Azzoni et al. (1995), and Pfeiffer et al. (1989). Hybrid impact models 



Chapter 2: Rockfall Studies – Preliminaries and Literature Review   7 

 

will be studied in Chapter 4 and their application in rockfall simulation are discussed in 

Chapter 5. 

Cundall and Hart (1992) identify four different classes of simulations which are part of the 

general definition of discrete element modeling (in UDEC, 2000): distinct element methods, 

modal methods, discontinuous deformation analysis (DDA), and momentum-exchange 

methods. The distinct element method, which is the numerical model studied in Chapter 3, 

applies explicit time-driven methods to solve equations of motion. The main representatives 

of these models are UDEC (2000) and PFC (2002). These models have the potential of 

modeling rock fragmentation as shown by Potyondy et al. (2004). 

Table 2.1: Available theories for low speed impact, after Stronge (2000) 

Impact theory Independent 
variable 

Independent 
parameters Computational effort Illustration 

Lumped-mass  
(Stereomechanical) 

None Rn, Rt 
       a 

Contact search: low b 
Application: low c 

 

Hybrid None 
RKin or  REnergy  

d 

µ 
Contact search: low 

Application: low 
    

Rigid body Impulse (p) 
RKin or  REnergy 

 

µ 
Contact search: medium 

Application: low 
 

Discrete element   
(compliant contact) 

Time (t) 
Combination of  e 
springs, dashpots, 

and sliders 

Contact search: medium 
Application: medium 

 

Continuum Time (t) Elastic moduli 
Contact search: high 

Application: high 
 

a normal and tangential coefficients of restitution 
b computational effort needed for contact search procedure 
c computational effort needed for calculating the rebound velocities 
d kinetic or energy coefficient of restitution in addition to friction coefficient 
e tangential and normal (even rotational) springs and dashpots along with sliders 
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DDA, developed by Shi (1985), assumes the contacts as rigid bodies; however, the blocks 

can be rigid or deformable. The impenetrability condition is achieved by performing iterative 

methods, while the deformability comes from the superposition of strain modes. Continuum 

models, like finite element methods (FEM), are also out of the scope of this work, due to 

their high computational cost (for the application of FEM in impact mechanics refer to 

Belytschko (2000) and Wriggers (2002)).  

Lumped-mass and rigid body models use different definitions of the coefficients of 

restitution. Discrete element modeling also uses a combination of dashpots and sliders as the 

source of energy dissipation, as will be discussed in Chapter 3. In addition, most of the data 

in rockfall literature is expressed in the terms of the coefficients of restitution. It is not 

practical to utilize various definitions for energy dissipation in each theory if there is an 

intention to compare the energy dissipations in different theories and use the rockfall 

literature values. As a result the parameters in rigid body or discrete element models are 

calibrated and compared according to the definitions used for coefficients of restitution 

defined in lumped-mass model. 

Due to the importance of these coefficients, different categories of coefficients of restitutions 

are studied in the following section.  

2.2.1 Coefficients of restitution (COR) 

Coefficients of restitution characterize the amount of energy lost due to the inelastic 

deformation during the collision of two objects or an object and a surface. Different 

definitions have been suggested for the coefficients of restitution (COR), but there is no 

consensus among researchers. There are three groups of definitions for defining the 

coefficients of restitution, as described by Stronge (2000): kinematic, kinetic, and energy 

coefficients of restitution.  

2.2.1.1 Kinematic coefficient of restitution 

The kinematic coefficient of restitution was originally identified and named by Newton 

(1686) to describe the amount of energy lost during the impact of identical spheres. A 
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popular definition for the COR in this category is the ratio of the particle rebounding 

velocity, Vr, to the incoming velocity (the velocity prior to impact), Vi. This ratio is known as 

velocity COR: 

r
V

i

VR
V

=  (2.2.1) 

The most widely accepted definition for the COR is derived by projecting the velocity vector 

into two perpendicular directions, normal and tangential to the impact surface. The two 

coefficients are described by the ratios of the velocities before and after the impact: 

,rn rt
n t

in it

V VR R
V V

= =  (2.2.2) 

where Vrn and Vrt are the components of the rebounding velocity normal and tangential to the 

impact surface, respectively. Vin and Vit are the equivalent components of the incoming 

velocity of the object. This type of model, which applies the tangential and normal COR, is 

known as a lumped-mass or stereomechanical model and is the most common model used in 

rockfall studies. Such models have been applied by several researches such as: Wu (1985), 

Fornaro et al. (1990), Pfeiffer et al. (1989), Evans et al. (1993), Giani et al. (1992), Hoek 

(1986), and Spagn et al. (1988). 

2.2.1.2 Kinetic coefficient of restitution 

The kinetic coefficient of restitution describes the ratio between the tangential and normal 

impulses during impact, and can be defined for rough objects which have friction. This 

definition was initially introduced by Poisson (1811) with later work demonstrating that the 

kinetic coefficient is related to the friction coefficient, Stronge (2000). Despite the wide 

usage of kinematic coefficients in rockfall studies, kinetic coefficient is not widely used, with 

a few exceptions (Descouedres (1987)), and will be discussed in detail in Section 4.3.3. The 

coefficient is as follows: 

t
Kin

n

pR
p

=  (2.2.3) 
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where pt and pn are the tangential and normal impulses and RKin is the kinetic coefficient of 

restitution. 

2.2.1.3 Energy coefficient of restitution 

The energy coefficient of restitution defines the ratio of the retrieved energy after the impact 

to the initial energy. The most common definition utilized for this purpose is the ratio 

between the translational energies: 

2 2
,

, 2 2
,

1 2
1 2

r tr r r
E Trans

i tr i i

E MV VR
E MV V

= = =  (2.2.4) 

In the above equation Er,tr and Ei,tr are the translational energies before and after the impact, 

and M is the particle mass. This definition is not robust as it does not consider the effect of 

the rotational component of the energy. A more robust definition, for two dimensional 

impacts, is as follows: 

2 2 2 2 2
,

, 2 2 2 2 2
,

1 2( )
1 2( )

r kin r r r
E Kin

i kin i i r

E MV I V kR
E MV I V k

ω ω+ +
= = =

+ Ω + Ω
                                (2.2.5) 

where I and kr are the moment of inertia and polar radius of gyration, respectively, ω and Ω 

are the rotational velocities after and before the impact, and Er,kin and Ei,kin are kinetic 

energies before and after impact. Bozzolo et al. (1988) and Azzoni et al (1955) employ this 

definition of COR for their proposed impact models. This definition of COR, defined by 

Equation (2.2.5), incorporates the effect of rotational velocities to the values of COR and as a 

result, this definition is widely used in this thesis to compare the ratio of retrieved energy to 

initial energy for different impact setups. In Section 4.2.2 another definition for the energy 

COR, defined by Stronge (1994a), will be introduced. 

Another definition for the energy coefficient of restitution, which is used in Chapter 6, is the 

ratio of total energy after the impact to total energy before the impact. This definition of 

COR is used for comparing the retrieved energies for different objects when, at the time of 

impact, they have equal total energies while they have different kinetic energy. Total energy 

coefficient of restitution can be defined as follows: 
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2 2 22 2
,

, 2 2 2 2 2
,

0.5( )1 2( )
1 2( ) 0.5( )

r Kin pot r r cr
E Tot

i Kin pot i i r c

E E V k gzMV I MgzR
E E MV I Mgz V k gz

ωω+ + ++ +
= = =

+ + Ω + + Ω +
                               (2.2.6) 

In the equation above, Epot is the object’s potential energy, zc is the level of center of gravity, 

and g is gravitational acceleration. It should be mentioned that in the framework of rigid 

body impact mechanics the object does not displace during the impact, therefore the object’s 

elevation is constant. 

2.2.2 Values of coefficients of restitution in rockfall literature 

In order to acquire precise data to use during different modes of motion in rockfall simulation 

programs, several approaches can be used, as defined by Heidenreich (2004). These methods 

are as follows: back analysis of natural rockfall events, in-situ tests, and laboratory 

experiments. The values of the resulting coefficients used in each numerical model are 

entirely dependent on the type of experiment performed to derive the coefficients. Figure 2.2 

shows the variability of the tangential and normal coefficients of restitution for different 

slope materials as reported by Fornaro et al. (1990), Wu (1985), and Chau et al. (2002). The 

Figure reveals the high range of variability for both the tangential and normal coefficients of 

restitution. This variability should be attributed to factors other than the slope material. As 

will be discussed in this thesis, several parameters in addition to the slope material affect the 

values of the coefficients of restitution, including: rock shape, rock slenderness, impact 

angle, and mass distribution around the contact point. Several researchers have gathered 

information on different coefficients of restitution, such as Stevens (1998), Azzoni et al. 

(1995), and Jones et al. (2000). Heidenreich (2004) categorized these coefficients based on 

the group of COR discussed in Section 2.2.1. These coefficients are presented in Appendix 1 

based on the tables provided by Heidenreich (2004) and RocFall (2002).  
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(a) (b) 

Figure 2.2: The range of variation for the coefficients of restitution in Rn-Rt space: (a) 
after Fornaro et al. (1990), and (b) after Chau et al. (2002). 

2.3 SUMMARY AND CONTRIBUTION OF THESIS 

As stated in Section 2.2.1.1, the majority of rockfall simulations deploy kinematic definition 

for the coefficient of restitution, as these models assume that the coefficients of restitution 

are intrinsic material parameters. The conventional definition of the normal coefficient of 

restitution has a physical interpretation when the object impacts a surface collinearly. 

However, when the impact configurations are eccentric, no physical interpretation exists. 

There is also no practical way in the literature to define a value for the tangential coefficient 

of restitution, especially when the rock has non-circular geometry.  

In this research, the application of two numerical models to rockfall simulation is 

investigated: discrete element modeling (DEM), and rigid body impact mechanics (RBIM). 

In both RBIM and DEM, the models’ parameters have a physical interpretation and are 

measurable. RBIM uses an energy coefficient of restitution which is compatible with the 

normal coefficient of restitution, when the impact configuration is centric, and can be derived 

through experiments.  It is shown that the normal dashpot in DEM, as the main source of 

impact energy dissipation, can be calibrated with the normal coefficient of restitution. 
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Additionally, both models use the friction coefficient, which also has a physical 

interpretation. 

To apply DEM to rockfall simulation, the author proposes a modified version of DEM 

(MDEM). In MDEM, the normal dashpot is replaced with a nonlinear dashpot. This dashpot 

eliminates the shock force at impact initiation, eliminates the tensile force at impact 

termination, and correlates the amount of energy dissipation (normal coefficient of 

restitution) with the impact velocity. As a result of the application of the nonlinear dashpot, 

the no-tension unit can be detached. This work proposes to remove the dashpot in the 

tangential direction, while a mono-direction mechanical unit is added. This unit releases the 

strain energy stored in the tangential direction when the direction of tangential slip reverses. 

As a result, the mono-direction unit eliminates the inconsistent variation of the tangential 

contact velocity for low compliance impacts. To demonstrate that the modified model can 

sufficiently capture low compliance impacts, the author has compared the rebound velocities 

of rigid assemblies of particles, known as clumps, with equivalent geometrical shapes when 

using RBIM. As predicted, the trends of variation of rebound velocities are compatible with 

the variations predicted by RBIM whenever the clump geometry satisfactorily represents the 

equivalent geometries.  

In the application of RBIM to rockfall simulation, a practical method is offered in this work 

to accurately define the tangential slipping process and the rebound velocities. The author 

completed the rebound velocities equation table, originally offered by Stronge (2000), to 

incorporate all modes of impact, rebound velocities, and slip direction in two-dimensional 

space. In this work, the rebound velocities and energies predicted by RBIM are compared 

with selected impact models previously offered in the rockfall literature (Descouedres (1987) 

and Azzoni (1995)). In addition, the effects of the different parameters on the rebound 

velocities and retrieved energies at different impact configurations are investigated, 

including: rock shape and slenderness, impact angle, material parameters, and rock 

orientation. The author showed that the conventional definitions of coefficients of restitution 

are not applicable to geometrical shapes, where the geometries allow for eccentric impacts. 
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In the framework of this research a deterministic simulation program, GeoRFS, is developed 

by the author based on rigid body mechanics. RBIM is used as the main impact model and 

rigid body rolling is used for rolling modeling. This simulation considers rock geometry 

ranging from ellipsoidal shapes to prisms with a concave polygonal cross section, and 

considers the slope as a polyline consisting of rigid line segments. In addition to RBIM, the 

author has offered closed-form solutions for two-dimensional impact models offered by 

Azzoni (1995) and Descouedres (1987), implemented in the GeoRFS application. It is 

demonstrated that by using Object-Oriented programming techniques, any other impact 

model can be applied to the simulation by implementing a new impact model class. Because 

the falling rock initial configurations can not be predicted in rockfall simulation, the 

probabilistic analysis is provided by transferring the GeoRFS engine to the graphical user 

interface (GUI) of the research version of the program RocFall® from RocScience Company. 

By applying the developed applications, GeoRFS and the RocFall® research version, this 

research studies successive impacts of different rock geometries on horizontal and inclined 

surfaces under different impact configurations. It is shown that rock geometry strongly 

affects trajectories, bounce heights, and velocities (kinetic energy) during successive impacts.  

In this work the field experiments performed by Pierson et al. (2001) are modeled using the 

proposed simulation programs. The author demonstrates that the developed programs can 

satisfactorily capture the roll-out distances observed in the field tests. However, for some 

geometrical objects, as it is expected from a two-dimensional simulation, the predicted roll-

out distances are rather conservative where the trend of variation has a high standard 

deviation. For future work, it is suggested that a three dimensional simulation program based 

on RBIM be developed in order to more accurately model roll-out distances. 
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CHAPTER  3 

APPLICATION OF DISCRETE ELEMENT MODELING 
(DEM) TO ROCKFALL SIMULATION 

3.1 INTRODUCTION 

Discrete element modeling (DEM) was originally introduced by Cundall et al. (1979) to 

define the interaction of an assembly of disks or spheres. The authors demonstrated that this 

theory is capable of defining the chain of contact forces between the assemblies of particles. 

In this section, the applicability of this theory to impact mechanics is investigated. In the 

DEM, the forces are mobilized as the disks overlap. The contact forces developed in DEM 

can represent the viscous nature of the impact; in other words, they are especially suitable for 

impacts where the contact response is velocity dependent. Figure 3.1 shows the system of the 

linear Kelvin-Voigt model in which one spring and one dashpot act in parallel. When the 

contact occurs, to represent the interaction of overlapping objects, a Kelvin-Voigt model is 

used in both the tangential and normal directions. It should be emphasized that, in this simple 

DEM module, five coefficients are needed to define the model: two stiffness moduli, Kn and 

Ks; two damping coefficients, Cn and Cs; and one sliding (friction) coefficient, µs. 



Chapter 3: Application of Discrete Element Modeling (DEM) to Rockfall Simulation    16 

 

Unit
No tension

Kn Cn

s

Slider
µ

K

s

Cs

Normal module Tangential module

 

Figure 3.1: Kelvin-Voigt system of spring and dashpots in normal and tangential 
directions with a no-tension unit in normal direction and a slider in tangential direction. 

3.2 THE NORMAL DIRECTION IN DEM 

3.2.1 Viscoelasticity in the normal direction 

In the DEM proposed by Cundall et al. (1979), the viscosity is caused by a linear dashpot 

which acts in parallel to a linear spring. In this model the variation of the normal component 

of the contact force versus time is typically half sinusoidal. In a typical collision, during the 

first period of the impact, the normal force develops in compression and during the 

restitution phase, this force decreases until the contact terminates. As a result, the resultant 

normal force is purely compressive during the contact period.  

Figure 3.2 demonstrates the variation of normal force versus time as well as its variation 

versus contact overlap for a linear viscoelastic system. The variation of this system in the 

absence of any other external forces can be described by Equation (3.2.1), which is the 

differential equation of the system with one degree of freedom, vibrating without the exertion 

of external forces. The equation is as follows: 

0mx cx kx+ + =�� �  (3.2.1) 
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where m is the mass, c is the viscosity coefficient, and k is the linear stiffness of the system 

while x represents the overlap between either two particles or a particle and a rigid half 

space.  
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Figure 3.2: Variation of the contact’s normal force in the linear viscoelastic system 
defined by Equation (3.2.1): (a) versus overlap, and (b) versus time. 

Figure 3.2a shows the variation of contact normal force versus contact overlap for the 

Kelvin-Voigt module described by Equation (3.2.1). Hunt et al. (1975) demonstrated that the 

half elliptic curve shows a hysteresis behavior with the maximum damping force at the 

origin. This behavior is related to the term cx� , which has its maximum value at the beginning 

of impact. This is in contrast with the general expectation that the applied external force is 

zero at the beginning of an impact, and that there should be no shock at that moment. The 

variation of contact normal force versus time is represented in Figure 3.2b which shows that 

the contact force is tensile close to the contact termination time. This is incorrect because a 

zero contact force is expected at the end of contact. As shown in Figure 3.2b, this tensile 

force extends to the contact termination time and this effect dissipates some extra energy, 

leading to a reduced velocity at the instance of separation.  

The correct hysteresis contact force should have the general response of the Figure 3.3, with 

the contact forces equal to zero at the origin. The main deficiency of applying the linear 

viscoelasticity theory is that, against the expectations and observations, the amount of energy 

dissipation from the linear Kelvin-Voigt model, Equation (3.2.1), is independent of the 
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impact velocity and as a result, the coefficient of restitution is constant. It is observed that at 

higher impact velocities, an increased amount of local crushing and plastic deformation 

occurs; therefore, smaller rebound velocities, or smaller coefficients of restitution, are 

anticipated. 
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Figure 3.3: The ideal variation of normal contact force in a nonlinear viscoelastic 
system after Hunt et al. (1975): (a) versus overlap, and (b) versus time. 

All the missing factors mentioned above can be compensated by putting a nonlinear dashpot 

in parallel with a linear spring, a solution offered by Hunt et al. (1975). As a result of this 

change, Equation (3.2.1) changes to Equation (3.2.2). The loading-unloading trend of 

variation in this equation, at low damping coefficients, is shown in Figure 3.3 versus 

indentation (or overlap) and time. The damping force resulting from this equation can be 

presented as: ( ) ( )p qc x x� , which is equal to zero both at the origin and at the instance of 

maximum penetration. The equation of motion in this case is as follows (the absolute value 

of overlap, x , is used not to change the force direction): 

( ) 0p qmx c x x kx+ + =�� �  (3.2.2) 

In the above equation, the external normal force on the colliding object can be defined as: 

( )p q
nF c x x kx= − −�     (3.2.3) 
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The absolute value of overlap in the above equations is used to prevent a change in the force 

direction. Walton (1992) offered a simplified version of the above equation, with the 

assumption that 1p q= = . Stoianovici and Hurmuzlu (1996) and Chatterjee (1997) adopted 

the same linear system which is shown by Equation (3.2.4). 

0 (0) (0) 0mx c xx kx x v− + = ≡ − <�� � �     (3.2.4) 

In the above equation, because the displacement has a negative sign, the absolute value can 

be removed. Chatterjee (1997) offered a closed-form solution for this nonlinear differential 

equation by introducing a new set of dimensionless parameters (X and Z represent 

dimensionless velocity and displacement):  

2, ,cx c x cx kX Z
k k mmk
ω ω≡ = ≡ =

�
 (3.2.5) 

Substituting the above parameters into Equation (3.2.4) and integrating, results in 

displacement and force equations which simplify to the following: 

2

0
0

1ln
1 2

Z XZ Z
Z

⎛ ⎞−
− + =⎜ ⎟−⎝ ⎠

 (3.2.6) 

( ) ( )1 23 1c mk F X Z
−

= − −  (3.2.7) 

where F is the contact force and Z0 is the initial velocity. The force displacement curve is 

plotted in Figure 3.4a for two different values of initial impact velocity. This figure has the 

general shape of a force-overlap curve similar to Figure 3.3a. 

The enclosed areas between the loading and unloading curves define the amount of energy 

dissipated during the impact. As we can see from the curves, more energy is lost when the 

impacts occur with higher initial normal velocities. COR can be derived for these types of 

impacts directly as the ratio of final to initial velocity, Zf / Z0. The coefficient of restitution for 

this nonlinear viscoelasticity is shown in Figure 3.5. Chatterjee (1997) offered an 

approximation for the coefficient of restitution resulting from Equation (3.2.4) as follows: 
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Figure 3.4: The hysteresis loop of overlap-force caused by nonlinear viscoelasticity for: 
(a) Equation (3.2.6), in which the viscosity is relative to the velocity to a power of one, 
after Stronge (2000), and (b) Equation (3.2.9), in which the viscosity is relative to the 
velocity to a power of two. 
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Figure 3.5: Descending coefficients of restitution as a function of initial contact velocity 
for the nonlinear viscoelastic models of Equations (3.2.4) and (3.2.9) (note: the 
dimensionless velocities differ for the two curves). 

Rocks impacting the slopes crush around the impact area. This effect occurs more 

extensively at higher velocities; therefore the actual decreasing trend of COR is greater than 

what Equation (3.2.4) predicts. Moreover, the shape of the damping curve at low impact 

velocity is concave, as shown by the solid line in Figure 3.5, indicating a gradual variation in 

energy dissipation. However, taking into account the items considered previously, a convex 
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shape for energy dissipation is anticipated, emphasizing the velocity related nonlinearities in 

energy dissipation. Because of these observations, it is proposed to change Equation (3.2.2) 

with the values  p=1 and q=2. This change results in the following equation: 

0 (0) (0) 0nmx c x x x kx x v− + = ≡ − <�� � � �  (3.2.9) 

where vn(0) is the contact normal velocity. In this equation, the external forces acting on the 

colliding object can be added and shown in the following equation: 

nF c x x x kx= −� �  (3.2.10) 

In this case the new dimensionless overlap and velocities are defined as follows: 

 ,x xX Z
m c k c

≡ ≡
�

          (3.2.11) 

Substituting the above values into Equation (3.2.9) results in new differential equations for 

the compression and rebounding periods: 

2

2

0 (0) (0) 0 (compression period)

0 (0) (0) 0 (rebounding period)

n

n

dZZ XZ X x v
dX
dZZ XZ X x v
dX

+ + = ≡ − <

− + = ≡ − >

�

�
 (3.2.12) 

Integrating the above differential equations and applying the boundary condition of x = 0 and 

v = vn(0) to the equation of motion results in Equations (3.2.13). The impact compression 

force is given by the two equations defined in Equations (3.2.14). 

2 2 2
0ln(1 ) ln(1 )Z Z X+ + = −∓  (3.2.13) 

2( )F k m c XZ X= −∓  (3.2.14) 

The variation of the contact force is shown in Figure 3.4b. These forces can be compared 

with the forces in Figure 3.4a. In Figure 3.4b, it can be observed that the contact force 

reaches its maximum long before the highest penetration, due to presence of a squared 
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velocity term in the viscous force equation, described by Equation (3.2.10). This figure also 

shows a relatively larger hysteresis loop, compared to Figure 3.4a, resulting from a larger 

normal contact force in compression and a smaller force in restitution.  

The motion differential introduced by Equation (3.2.13) can be solved explicitly for the 

contact overlap and the rebound termination velocity. Equation (3.2.15) shows the closed-

form relationship between the coefficient of restitution and the impact velocity: 

2
01 1nR Z= +  (3.2.15) 

3.2.2 Application of nonlinear viscoelasticity in rockfall modeling 

For each contact material, the normal coefficient of restitution is not a constant value. 

Theoretically, at impacts with zero velocity the normal coefficient of restitution is equal to 

the magnitude of the normal COR defined by Equation (2.2.2). More local crushing occurs 

on both the rock and the impact surface during higher impact velocities. This results in a 

reduced amount of COR, according to Habib (1976). Pfeiffer et al. (1989) proposed a scaling 

factor to incorporate the effect of velocity, defined by Equation (3.2.16), on the normal COR. 

The scaling factor halves the normal COR at the velocities equal to 9.8 m/s; assuming the 

normal restitution coefficient is equal to one. This property is used to define the nonlinear 

viscous coefficient; c. Pfeiffer et al.’s velocity equation is as follows: 

21 ( 9.8)
n

n
n

RR
V

≈
+

 (3.2.16) 

where Vn is the normal impact velocity and is measured in (m/s). Figures 3.6a and 3.6b show 

the variation of normal COR versus impact velocity assuming Rn = 1.0 and 0.5, respectively. 

Figure 3.6a shows that the nonlinear dashpot properly reproduces the value of coefficients 

when Rn = 1.0. Furthermore, this figure shows that the power-2 nonlinear viscosity is a better 

approximation for the nonlinearities involved in the normal coefficient of restitution. 
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Figure 3.6: Decaying COR resulting from inelastic fracturing at the point of impact for 
the Pfeiffer scaling (Equation (3.2.16)) and the variation of nonlinear viscoelastic models 
defined by Equations (3.2.8) and (3.2.15) for: (a) normal COR (Rn) = 1.0, and (b) normal 
COR (Rn) = 0.5. 

Figure 3.6b, shows the variation of Equation (3.2.16) with Rn = 0.5. In this figure, the values 

of the nonlinear viscoelastic Equations (3.2.5) and (3.2.11) are defined so that all the 

viscoelastic equations produce the same normal COR at the normal impact velocity of 9.8 

m/s. This figure shows that the energy dissipations derived from viscoelastic formulations are 

not close to the values derived from the scaling factor defined by Equation (3.2.16) for 

velocities less than 5 m/s. However, this difference is not considered as a limitation of the 

viscoelastic model, as the two groups of energy dissipation models have different 

fundamental assumptions. The nonlinear dashpots dissipate the energy according to the value 

of the velocity; therefore dissipation does not occur when the impact velocity is zero. In 

contrast, Equation (3.2.16) is a scaling equation which decreases the value of Rn according to 

the magnitude of the contact normal velocity. At velocities greater than 5 m/s, both nonlinear 

viscoelastic models predict a variation of COR close to the scaling factor. 
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3.3 THE TANGENTIAL DIRECTION IN DEM 

The available definitions for COR are usually applied to dimensionless objects where the 

whole object geometry experiences an equal translational velocity. As a result of rotational 

velocity, the translational velocities in two perpendicular directions are variable within an 

object. Conventionally, for geometrical objects, the velocities at the center of gravity are used 

for defining the coefficients of restitution in Equations (2.2.2). However, applying DEM to 

define the rebound velocities, it has been observed that the variation of tangential COR, using 

the conventional Kelvin-Voigt module in addition to a slider, is inconsistent. This 

inconsistency indicates that the variation of rebound tangential velocity is not well predicted 

by the model tangential parameters, including: the friction coefficient, spring stiffness, and 

the dashpot viscosity coefficient. Further literature review for similar models to DEM, has 

led to the development of a new constitutive model in the tangential direction, presented in 

the following sections. 

3.3.1 The discrete compliance model (DCM) 

Similar to DEM, Stronge (1994b) offered a new rigid body impact model for compliant 

rough bodies, known as the discrete compliant model (DCM). In this model all of the 

deformations and forces are concentrated in an infinitesimal object at the interface of two 

colliding objects, or at the interface of an object and a rigid half space, as shown in Figure 

3.7. In this system a combination of tangential and normal springs are used at the contact 

point, with a slider in the tangential direction. In this model it is assumed that the ratio of 

normal to tangential stiffness is equal to η2. Despite the fact that overlap occurs during the 

collision, the impenetrability condition is observed in DCM by accumulating the elastoplastic 

deformations in the deformable particle at the contact point. 
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Figure 3.7: Impact of an object against a rigid half-space using the discrete compliant 
model (DCM) proposed by Stronge (1994b). 

In DEM, the contact forces are mobilized based on the overlap between two objects or 

between an object and an impact surface. In DCM, the displacements are calculated based on 

a group of closed-form equations with the time as the input variable. The contact forces are 

defined upon mobilization of the displacements in the springs. The equations of motion are 

illustrated in Equations (3.3.1) and (3.3.2) for the perpendicular, normal and tangential 

directions. 
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          (3.3.1) 

1 1 2 2 1 2 2( ) ( )sin ( ) ( )cos ( )t t tv t u t t t v t t t= Ω Ω − + Ω −                          (3.3.2) 

In the above equations, Ω t and Ω n   are the natural frequencies of the system in the tangential 

and normal directions; v1 and v3 are the contact velocities in the tangential and normal 

directions; *e  is the energy coefficient of restitution and is defined as the ratio of energy 

released in restitution to the amount of energy adsorbed during the compression phase; and 

v1(0) and v3(0) are the contact velocities at the time of impact. From the second equation of 

the Equations (3.3.1), it can be concluded that the energy dissipation is assumed to occur 

during the second half of the impact, the restitution phase.  
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3.3.2 Collinear impacts in DCM 

An impact is called collinear (or centric) when the contact normal vector passes through the 

object’s center of gravity. Clearly, the impacts of circular disks or spheres are always 

collinear; however, collinear impacts might occur with other objects. In collinear impacts the 

natural frequencies of the system simplify to: 2n ctπΩ =  and 3.5 2t ctπ ηΩ = , where tc is 

the time when the normal component of the velocity terminates. It should be mentioned that 

in collinear impacts, the equations of motion for tangential and normal directions are 

decoupled. Stronge (1994b) categorized the centric collisions into three main groups based 

on the impact angle: small, intermediate, and large. The division is based on three 

parameters: the ratio of springs’ stiffness, η2; the friction coefficient, µ; and the energy 

coefficient of restitution, *e . In eccentric impacts, the geometry of the object, or mass 

distribution around the contact point, is also effective in defining the categories. Table 3.1 

shows the three slip processes occurring during the impact of a circular object against the 

half-space. 

Table 3.1: Slip processes during incidence of a circular object on a half space 

Angle of incidence 1 3( (0) / (0))v v  Velocity criteria Slip Process 

Small 2
1 3(0) / (0)v v µη<  stick-slip 

Intermediate 2
1 3 *(0) / (0) 3.5 (1 )v v eµη µ< < +  slip-stick-slip 

Large * 1 33.5 (1 ) (0) / (0)e v vµ + <  pure slip 

Johnson (1985) gives the expressions for the normal and tangential spring stiffness 

coefficients for the case of a rigid circular punch on an elastic half space: 
2 2/(1 ), / 2 /(2 )(1 )k Ea k Eaν η ν ν= − = − + , where E and ν  are modulus of elasticity and 

Poisson ratio; and a is the punch ratio. From these relationships, 2η  can be calculated as: 

2 (2 ) / 2(1 )η ν ν= − −  (3.3.3) 

It will be shown in the following sections that the inconsistency between DEM (and DCM), 

in comparison with the low compliant models, occurs at small and intermediate angles of 
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incidence. As a result, to demonstrate the variation of tangential contact forces, the case of 

impact at low impact angles is reviewed, as discussed by Stronge (1994b). As explained 

before, these investigations led to a proposed new unit in the tangential module.  

Figure 3.8 shows the variation of tangential and normal contact forces for a collinear impact 

which occurs during a small impact angle. Due to the high friction coefficient, stick is the 

dominant mode, while sliding occurs at the very last portion of restitution when the normal 

force is decreasing. The ratio of the tangential to normal frequencies of the variation of 

contact forces, for spheres, is equal to: 

/ 3.5t nλ η= Ω Ω =  (3.3.4)  

Due to Equation (3.3.3), the ratio of normal to tangential stiffness is usually greater than 1.0 

as for most materials, 0 0.5ν< < . Therefore, for most elastic spheres, the range of variation 

for 2η  is: 21.0 1.5η< < . Consequently, the tangential force has a higher frequency in 

comparison with the frequency of normal force as is shown in Figure 3.8.  
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Figure 3.8: Variation of contact forces versus time during small impact angle for centric 
impacts after Stronge (1994) (the values of the forces are dimensionless and are shown 
for CORs equal to 1.0 and 0.5 and for Ω t /Ω n  = 1.7). 
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The termination velocities for the tangential velocity can be derived for the three proposed 

impact angles using the DCM, as shown in the Figure 3.9. This figure demonstrates the 

termination velocity at the contact point for a compliant material versus the normalized 

impact angle of, 1
1 3tan ( (0) / (0))v vγ −= , as proposed by Stronge (1994b). The final velocities 

for a rubber sphere ( 0.5ν = ) striking a heavy steel plate are compared with the elastic 

solutions given by Maw et al. (1976) and the experimental results by Johnson (1983). The 

figure shows that the termination velocities are the same for the compliant model and elastic 

continuum model. The results for the impact of the spherical rubber are also consistent with 

the rebound velocities predicted by the DCM. Stronge (1994) explains Figure 3.9 as follows: 

“The elastic solution and the discrete parameter model each have similar processes that 
develop at the contact point in three parts of the range of angle of incidence. The predictions 
of these two models are most different for small and intermediate angles of incidence where 
the discrete parameter model has a final period of slip that is prolonged by elastic strain 
energy stored in the tangential compliant element. Throughout most of the range of small to 
intermediate angles of incidence, both the elastic continuum and the discrete parameter 
models of sphere impact have a tangential relative velocity at separation that is in the 
opposite direction to the incident tangential velocity. For a collinear collision this velocity 
reversal at contact point is entirely due to tangential compliance.” 
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Figure 3.9: Tangential velocity at the contact point at the instance of contact termination 
for collision of a spherical compliant object at a rigid half space, after Stronge (1994b) 
(the material has a Poisson ratio equal to 0.3 and * 1.0e = ). 
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3.3.3 Tangential contact forces 

Defining the internal forces during impact is a common problem in wear science. Frequently, 

coefficients of restitution are used to define the ratios of the velocities or energies after to the 

values before the impacts, but this does not describe the variation of normal and tangential 

forces or moments. In these methods, coefficients of restitution are considered constant to 

simplify the calculations. However, several researchers have reported that these coefficients 

vary due to the impact specifications, including: Pfeiffer et al. (1989) and Azzoni et al. 

(1995). Brach (1988) proposed a constitutive model for defining the rebound velocities based 

on the ratio of tangential to normal impulses; however, he showed that assuming a tangential 

coefficient of restitution to be constant is not realistic or necessary.  

For two-dimensional problems, Brach (1988) utilized three assumptions to define the 

velocities after impact: using a COR for normal velocity, applying the conservation of 

angular momentum about the impact point, and introducing the coefficient of limiting 

friction (µ) as the ratio of tangential to normal impulses. The third assumption can be 

expressed as follows: 

1 3p pµ =  (3.3.5) 

where p3 and p1 are the normal and tangential impulses as shown in Figure 3.10. This model 

is not restricted to circular objects; however, in the following presentation the equations are 

simplified for the impact of spherical and discoidal objects. For a centric impact, based on 

the presence of sliding at the instance of separation, two different scenarios can occur: total 

sliding or pure rolling. 
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Figure 3.10: Collinear impact: free body diagram of a sphere impacting a solid half 
space at angle γ. 

In this theory, the normal velocity is calculated applying the conventional definition of 

normal coefficient of restitution: 

3 3( ) (0)nV f e V= −  (3.3.6) 

where V3 ( f ) and V3 ( 0 ) are the normal velocities at the object center before and after the 

impact, and en is the normal coefficient of restitution equivalent to Rn. In the tangential 

direction, if the sliding at the contact point continues until the contact termination, the 

tangential and rotational velocities are defined based on the following equations: 

( ) (0) (1 ) (0)
( ) (0) (1 ) (0) /

t t n n

n n

V f V e V
f e V R

µ
ω ω µ λ

= − +
= + +

 (3.3.7) 

In Equation (3.3.7), Vt (0) and Vt ( f ) are the tangential velocities at the object center before 

and after the impact, ω (0)  and ω ( f ) are the rotational velocities before and after impact and 
2 2/ rR kλ =  where R is sphere radius and kr is polar radius of gyration. For spheres λ is equal 

to 5/2 and for disks it is equal to 2.0. 

If sliding finishes prior to separation the equation (3.3.7) reduces to the Equations described 

in Table 3.2, by assuming that ( )tV R fω= . This equation means that if sliding ceases prior 
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to separation, the circular object starts to roll till the time of contact termination. During this 

period of time the tangential and rotational velocities do not change. 

Table 3.2: Tangential and rotational rebound velocities for spheres and disks using 
Brach impact model for the case of sliding termination before separation 

Spherical objects Discoidal objects 

( ) 5 7 (0) 2 7 (0)t tV f V Rω= + ( ) 2 3 (0) 1 3 (0)t tV f V Rω= +  

( ) 5 7 (0) 2 7 (0)tf RVω ω= + ( ) 2 3 (0) 1 3 (0)tf RVω ω= +  

Brach (1988) introduced the definition of critical friction, which is the lowest friction that 

can stop the rotational velocity prior to separation. For the case of development of friction 

force, it can be assumed that: F1(t) = f F3(t), where t is the time, f is a constant, and F3 and F1 

are the developed contact forces in the normal and tangential directions, respectively. Figure 

3.11 shows the gradual increase of tangential impulse versus the constant normal impulse. By 

increasing the friction coefficient, the tangential impulse curve starts to increase. In one 

stage, where f2 is equal to the critical friction coefficient, the tangential velocity is halted. 

Any further increase in the value of f will diminish the frictional force before the end of the 

contact. As a result, the friction force drops to a small value. In this case the disk will roll 

without sliding. Brach (1988) states this situation as: 

“For all coefficients of friction which are greater than f2, the tangential impulse will never be 
larger than f2 p3. Thus a limiting or critical value of p1/p3 exists and denoted by µc. Under all 
conditions the value of tangential impulses can never exceed µc p3. The limiting condition 
occurs when the solution equations for sliding are identical to the solution equations for 
rolling. It is important to note that µc is the value of µ that maximizes the energy loss.” 

 

For centric impacts, the critical friction coefficient, µc, is equal to: 

(1 )(1 )c v nr eµ λ= + +  (3.3.8) 

where rv is the ratio of contact velocities at the contact point: ( (0) (0)) (0)t nV R Vω− . 
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Figure 3.11: Increasing sequence of tangential impulse versus the contact normal 
impulse which is constant, after Brach (1988). 

3.3.4 Modifying the tangential module in DEM: introducing the mono-
direction unit 

The definitions proposed by Brach (1994) clarify that the direction of the tangential force 

does not reverse in collinear impacts for natural materials. In DEM, the tangential spring 

stores energy during compression. This strain energy is released during the tangential 

restitution phase. This results in reverse sliding in the tangential direction. Stronge (1994b) 

showed that the frequency of the variation of tangential force is higher than the frequency in 

the normal direction, as shown in Figure 3.8. As a result, tangential contact force reversal 

occurs for most impact angles. The only exception is the pure sliding case that occurs during 

low impact angles.  

Similar to DEM, the discrete compliant model shows the same tangential force reversal, the 

only difference being that the overlap is zero in the DCM. The penetration causes a variable 

contact vector and as a result the values of rebound tangential and rotational velocities might 

be different for the two models.  
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To modify the inconsistent reversal of the tangential force, a new unit is introduced in the 

tangential direction for the spherical particles experiencing centric impact. This unit modifies 

the inconsistent variation of the tangential force and releases the strain energy at the time of 

tangential reverse in the direction of sliding. This new unit is named the mono-direction unit, 

as shown in Figure 3.12. Mathematically, for spheres, this behavior can be expressed by 

Equation (3.3.9). This equation explains that every time the sliding direction reverses the 

spring force releases, respectively. The sliding reversal can be captured when the rate of the 

tangential sliding becomes zero as shown here: 

If 0     0t overlap spring frics V R F Fω= − = ⇒ = =�  (3.3.9) 

 

Mono-direction
unit

M

Ks

Fs,max = µ Fn

 
Figure 3.12: Mono-direction unit in the tangential direction along with a spring and a 
slider. 

As the slip direction is arbitrary, for the purpose of clarification, two sets of springs are used, 

along with the new mono-direction unit as shown in Figure 3.13. This new model is called 

the modified discrete element model (MDEM). In the newly proposed module, the tangential 

dashpot is omitted for the following reasons: 

• to decrease the constitutive model’s total number of parameters 

• negligible effect of the tangential dashpot, which is due to a fast energy release as a 

result of the presence of the slider 

• lack of data and evidence on the viscous nature of the tangential force, based on the 

available experimental data that the tangential force is frictional. 
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Figure 3.13: Normal and tangential modules in Modified DEM (MDEM). 

3.3.5 Variation of tangential forces using modified discrete element 
modeling (MDEM) 

The application of MDEM is tested using the impact of a circular object against a rigid half 

space, as shown in Figure 3.10. Here, rigidity means that the impact surface neither displaces 

nor deforms during impact; however, in contrast with the DCM, the object overlaps with the 

wall. This causes minor differences between the two models in the evaluation of the contact 

and also in the values of rebound velocities, but the trend of variations are generally the 

same.  

For this test Kn is assumed equal to 5x105 kg/m and, Ks is chosen as 4.1x105 kg/m for a 

material with a Poisson ratio of 0.3, as shown in Equation (3.3.3). The radius of the sphere is 

assumed to be 3 cm and the normal impact velocity, V3, is considered constant equal to -10 

m/s while the horizontal velocity, V1, is variable. Furthermore, µ = 0.3 and * 1.0e =   (c in 

Equation (3.2.9) is set equal to zero). The collision is studied at different impact angles, by 

varying the value of V1/µ V3, as described in Table 3.2, to include the three ranges of impact 

angles. The time step is considered constant, equal to 1e-5 sec. 

In the following sections the variation of contact forces in addition to the variation of 

tangential velocity is studied applying both discrete element modeling (DEM) and the 

proposed modified version, MDEM. 
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3.3.5.1 Low impact angles ( v1(0)/µ v3(0) < 1.21 ) 

Figure 3.14 shows the variation of dimensionless tangential forces and contact velocities for 

the impact of a sphere with the initial settings of Figure 3.10 at different impact velocities 

and low impact angle configurations. In this case, the contact point sticks prior to the final 

stage of sliding, which occurs at a time ratio equal to 0.63, as shown in Figure 3.14a. In this 

curve the variation of normal contact force is sinusoidal where its natural frequency is 

smaller than natural frequency in the tangential direction. In Figure 3.14b, the variation of the 

tangential velocities versus time is demonstrated for different initial tangential velocities. As 

shown, the directions of these velocities are reversed at a time ratio equal to 0.31; however, 

the velocity directions do not reverse until the contact terminates. As described before, this 

sliding reversal is not realistic for low compliance impacts.  

In Figure 3.14c the force variations are plotted when a mono-direction unit is added in the 

tangential direction in comparison to the configurations of Figure 3.14a. The tangential force 

drops to zero when the direction of sliding reverses, as shown in Figure 3.14d, occurring 

when the ratio of passed time to initial time is equal to 0.31. After this state, the tangential 

forces and velocities are expected to stay at zero constant value; however, as a result of the 

variation of the overlap between the object and the surface, there are minor perturbations in 

the velocities and forces. 
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Figure 3.14: Variation of dimensionless tangential forces and velocities at the contact 
point for the impact of a sphere with the initial settings of Figure 3.11 at different impact 
velocities using DEM and MDEM for low impact angles: (a) variation of forces using 
DEM, (b) variation of tangential velocities using DEM, (c) variation of forces using 
MDEM, and (d) variation of tangential velocities using MDEM. 

3.3.5.2 Intermediate impact angles ( 1.21 < v1(0)/µ v3(0) < 7.0 ) 

Figure 3.15 depicts the variation of dimensionless tangential forces and contact velocities for 

the configurations of Figure 3.10 at variable intermediate impact velocities. In Figure 3.15a, 

for those parts where the tangential force is equal to the multiplication of µ by the normal 

force, the contact point experiences sliding, before the stick case occurs. For the sliding case, 

the variations of normalized normal and tangential force curves are identical, as shown in 

Figure 3.15a. As the tangential velocity grows, the range of occurrence of sliding grows. This 

range is set by the upper boundary of the velocity ratio, stated in Table 3.2 as: v1(0)/µ v3(0) = 

3.5µ (1+e*) = 7.0. In Figure 3.15b the variation of the tangential contact velocity versus the 



Chapter 3: Application of Discrete Element Modeling (DEM) to Rockfall Simulation    37 

 

time ratio is plotted. This Figure shows that, similar to low impact angles, the direction of 

velocity reverses, but for this case at different incidence times.  

Figure 3.15c plots the variation of tangential force at different tangential velocities within the 

range of intermediate impact angles when a mono-direction unit is added to the DEM 

module. In this figure, the tangential forces drop to zero when the directions of velocities 

reverse in the tangential direction, as is shown in Figure 3.15d. Similar to Figures 3.14c and 

3.14d, due to the variation of the contact vector caused by the sphere-surface overlap, the 

tangential contact forces and velocities are not constant and oscillate around the zero value.  
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Figure 3.15: Variation of dimensionless tangential forces and velocities at the contact 
point for the impact of a sphere with the initial settings of Figure 3.11 at different impact 
velocities using DEM and MDEM for intermediate impact angles: (a) variation of forces 
using DEM, (b) variation of tangential velocities using DEM, (c) variation of forces 
using MDEM, and (d) variation of tangential velocities using MDEM. 
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3.3.5.3 Large impact angles ( 7.0 < v1(0)/µv3(0) ) 

Figure 3.16 depicts the variation of dimensionless tangential forces and contact velocities for 

the configurations of Figure 3.10 at variable high impact velocities. Figure 3.16a shows that 

the object experiences sliding through the whole impact period. Figure 3.16b confirms the 

continuous sliding, as the contact velocity does not reverse during the contact. In other 

words, in high impact angles the tangential mono-direction unit does not activate and, as a 

result, the rebound velocities derived from MDEM are the same as the velocities predicted by 

DEM or DCM. 
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Figure 3.16: Variation of dimensionless tangential forces and velocities at the contact 
point for the impact of a sphere with the initial settings of Figure 3.11 at different impact 
velocities using DEM and MDEM for high impact angles: (a) variation of forces using 
DEM and MDEM, and (b) variation of tangential velocities using DEM and MDEM. 

3.3.6 Successive impacts using MDEM  

In this section, five successive impacts of a disk on a horizontal rigid half space are studied 

using DEM and MDEM, as described by Figure 3.17a. In this example, the disk radius is 

equal to 0.5 m, and the contact, Kn is equal to Ks which is equal to 1.0x107 kg/m, and *e  = 

1.0, which indicates that the normal spring viscosity is equal to zero. The friction, µ, is 

considered variable from 0.05 to 0.3 and the object initial horizontal velocity, Vini,hor, is 

assumed to be 3.0 m/s. 
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Figure 3.17b plots the variation of the horizontal velocity at the disk center versus time, 

applying DEM. As described by Stronge (1994b) in Figure 3.9, after the first impact, the 

rebound tangential velocity may vary from 1.4 to 2.7 m/s for different values of contact 

friction. After the second impact, this range is limited, and after the third impact all values 

approach 1.97 m/s, which is equal to 65.7% of the initial velocity.  
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Figure 3.17: Five successive impact of a discoidal object under gravity using both the 
DEM and MDEM models: (a) the settings for the test, (b) variation of the disk horizontal 
velocity using the DEM model, and (c) variation of the disk horizontal velocity using the 
MDEM model. 

Figure 3.17c depicts the variation of tangential velocity versus time using MDEM. At the 

time of contact the disk normal velocity is 3.28 m/s due to gravity. Using Equation (3.3.8), 

the critical friction, µc,  is equal to 0.15. For friction coefficients greater than this value, after 

the first impact the rebound disk velocity approaches the final value of 1.97 m/s. For friction 

coefficients smaller than the critical friction, the tangential velocity approaches the final 
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value after one or two impacts. However, the final tangential velocity is also predictable 

using the disk equation in Table 3.2. These velocities differ by less than 1% from the 

tangential velocities predicted by the rigid body model proposed by Brach (1988), discussed 

previously. Due to the disk indentation, the disk horizontal velocity experiences small 

perturbations after the forth and fifth impacts. This is due to the contact tangential velocity 

being almost zero. 

3.3.7 The effect of impact angle on tangential COR when applying MDEM  

In this section, the variations of tangential COR versus impact angle with different friction 

coefficients are investigated. Figure 3.18a shows the variation of tangential COR derived 

from the inclined impact of a discoidal object using MDEM with different friction 

coefficients. This test is performed by throwing a disk vertically on an inclined surface. For 

this impact setup, if the energy dissipation in the normal direction is negligible the rebound 

velocities are independent of the initial velocity. The presented results are comparable with 

the impact model offered by Brach (1988). 

Figure 3.18a shows that by decreasing the impact angle the tangential COR decreases and 

stays constant around the value 0.69, the lower limit of tangential COR for a disk. This 

decrease of tangential COR is due to an increase in the normal impulse in addition to a 

decrease in the tangential impulse. It can be observed that for the friction coefficient equal to 

0.3, the contact velocity halts earlier than friction coefficients equal to 0.1 or 0.2, resulting in 

a faster approach to the lower limit velocity. 

Figure 3.18b illustrates the experimental results of the variation of tangential COR (Rt) 

performed by Chau et al. (2002) for different spherical objects with variable mass. Although 

they could not define any conclusion explaining the variation of tangential coefficient of 

restitution, there are some similarities between their results and Figure 3.18a. These 

similarities are: both values have a minimum tangential COR around 0.65 and the 

coefficients of restitution generally increase when the slope angle increases. It should be 

mentioned that there is no reference to the values of friction coefficient by Chau et al. (2002). 
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Figure 3.18: (a) Variation of tangential COR (Rt) versus impact angle, ψ, at different 
friction coefficients applying MDEM, and (b) the variation of tangential coefficients of 
restitution versus impact angle after Chau et al. (2002) for spheres with different mass. 

3.4 APPLICATION OF MDEM IN RIGID-BODY CLUMPS 

A clump is an assembly of particles which behaves as a rigid body, with the particles 

remaining at a fixed distance relative to each other, regardless of the external forces (PFC2D 

theory and background). As a result, these particles cannot overlap and mobilize the forces 

internally; however, they can interact with the particles that are not part of the clump or other 

surfaces. The total developed external forces in addition to the gravitational force exert 

collectively on the rigid clump mass center which results in the motion of the clump. 

Building complicated shapes from an assembly of particles is relatively easy. Fortunately, the 

contact search procedure is robust for this assembly. Studying the impact behavior of a 

clump is essential before utilizing more complicated discrete element capacities like 

constructing synthetic materials using bonded particles. In other words, if clumped particles 

do not simulate the collision correctly, more complicated materials, like bonded materials, 

bring extra complications into the simulation without addressing the impact behavior 

properly. DEM approaches have been used to simulate dynamic problems like: collision tests 

of an assembly of particles, and granular flow through a hopper. What is missing from these 

studies is whether the constitutive model used in DEM can represent the collisions properly. 
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The DEM constitutive model consisting of a Kelvin-Voigt system of springs and dashpots 

might be applicable for quasistatic problems without further investigation, as developed by 

Potyondy et al. (2004). In these types of simulations, only the final stage of equilibrium is of 

interest. 

The falling rocks can acquire complicated geometry, underlining the importance of studying 

the coefficients of restitution for complicated shapes made of an assembly of particles e.g. 

clumps. Table 3.3 shows several clumps which are proposed to be approximations of squares, 

rectangles, circles, and ellipses. These geometries were chosen as their rebound parameters 

can be compared with the results from rigid body impact mechanics, which will be 

introduced in the next chapter. 

Table 3.3: Different rigid body clumps representing geometrical shapes 

Three-particle ellipse 
 

  Four-particle square 
 

Five-particle ellipse 
 

  Eight-particle 
  rectangle, 2:1 

 

Seven-particle ellipse 

 

  Seven-particle disk 

 

Nine-particle ellipse 
 

  

 

To simulate the clump, the PFC2D (particle flow code) Version 3.0 (2002) software created 

by Itasca Consulting Group Inc. was used. For implementation of the MDEM model, the 

capability of the program to allow the creation of user-defined constitutive models was used. 

For this purpose, simple C++ code was written using the provided base classes. This code 

was compiled, and the DLL file was transferred into the PFC2D environment. The model 

parameters were used within the special programming language provided in the software, 

known as FISH language.  
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To illustrate the application of the new model in impact mechanics a numerical test is 

introduced in Figure 3.19. In this figure, different proposed clump geometries, shown in 

Table 3.3, impact on a rigid half space at different orientation angles, θ, under a zero gravity 

force. The clump vertical velocity is -1 m/s while the tangential velocity is zero, simplifying 

the motion to a vertical impact. The viscosity of the normal dashpot, Cn, is considered to be 

zero, assigning a zero-energy dissipation in the normal direction. The friction coefficient is 

assumed to be 0.58, equal to tan(30o). The other model properties are defined in Table 3.4. 

The impact rebound velocities are recorded every 5 degrees of orientation from 0o to 90o. 

These values are compared with the rebound velocities derived from the impact of 

geometries having closed-form equation using RBIM, which will be introduced in Chapter 4.  

Vini,ver = -1 m/s
(+)

Vini,hor = 0

θ (Var.)

 
Figure 3.19: Numerical test setup: the impact of different eccentric clumps (introduced 
in Table 3.4) on a rigid half space at variable impact orientations, under zero-gravity 
force using MDEM. 

Table 3.4: Parameters needed in MDEM and the applied values 

Property (Coefficient) Effect on 
COR Value in the simulation 

Kn, Nor. spring No 1e7 (kg/m) 
Cn, Nor. viscosity Yes 0 (no damping) 
Ks, Tan. spring No 1e7 (kg/m) 
µs, Tan. friction Yes tan(30o) = 0.58 
Kr, Rot. spring No 0 (no rotational module) 
µr, Rot. friction Yes 0 (no rotational module) 
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3.4.1 Ellipse representation 

In this section, an ellipsoidal shape object is represented by clumps consisting of 3, 5, 7, and 

9 particles, as shown in Table 3.3 and Figure 3.19. The normal COR and the rebound 

tangential and rotational velocities resulting from the impact of these particles are shown in 

Figure 3.20 versus the impact orientation.  
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Figure 3.20: Variation of rebound velocities versus the object orientation for vertical 
impact of an ellipse using RBIM and the represented clumps of Table 3.3 (three, five, 
seven, and nine-particle ellipse) and using MDEM: (a) typical impact of the three-
particle ellipsoidal clump, (b) rebound normal COR at the clumps center, (c) rebound 
tangential velocity at the clumps center (m/s), and (d) rebound rotational velocity (rad/s). 

In Figure 3.20b the normal COR is plotted for the clumps and prism with elliptical cross 

section. For the three-particle clump, at orientation angles between 5o and 15o, a normal 

coefficient of restitution equal to 1.0 is derived. The effect is caused by the contact force 
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passing through the center of the middle particle, producing no tangential energy dissipation. 

In addition, in this case normal dissipation does not occur as the viscosity is set equal to zero. 

However, these results are limited to five-particle clumps at orientation angles between 0o to 

5o, and do not occur for seven and nine-particle clumps. Generally, the three-particle clump 

inadequately simulates the normal COR between angles 10o to 45o; although, these results 

improve significantly using clumps with more particles. The results for five and seven-

particle clumps vary discontinuously at certain impact angles. For example, the trend of 

variation for the normal COR for a 5-particle clump changes at 15o, 35o, and 45o. This is due 

to one of two reasons: either the contact point at these angles transfers from one particle to 

another, or two particles contact the surface at the same time. This variation for normal COR 

for nine-particle clumps is smooth, showing that this number of particles is enough to 

geometrically represent the ellipse. The normal COR predicted by a nine-particle clump with 

the application of MDEM is generally lower than the values predicted by RBIM.  

In modeling the ellipse by a nine-particle clump, approximations occur in three cases: when 

finding the contact point, in defining the contact vector, and in applying the contact forces. It 

is observed that, over the impact period, a second particle usually enters into the contact. This 

results in a shift in the contact point which would not occur if the impact occurred between 

two rigid objects. Moreover, during the impact period as the contact forces are mobilized, the 

object rotates slightly, and this results in a reduced rebound normal velocity in comparison to 

the rigid impacts. This situation is similar to rigid impacts when the friction coefficient is 

lower than the value used in the application of RBIM. Overall, these results produced a 

reduced normal COR in comparison to the application of RBIM.  

Figures 3.20c and 3.20d depict the variations in the rebound tangential and rotational 

velocities for the objects. These figures show that most of the clumps adequately predict the 

rebound tangential and rotational velocities for an elliptical shape object. Between 50o and 

90o orientation the rebound parameters for the clumps and the ellipse are almost identical. 

The five-particle clump has a satisfactory result for orientations between 10o and 45o, in 

contrast with the poor results of three-particle clump for this range. The results for seven and 

nine-particle clumps are significantly improved because of a better geometrical 

representation. 
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It can be concluded from this test that representing an ellipse with the seven and nine-particle 

clumps is satisfactory. In addition, MDEM represents the RBIM adequately. More 

investigations can determine if the approximations are primarily caused by the clump 

geometries or the impact model. 

3.4.2 Rectangle representation 

In this example, a 2:1 prism with a rectangular cross section is represented by eight particles 

as shown in Table 3.3 and Figure 3.21a. Figure 3.21 shows the normal COR in addition to 

the rebound tangential and rotational velocities resulting from the impact of the objects 

versus orientation. 

Figure 3.21b shows the variation of normal COR for the two objects with the impact 

configurations of Figure 3.19. The proposed clump can replicate the variation of the 

rectangular section in different impact orientations with very good accuracy. The clump can 

capture the negative values of COR and the reverses in the trend of variations around 0o and 

5o and between 85o and 90o. In Figure 3.21c the variation of rebound tangential velocity is 

plotted versus the object orientation angle. Generally, the clump does not replicate the exact 

values because of the corners in the rectangle which are approximated by an arc with radius 

0.5 (particle radii). This clump is a better approximation for abraded rocks. The variation of 

the rebound rotational velocity by a clump strongly follows the same variation for a 

rectangular prism using RBIM theory, as shown in Figure 3.21d. 

It is concluded from this modeling that applying MDEM, and using the concept of a clump 

model, the object’s COR trends of variations are nearly the same as the results of RBIM 

theory. 
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Figure 3.21: Variation of rebound velocities versus object orientation for the vertical 
impact of a rectangle, using RBIM, and the represented clump of Table 3.3 (eight-
particle rectangle) using MDEM: (a) typical impact of the eight-particle rectangular 
clump, (b) rebound normal COR at the clump center, (c) rebound tangential velocity at 
the clump center (m/s), and (d) rebound rotational velocity (rad/s). 

3.4.3 Square representation 

In this section, a square is represented with a four-particle clump as shown in Table 3.3 and 

Figure 3.22a. The resulted variation of normal COR and the rebound tangential and rotational 

velocities versus impact orientation are plotted in Figure 3.22. These figures also show the 

variation of rebound parameters of a square and a unit superellipse power 4 derived by 

applying the RBIM theory.  
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Figure 3.22: Variation of rebound velocities versus object orientation for vertical impact 
of a rectangle and a superellipse power 4 using RBIM, and the represented clump of 
Table 3.3 (four-particle rectangle) using MDEM: (a) typical impact of the four-particle 
rectangular clump, (b) rebound normal COR at the clump center, (c) rebound tangential 
velocity at the clump center (m/s), and (d) rebound rotational velocity (rad/s). 

Figure 3.22b plots the derived normal COR for the clump and the two objects. The variation 

of the clump normal COR is between the variations of the square and the superellipse for 

orientation angles between 5o to 30o; however, between 30o and 45o all objects predict almost 

the same normal COR. It is also apparent that the curves are symmetric around the angle of 

45o. This trend of variation is comparable with the expectations that the rebound values 

should be between the rebound values resulting from the impact of a rigid body square and a 

superellipse, as the clump geometry can be considered as an approximation of both 

geometries. 
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The variation for the clump tangential COR closely matches the variation for the 

superellipse, underlining the significance of the curvilinear corners. This can be observed in 

Figure 3.22c where the variation of both the clump and superellipse rebound tangential 

velocity is shown to be far from the variation of the rectangular section. For the rotational 

rebound velocity, as shown in the Figure 3.22d, the variation of the clump is between the 

variations of the prisms with rectangular and superellipsoidal cross sections; however, the 

velocity is similar to the variation of the superellipse. 

These figures strongly suggest that if shape geometries can be sufficiently approximated by 

clumps, the proposed MDEM can accurately replicate the rebound velocities predicted by the 

application of rigid body impact mechanics. 

3.4.4 Disk representation  

In this section, a circular object is approximated by an assembly of seven particles as shown 

in Table 3.3 and Figure 3.23a. Figure 3.23 shows the normal COR and the rebound tangential 

and rotational velocities resulting from a series of impacts, as described in Figure 3.19.  

In Figure 3.23a the variation of the normal COR versus impact orientation is plotted. For a 

discoidal object, a constant COR of 1.0 should result. As a result of the eccentric impact of 

the boundary particles, values different from 1.0 are derived with a minimum of 0.82 

occurring at 5o, 55o, and 65o of orientation. In Figure 3.23b the variation of rebound 

tangential velocity is plotted for the proposed clump versus the orientation. In discoidal 

objects, because of the vertical impact, zero tangential velocity is expected. However, 

because of local eccentric impact of the disks, the clump moves sideways resulting in a value 

of tangential COR between -0.33 to 0.33. Similar to the normal COR, whenever the clump 

centric impact occurs, the value of rebound tangential velocity is the same as the impact of 

the disk.  

Figure 3.23c plots the variation of rotational velocity resulting from the impact of the clump 

at different orientation angles. Despite the zero rotational velocity resulting from the impact 
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of a disk on a solid half space, the rebound rotational velocity varies between -0.32 to 0.32 

rad/s. This trend is similar to the tangential velocity but with opposite sign.  
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Figure 3.23: Variation of rebound velocities versus object orientation for vertical impact 
of the represented clump of Table 3.3 (seven-particle disk) using MDEM: (a) typical 
impact of the seven-particle discoidal clump, (b) rebound normal COR at the clump 
center, (c) rebound tangential velocity at the clump center (m/s), and (d) rebound 
rotational velocity (rad/s). 

3.5 THE ROTATIONAL MODULE IN MDEM 

The last modification needed in DEM is to add a rotational module to the model. Rotating 

circular objects continue their rotation with a constant rotational velocity after reaching the 

zero contact point velocity. Figure 3.24 shows the modified DEM with the addition of 

rotational module. As shown in this figure, the rotational slider is kept as the only source of 



Chapter 3: Application of Discrete Element Modeling (DEM) to Rockfall Simulation    51 

 

rotational energy lost, and the dashpot in this direction is removed in comparison to the 

classical DEM models in the literature. This dashpot is eliminated for the same reasons used 

to justify removing the tangential dashpot, as discussed in Section 3.3.4. Researchers such as 

Bardet et al. (1993) and Iwashita et al. (1998) have used this rotational module to control 

extensive rotations.  

CnK n sK

unit

Kr

(µ)

(µ    )rot
Rotational sliderunit

Mono-direction

Normal module Tangential module Rotational module

Slider

Nonlinear viscous

 
Figure 3.24: Modified DEM consists of three modules: normal, tangential and 
rotational. 

The modified discrete element model (MDEM) consists of six parameters, three springs, two 

sliders and one dashpot which in total make six unknown parameters. The set of parameters 

should be chosen in such a way that they resemble the impact, rolling and sliding of a rock. 

There are several relationships, empirical or theoretical, to relate the stiffness coefficients as 

described by Equation (3.3.3) or by Iwashita et al. (1998). The three coefficients which 

control the rebound velocities, or in other words CORs, are: Cn, the viscosity in normal 

direction; µ the friction coefficient; and µ rot the rotational friction coefficient. 

3.6 SUMMARY 

• In the proposed MDEM, the linear dashpot in the normal direction is replaced with a 

nonlinear module. This nonlinear dashpot improves the deficiencies caused by the linear 

dashpot in three ways: it eliminates the shocking force at the time of impact initiation; 
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removes the tensile force at the time of contact termination; and causes the normal COR 

to be a velocity dependent coefficient. 

• A mono-direction unit is added in the tangential direction. This releases the strain energy 

stored in the tangential spring at the time of the tangential reversal. It is shown that the 

behavior of MDEM in the tangential direction is similar to its behavior in impacts with 

low tangential compliance (i.e. RBIM). 

• Several numerical tests indicate that if shape geometries can be sufficiently approximated 

by clumps, the proposed MDEM can replicate the rebound velocities that are predicted by 

the application of RBIM. This approximation needs to resemble both the object’s 

geometry and its mass distribution. 

• Numerical investigations by the author showed that the contact search procedure and the 

calculation of rebound velocities for discrete element modeling are computationally 

expensive. Due to the probabilistic nature of rockfall modeling, the application of DEM 

to rockfalls remains restricted to research applications. 
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CHAPTER  4 

APPLICATION OF RIGID BODY MECHANICS TO 
ROCKFALL SIMULATION 

4.1 INTRODUCTION 

Rigid body impact results from the collision of two relatively stiff objects over a small area 

relative to the size of the objects. In rigid body impact the contact stress does not distribute 

around the contact area, due to the high normal stiffness of the colliding objects. In an ideal 

case of rigid body impact the contact time is extremely short. This time depends on stiffness, 

mass, and the velocities of the colliding objects. A large force is developed during this short 

period of time, and this force terminates the contact by reversing the velocities at the contact 

point. The developing forces, possibly passing the yield point of the materials, results in high 

stress. Consequently, the two objects experience irreversible strains around the contact point. 

These irreversible strains dissipate energy during collision. In rigid body impact mechanics, 

it is assumed that the colliding objects exhibit high stiffness and the deformed area remains 

small and does not spread much beyond the contact point.  

In rigid body impact mechanics, the contact time is infinitesimally small. As a result the 

colliding objects do not move during the impact; therefore impact occurs in an invariable 

framework. The rebounding velocities are assumed to change in a discontinuous trend from 

an approaching negative velocity to a departing positive one.  
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In this chapter the collision of a single rock or boulder with an infinite half-space, is 

investigated. The contact surface is usually considered rigid, referring to an unlimited rigid 

surface which does not displace, deform, or crush during the impact. 

4.2 RIGID BODY IMPACT MECHANICS (RBIM) 

Rigid body impact mechanics (RBIM) were originally proposed by Stronge (1994a through 

2000). The key assumption in this theory is that all the deformations and energy dissipation is 

lumped in a small deformable body at the contact point (see Figure 4.1); therefore the rigid 

bodies neither displace nor deform during the impact. This definition of the deformable body 

is equivalent to Keller’s (1986) asymptotic method of integration with respect to time of the 

equations for relative acceleration of deformable bodies as the contact time becomes 

vanishingly small, as explained by Stronge (2000). Consider an object impacting a surface 

with the local coordinate system at the contact point, as shown in Figure 4.1. The moment the 

object collides with the surface, resisting forces Fi, develop at the contact point. This results 

in normal and tangential impulse components, pn, pt. 

n1

3n

C

vc

V

r

ω

Deformable particle

r

r

1

3

p
1

3
p

 
Figure 4.1: Rigid body collision against a rigid surface (half space) where the contact 
point C is separated by an infinitesimal deformable body (the arrows show the positive 
signs). 

Using Newton’s second law of motion for planar displacements, incremental variations of the 

velocities result in: 
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1,3i idp F dt i= =  (4.2.1) 

1 1,3i idV M dp i−= =  (4.2.2) 

( ) 12 2i r ijk j kd Mk r dp iω ε
−

= =  (4.2.3) 

where ijkε  is permutation number, j and k are dummy indices, M the object mass, dpk the 

impulse variation, and kr the polar radius of gyration. In the above equations, i = 1 and 3 show 

the direction tangential and perpendicular to the surface and i = 2 shows the direction 

perpendicular to the paper. Using the diagram in Figure 4.1, the contact velocities are 

calculated as follows: 

1,3 2i i ijk j kv V r i jε ω= + = =  (4.2.4) 

By differentiating the above equation and substituting Equations (4.2.2) and (4.2.3) into this 

equation, the variations of the planar velocities reduce to: 

1 1 2 11

3 2 3 3

dv dp
M

dv dp
β β
β β

− −⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (4.2.5) 

The matrix in Equation (4.2.5) is known as the configuration matrix in which the β s can be 

described as: 

2 2 2 2 2
1 3 2 1 3 3 11 , , 1r r rr k r r k r kβ β β= + = = +  (4.2.6) 

For eccentric impacts 2 0β ≠ , this indicates that the variations of the normal and tangential 

velocities are dependent. In centric or collinear impacts, the contact normal vector passes 

through the object’s center so that 1 0r = . Consequently impacts of circular objects are 

always centric. 
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4.2.1 Amontons-Coulomb law of dry friction 

The normal and tangential components of impulses can be related to each other using the 

coefficient of limiting friction, µ , which is applicable to sliding of rough surfaces (Johnson 

1985). In planar impacts the relationships between normal and tangential impulses are: 

1 1if 0 thenv dp dpµ= <  (4.2.7) 

1 1 ˆif 0 thenv dp s dpµ> = −  (4.2.8) 

where ŝ  denotes the direction of slip and dp = dp3. Equation (4.2.8) describes the sliding 

situation, whereas Equation (4.2.7) defines the situation where the contact point sticks. 

Stronge (1994a) demonstrated that to maintain the sticking situation at the contact point after 

the tangential velocity reaches zero, the friction should be greater than the stick 

coefficient: 2 1/µ µ β β> = . Equation (4.2.6) shows that this coefficient exclusively depends 

on the mass distribution around the contact point. For collinear impact, 0µ = ; therefore for 

rough collinear impacts, if the tangential velocity reaches zero the contact point sticks. This 

fact has also been proposed by Brach (1988), derived from the study of contact forces during 

impact.  

Stronge (1994a) has shown that by substituting Equation (4.2.8) into Equation (4.2.5) and 

integrating, the relationships between normal and tangential velocities at the contact point 

simplify to: 

1
1 1 2 1

1
3 3 3 2

ˆ( ) (0) [ ]
ˆ( ) (0) [ ]

v p v M s p

v p v M s p

β µβ

β µβ

−

−

= − +

= + +
 (4.2.9) 

These equations state that the variations of the velocities with respect to the normal impulse 

are linear. Figure 4.2 shows four typical variations of the tangential and normal velocities 

versus the normal impulse as will be discussed in Section 4.2.3. There are three benchmark 

impulses in these figures: ps, the impulse at which the tangential velocity becomes zero; pc, 
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the impulse for zero normal velocity, at which the impulse transforms from compression to 

restitution; and pf , at which the contact terminates. 
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Figure 4.2: Typical variations of normal and tangential components of velocity, v1 and 
v3, at the contact point versus normal impulse, after Stronge (2000) for: (a) slip-reversal 
and slip-stick in compression processes, and (b) continuous slip and continuous stick 
processes. 

4.2.2 Energy coefficient of restitution 

Dividing the impact process into two phases, compression and restitution, Stronge (1994a) 

assumed that all the energy dissipation occurs during the period of restitution. Under this 

assumption, the negative of the value of the ratio of the elastic energy released during 

restitution to the amount of energy adsorbed during compression is equal to the square of the 

energy coefficient of restitution, as defined in Equation (4.2.10). This coefficient 

concentrates all the energy dissipation due to the plastic deformation and hysteretic behavior 

of the normal force at the contact point. Another source of contact energy loss, not 

considered by Equation (4.2.10), is due to frictional force. 

32 c
*

r 30

( )W
W ( )

f

c

c

p

p
p

v p dp
e

v p dp

−
= − =

∫
∫

 (4.2.10) 

The friction coefficient, µ, and the energy coefficient of restitution, *e , are experimentally 

measurable, as explained in Appendix 2. 
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4.2.3 Implementation of equations 

The last three equations can be solved to define the rebound velocities. Stronge (2000) 

showed that the termination velocities depend on the slip process at the contact point, and, 

based on the impact configuration, five different scenarios may occur: 

• Continuous stick 

• Continuous slip 

• Slip-stick 

• Slip-reversal 

• Jam-stick. 

It should be mentioned that the slip-stick and stick-reversal processes may occur either in 

compression or restitution. These depend on the relative position of ps and pc. If ps terminates 

prior to pc, the process is considered as “in compression”, otherwise it will be “in restitution”. 

Stronge (2000) showed that the following parameters affect the rebound velocities:  

• mass distribution of the object around the impact point, 

• contact vector and polar radius of gyration, 

• friction coefficient, 

• energy coefficient of restitution, *e , 

• velocity trajectory at the contact point. 

Table 4.1 categorizes the impact terminal impulses and velocities for the different impact 

scenarios. The most important criterion in categorizing the impact is the impact angle, which 

is represented by the contact velocity ratio shown in Figure 4.3. Table 4.1 demonstrates that 

defining the impact angle is not only dependent on the ratio of normal to tangential velocities 

but also on the other four main parameters mentioned above. 
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Figure 4.3: Different impact angles defined in Table 4.1. 

Theoretically, there is no difficulty in finding the rebound velocities using RBIM if the 

following three variables are defined for an object in contact: 

• object’s radius of gyration 

• contact point (contact vector) 

• normal contact vector. 
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Table 4.1: Impact parameters for different scenarios happening at planar impact, after Strong (2000) 

Angle 
 of  
impact 

Process 
Velocity ratio 

1 3(0) / (0)v v−  

Friction 

ratio µ
µ

 

Halting 
impulse 

1(0)
sp

Mv
 

Normal comp. 
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3(0)
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f

c

p
p
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s v
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⎝ ⎠
 

1/ 22
2

* 2

ˆ( )1 1 s

c c

pse
p

µ µ β
β

⎛ ⎞+
+ +⎜ ⎟⎜ ⎟

⎝ ⎠
 

Low 
Slip 
reversal  
in rest. 

1

3

(0)
(0)

a

b

v
v

β
β

− ≤  1<  1
aβ
−  1 2 1

3

ˆ2 (0)1
(0)c

a

s v
v

µββ
β

− ⎛ ⎞
+⎜ ⎟

⎝ ⎠
 

1/ 22
2

* 2

ˆ21 1 s

c c

pse
p

µβ
β

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠
 

Med. Slip-stick  
in comp. 

1

3

*

(0)
(0)

(1 )

a

b

a

b

v
v

e

β
β

β
β

< −

≤ +
 1≥  1

aβ
−  1

bβ
−  

1 22 2
*2

2

ˆ( )
1 1

( )
s b s c c

c c b bc s c

p p p es
p p p p

β βµ µ β
β ββ

⎛ ⎞⎡ ⎤⎛ ⎞ +⎜ ⎟+ − + −⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠
 

Med. 
Slip 
reversal  
in rest. 

1

3

*

(0)
(0)

(1 )

a

b

a

b

v
v

e

β
β

β
β

< −

≤ +
 1<  1

aβ
−  1

bβ
−  

1 22 2
*2

2

ˆ21 1
( )

s b s c c

c c c b bs c

p p p es
p p p p

β βµβ
β β β

⎛ ⎞⎡ ⎤⎛ ⎞⎜ ⎟+ − + −⎜ ⎟ ⎢ ⎥⎜ ⎟−⎝ ⎠ ⎣ ⎦⎝ ⎠
 

High Continuous 
slip 

1

3

(0)
(0)

a

b

v
v

β
β

− <  1≥  - 1
bβ
−  *1 e+  

All Continuous 
stick 0 - - 1

cβ
−  *1 e+  

All Jam-stick 2ˆ 0sβ <  3

2ŝ
β

µ
β

≥ −  1
aβ
−  1 2 1

3

ˆ( ) (0)1
(0)c

a

s v
v

µ µ ββ
β

− ⎛ ⎞+
+⎜ ⎟

⎝ ⎠
 a 



Chapter 4: Application of Rigid Body Mechanics to Rockfall Simulation               61 

 

Table 4.1: (Continued) Impact parameters for different scenarios happening at planar impact, after Strong (2000) 

Angle 
 of  
impact 

Process 
Tangential termination 
 Impulse 1( )fp p  

Variation in rotational 
velocity ω∆  

Tangential termination  
velocity 1( )fv p  

normal termination  
velocity 3( )fv p  

Low  Slip-stick in 
compression 

ˆ ( )s f ss p p pµ µ− + −  2
1 3 1( ( )) /f f rr p r p p k− +  0 ( )f c cp p β−  

Low Slip reversal in 
restitution 

ˆ ˆ( )s f ss p s p pµ µ− + −  2
1 3 1( ( )) /f f rr p r p p k− +  ( )d f sp pβ− −  ( )f c cp p β−  

Med. Slip-stick in 
compression 

ˆ ( )s f ss p p pµ µ− + −  2
1 3 1( ( )) /f f rr p r p p k− +  0 ( ) ( )b s c c f sp p p pβ β− + −  

Med. Slip reversal in 
restitution 

ˆ ˆ( )s f ss p s p pµ µ− + −  2
1 3 1( ( )) /f f rr p r p p k− +  

( )d f sp pβ− −  ( ) ( )b s c c f sp p p pβ β− + −  

High Continuous slip ˆ fs pµ−  2
1 3 1( ( )) /f f rr p r p p k− +  1(0) ( )a fv pβ−  * (0)ye v−  

All Continuous stick 0 2
1 3( ) /f rr r p kµ− +  0 * (0)ye v−  

All Jam-stick ˆ ( )s f ss p p pµ µ− + −  2
1 3 1( ( )) /f f rr p r p p k− +  0 ( )f c cp p β−  

 

2 1 3 2 3 2 2 1 3 2ˆ ˆ ˆ ˆa b c d cs s s sβ β µβ β β µβ β β µβ β β µβ β β µβ= + = + = − = − = −  

2 1 1 1 1 2 1ˆ sgn( )s v v vµ β β µ β β= = = =  
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In order to find the rebound velocities, the impact should be categorized based on the 

processes in Table 4.1. On the other hand, basing the impact process on the impact angle is 

not a feasible approach, as the velocity ratios overlap with each other. In order to categorize 

the impact process based on the processes in Table 4.1, three critical impulse ratios are 

defined. Theoretically, the tangential impulse, ps, terminates the tangential velocity, the 

normal impulse, pc, terminates the normal velocity, and at the impulse, pf, the contact 

terminates. To define these impulses Equations (4.2.9) are set to zero and it is assumed that 

the termination normal impulse varies linearly, proportional to *(1 )e+ , resulting in: 

 , * ,(1 )f crit c critp e p= +  (4.2.11) 

The impact process can be defined uniquely, based on the relative position of these impulses: 

, 1 2 1ˆ(0) /( )s critp v sβ µβ= − +  (4.2.12) 

, 3 3 2ˆ(0) /( )c critp v sβ µβ= − +  (4.2.13) 

, 3 * 3 2ˆ(0)(1 ) /( )f critp v e sβ µβ= − + +  (4.2.14) 

The jam-stick process cannot be defined using the above equations, due to its simultaneous 

dependence on the β values and the friction coefficient, rather than the impact angle. As a 

result the occurrence of the jam-stick process should be checked separately. Table 4.2 defines 

the slip modes based on the relative values of the critical impulses. 

The tangential and normal rebound velocities at the object’s center of gravity and in the local 

frame work are calculated based on the contact velocities and the rebound rotational velocity 

as follows: 

3

1

( ) ( ) ( )

( ) ( ) ( )
x f x f f

y f y f f

V p v p r p

V p v p r p

ω

ω

= −

= +
 (4.2.15) 
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Table 4.2: Relative position of critical impact processes in eccentric impact 

Process Critical impulses Friction 

Continuous stick 0sp =  µ µ>  

Continuous slip s fp p>  - 

Slip-stick in compression ands f s cp p p p< <  µ µ>  

Slip-stick in restitution ands f s cp p p p< >  µ µ>  

Slip-reversal in compression ands f s cp p p p< <  µ µ<  

Slip-reversal in restitution ands f s cp p p p< >  µ µ<  

 

4.2.4 Collinear impacts in RBIM 

A collinear or centric impact occurs when the contact vector passes through the object’s 

center of gravity, when r1 = 0 in Figure 4.1. In this situation, for spherical objects, the contact 

configuration simplifies to Figure 4.4a. The centric impact case does not exclusively occur 

for spheres, but can also occur for other geometries, such as prisms and ellipsoids at 

particular orientations (0o and 90o) as shown by Figures 4.4b and 4.4c. As a result, the 

following relationships can be applied to the centric impact for any type of geometries, as far 

as the impact is centric.  

r  =  R3

p
µ

ω

V(0)

1

3

f
V(p )

 

3r 

1r = 0

 

1r = 0
3r 

 

(a) (b) (c) 

Figure 4.4: Collinear impacts: (a) impact of spherical object, (b) impact of a rectangular 
shape, and (c) impact of an ellipsoidal object. 
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In centric collisions β 2 = 0 and β 3 = 1, and, as a result, the complicated equations shown in 

Table 4.1, for the case of pure sliding, simplify to the following three equations: 

3 * 3( ) (0)fV p e V= −  (4.2.16) 

( )1 1 * 3ˆ( ) (0) 1 (0)fV p V s e Vµ= − +  (4.2.17) 

2
* 3ˆ( ) (0) / (1 ) (0)f rp s R k e Vω ω µ= − +  (4.2.18) 

In collinear impacts there is no contact velocity reversal in the tangential direction. This 

means that, if the tangential contact velocity reaches zero, the contact point does not slide in 

the reverse direction, but instead sticks. As a result the tangential mechanism for collinear 

impacts can be one of these mechanisms: continuous stick, pure sliding, or slip-stick. The 

minimum rebound velocity, or the minimum tangential COR, occurs in the sliding-stick 

situation. In order to define these minimum values, the pure rolling constraint of 1 3V r ω=  is 

used to relate the velocity values in the Equations (4.2.17) and (4.2.18) which results in the 

minimum value of the rebound tangential velocity as follows: 

1 3
1,min 1 2 2

3

(0) (0)( ) (0)
(1 / )f

r

V rV p V
r k

ω−
= −

+
 (4.2.19) 

Brach (1998) defined the critical friction, critµ , needed to bring the tangential contact velocity 

to a halt. This value can be defined by equating Equations (4.2.17) and (4.2.19): 

[ ]1 3
2 2

3 * 3

(0) (0)
(1 / )(1 ) (0)crit

r

V r
r k e V

ω
µ

−
=

+ +
 (4.2.20) 

The minimum tangential COR for non-rotating objects in a centric impact may be defined by 

setting ω = 0 in Equation (4.2.19), producing: 

,min 2 2
3

1
1 /t

r

R
k r

=
+

 (4.2.21) 
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      Table 4.3: Minimum tangential COR for different geometrical objects  

Object 2-D object 3-D object 
Circles (spheres) 0.67 0.71 
Square 0.61 0.61 
Superellipse (ellipsoid) III 0.64 0.67 
Superellipse (ellipsoid) IV 0.62 0.64 
Rectangle with aspect ratio 2:1 0.625 0.625 

Equation (4.2.21) shows the dependence of Rt,min on kr, the object geometry represented by 

radius of gyration, or, in other words, mass distribution around the contact point. Table 4.3 

illustrates this value for different two-dimensional and three-dimensional geometries. The 

values derived in this table are compatible with the data shown in Figure 2.2 for tangential 

COR, with the minimum observed value around 0.6. It should be noted that these values are 

prepared for lumped-mass models which consider the rock shape as an infinitesimal sphere. 

It will be shown later that Rt for non-spherical objects has a wider range of variation, from 

negative values to values greater than 1.0. 

4.3 IMPACT MODELS IN ROCKFALL LITERATURE 

Rigid body impact models have been utilized in rockfall studies by either direct application 

to define the rebound parameters, or with the use of simplifying assumptions. These 

assumptions might occur by the usage of a simplified version of the impact model or by the 

usage of a simplified contact search procedure. The simulators which apply these simplifying 

assumptions are known as hybrid models. Rockfall simulations are categorized by Guzzetti et 

al. (2002) as: rigid body, hybrid, or lumped-mass models. Properties used to categorize these 

models include: rock geometry, model dimension (2D or 3D), impact model, and the 

consideration of probabilistic analysis. These simulation properties are covered in the next 

chapter. In this section, the properties of some hybrid and rigid body models are investigated, 

mentioning the limitations and advantages of each, along with a study of the effects of 

geometrical shapes in COR. 
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4.3.1 Hybrid (stereomechanical) model by Pfeiffer and Bowen (1989) 

Pfeiffer and Bowen (1989) proposed the best-known and widely-used rockfall model, 

implemented in the CRSP computer simulation. This model was later used by Stevens (1998) 

in RocFall® and by Jones et al. (2000) in CRSP 4.0 simulations. These models consider the 

falling rock as a dimensionless, circular, rigid object with the mass concentrated at the center. 

The authors considered these assumptions as conservative as the circular object has the 

highest weight and energy with the least area in comparison with the other geometries, and 

they expected that the circular object should have the greatest roll-out distance.  

There are three major assumptions used to determine the rebound translational and rotational 

velocities. First, the normal velocity is reduced using scaled normal COR (SI units), 

demonstrated in Equation (4.3.1). This factor considers the inelastic deformation mechanism 

happening at the contact point, concentrating all rock crushing and fracturing at this point 

(Habib, 1976): 

3 32
3

( ) (0)
1 ( (0) 9.8)

nRV f V
V

=
+

 (4.3.1) 

In the above equation V3 (0) and V3 ( f ) are the approaching and rebound normal velocities, 

and Rn is the normal coefficient of restitution. Second, it is assumed that sliding is terminated 

at the end of contact; therefore, the contact ceases in pure rolling (or slip-stick as explained 

earlier): 

1( ) ( )f V f Rω =  (4.3.2) 

Finally the combination of tangential and rotational impact energy is reduced using two 

factors: scaling and friction. As a result, the tangential velocity is defined as follows: 

2 2 2
1

1 2

( (0) ( )) ( )( ) R I MV f f F SFV f
I MR

ω +
=

+
                     (4.3.3) 

and this reduces to the following equation for spheres in planar impacts: 
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( )2 2 2
1 1( ) 2 7 (0) 5 7 (0) ( )V f R V f F SFω= +                 (4.3.4) 

where R, I, M, are radius, moment of inertia, and the mass of the object, respectively. In these 

equations ω and V1 represent the rotational and tangential velocities. The friction function, 

( )f F , adjusts the tangential COR according to the tangential velocity at the contact and 

incorporates the reduction in the friction coefficient at higher velocities. The scaling factor 

integrates the effect of the normal velocity on tangential COR. As the normal velocity 

increases, the tangential compliance increases, leading to reduced tangential and rotational 

velocities. Figure 4.5 shows the variations of these factors versus velocity. The friction and 

scaling factors are defined as (SI units): 

( )2
1

1( )
( (0) (0)) 3.0 1.5

t
t

Rf F R
V Rω

−
= +

− +
 (4.3.5) 

( )( )2
31 (0) /15.2tSF R V= +  (4.3.6) 

(a) (b) 

Figure 4.5: Tangential coefficients versus impact velocity as defined by Pfeiffer et al. 
(1989): (a) Friction function versus tangential velocity, and (b) Friction scaling factor. 

The main deficiency of this model is that it does not incorporate the geometry effect, either 

rock geometry or the effects of corners. The other major deficiency of this model is the 

assumption of a pure rolling process, which does not always occur in the tangential direction. 
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It has been shown in Section 4.2.4 that the pure sliding assumption results in the minimum 

tangential COR which is not a conservative assumption.  

4.3.2 Hybrid model by Bozzolo et al. (1986) and Azzoni et al. (1995) 

Azzoni et al. (1995) proposed a hybrid mathematical model for rockfall impact modeling and 

implemented it in the CADMA application. The impact model was originally introduced by 

Bozzolo et al. (1988) and implemented in the simulation programs SASS and MASSI. 

Azzoni introduced new algorithms to solve the impact equations and generalized the rolling 

of circular objects for different geometrical shapes. In CADMA, the impact is defined when 

the parabolic object path intersects with the contact surface. This model is defined for special 

types of non-circular objects, mainly ellipses. In CADMA, the hybrid impact model is based 

on three assumptions: conservation of angular momentum, no-sliding at the contact point 

(pure rolling at the time of contact termination), and the energy coefficient of restitution 

accounts for energy loses. By applying the above assumptions, the rebound rotational 

velocity is calculated as: 

1 3 3 1
2 2

1 3

1 3 3 1

(0) (0) (0)( )

( ) ( ) , ( ) ( )

I V r V rf
I r r

V f f r V f f r

ωω

ω ω

+ −
=

+ +

= = −
 (4.3.7) 

where 1 and 3 denote the tangential and normal directions, and r1 and r3 are the contact 

vectors as defined in Figure 4.6a. The remaining variables are as defined in Equations (4.3.3) 

and (4.3.4). 

The rebound velocities are defined using Equations (4.3.7), however, the rebound energy 

might be greater than the energy constraint defined as the maximum energy COR, max
eε . In 

this case the rotational velocity, and consequently the translational velocities, is reduced 

according to the following equation: 

max 0
2

2
( )

e K
I R
εω =

+
 (4.3.8) 
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where K0 is the total initial kinetic energy and max
eε  is the maximum energy COR, which acts 

as a upper bound for the rebound energy. This hybrid model incorporates the ellipsoid’s 

geometry at the time of contact; therefore, when the normal rebound velocity is negative, the 

object can not separate. As a result, to assure separation, the authors introduced the 

occurrence of a second impact with a symmetric object configuration. 
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Figure 4.6: Impact configuration for the application of Azzoni’s model: (a) general 
eccentric impact, and (b) collinear impact (in Azzoni’s model), any non-rotational 
collinear impact ends in zero normal rebound velocity and pure rolling. 

Figure 4.6b shows the special case of centric impact in which r1 = 0. In this case the 

equations for rebound velocities for spheres reduce to Equation (4.3.9).  

1

1 1 3

(0)2 5( ) (0)
7 7
2 5( ) (0) (0), ( ) 0
7 7

Vf
R

V f R V V f

ω ω

ω

= +

= + =
                          (4.3.9) 

The derived equations for tangential and rotational velocities are compatible with most rigid 

body models when the impact stops in pure rolling. However, the model incorrectly 

considers the normal rebound velocity as equal to zero, which makes it impractical to model 

rock geometry. It should be mentioned that the tangential COR for a non-rotating sphere is 

derived as a constant equal to 5/7 (= 0.71). This value is the same for the other rigid body 

models in the case where the sliding terminates before separation. Further investigation of the 

variations in COR in Azzoni’s impact model is performed in the following sections.  
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4.3.3 Rigid body model by Descouedres et al. (1987) 

Descouedres et al. (1987) proposed a three-dimensional kinetic impact model in which the 

reflected velocities are functions of the normal and tangential impulses. In this model, the 

normal and tangential impulses are divided into two portions, as defined in Figure 4.7a, 

according to the normal impulse. The first portion of the impulse occurs before the maximum 

of impulse, while the second portion occurs after, but before separation. By definition, at the 

time of maximum impulse, tc, the contact velocities are equal to zero and the following 

equations can be applied: 

ˆ ˆ ˆ( ( ) (0))
ˆ ˆ ˆ ˆ ˆ( ( ) (0))
ˆ ˆ ˆ( ) ( ) 0

c c

c c

c c

M V p V p

I p r p

V p p r

ω ω

ω

− =

− = ×

+ × =

 (4.3.10) 

In these equations p̂  is the impulse vector, the index c represents the time of maximum 

impulse, 0 denotes the pre-impact situation, r̂  is the contact vector, M is the object’s vector, 

V̂  is the object velocity vector, Î  is the rotary inertia, and ω̂  is the rotation matrix. By 

introducing the kinetic coefficient of restitution, en, (similar to the definition provided in 

Section 2.2.1.2) and assuming that the variation of normal impulse is linear, the termination 

normal impulse is defined as (the real non-linear variation of normal impulse versus contact 

time is illustrated in Figure 4.7b): 

(1 )f n cp e p= +  (4.3.11) 

Based on the variation of tangential impulses, two modes of impact are defined: no-sliding 

and sliding. Descouedres et al. (1987) suggested an iterative 3D method for solving the 

Equation-set (4.3.10), motivated by the nonlinear variation of the tangential impulse in the 

contact plane. In 2D, the sliding direction is invariable; therefore, a closed-form solution can 

be derived, similar to RBIM, saving computational time and effort. In the next section, it is 

shown that for impact angles smaller than a certain value γc, similar to the impact angle 

shown in Figure 4.3, sliding does not occur at the contact. 



Chapter 4: Application of Rigid Body Mechanics to Rockfall Simulation  71 

 

O
t

Compression Restitution

Fn

periodperiod

time of maximum
impulse

p - pcp cf

e  < 1.0n

ne  = 1.0

p (t)

O
t

t c

pf

cp

t f  
(a) (b) 

Figure 4.7: (a) The variation of contact forces versus time in two phases of compression 
and restitution, (b) the variation of normal impulse as a function of time. 

4.3.3.1 No-sliding mode (γ  ≤ γ c)  

By simultaneously solving Equations (4.3.10), (4.2.3), and (4.2.4), tangential and normal 

impulses can be derived as follows: 

3 1 2 3
1 2

1 3 2

(0) (0)( )c
v vp p β β

β β β
+

= −
−

 (4.3.12) 

2 1 1 3
2

1 3 2

(0) (0)
c

v vp β β
β β β

+
= −

−
 (4.3.13) 

where the β s are defined in Equation (4.2.6), and v1 (0) and v3 (0) are the contact velocities 

before impact. In this case, the normal impulse variation is independent of the tangential 

impulse variation, as defined in Equation (4.3.11). The necessary condition for the object to 

remain in no-sliding condition is defined as: 

1 1 1( ) 2 ( ) ( )f c f fp p p p if p p pµ= ≤  (4.3.14) 

where µ is the friction coefficient and is usually assumed to be constant. In this theory, when 

the impulse is maximum, both the tangential and normal contact velocities are equal to zero. 

However this assumption may not be realistic since the two impulses usually vary differently. 

If the no-sliding condition, defined in Equation (4.3.14), is not valid, the object undergoes 

sliding.  
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In order to find the impact angle in which the impact mode transfers from no-sliding to 

sliding, γc, Equations (4.3.11) to (4.3.13) are substituted into Equation (4.3.14). By 

simplifying the resulting equations, the velocity ratio, or the critical angle, is defined as: 

11 2 1 21

3 2 3 2 3

(1 ) 2 (1 ) 2(0) tan
(0) (1 ) 2 (1 ) 2

n n
c

n n

e eV
V e e

µβ β µβ βγ
µ β β µ β β

− ⎛ ⎞+ − + −
− = ⇒ = ⎜ ⎟+ + + +⎝ ⎠

 (4.3.15) 

In collinear impacts, where β2 = 0, this angle reduces to ( )1
1 3tan (1 ) 2c neγ µβ β−= +  and for 

spheres can be reduced to 1 3(0) (0) 7 4 (1 )nV V eµ− = + . This angle is twice the value derived 

by Brach (1988) and Stronge (2000): 1 3(0) (0) 7 2 (1 )nV V eµ− = + . 

4.3.3.2 Sliding mode (γ  > γ c)  

In the sliding case 1( )f fp p pµ> , implying that either the friction coefficient or the normal 

impulse are not high enough to hold the tangential direction in sticking mode. Therefore, 

when the tangential impulse is large relative to the normal one, sliding occurs at either a low 

friction coefficient or a high impact angle. The tangential impulse at the time of maximum 

normal impulse, Equation (4.3.12), becomes: 

1 ˆ ˆ ˆ( ) 1 2( ) 1 2( ) ( ) 1 2( ) (1 )c f c n c c np p s p s p e p s p eµ µ µ= − = − + = − +  (4.3.16) 

This equation replaces the last equation of Equations (4.3.10). Simultaneous solving of these 

equations produces the normal impulse for sliding: 

3

2 3

(0)
ˆ (1 ) 2c

n

vp
s eβ µ β

= −
+ −

 (4.3.17) 

4.3.3.3 Rebound velocities  

The rebound velocities can be derived using the following equations: 

2
1 1 3( ) (0) ( ( ) )f f f rp p r p p r kω ω= + − +  (4.3.18) 

3 3( ) (0)f fV p V p M= +  (4.3.19) 
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1 1 1( ) (0) ( )f fV p V p p M= +  (4.3.20) 

4.4 EFFECT OF ROCK GEOMETRY ON THE COR IN THE 
APPLICATION OF RBIM IN ROCKFALL STUDIES 

In addition to the contact material properties, the object geometry and the distribution of 

mass around the contact point affect rebound velocities and energies. This causes the kinetic 

energy to transfer between modes of motion, between rotational and translational energies. 

As a result, it is not practical to use the definition of tangential and normal COR to define the 

rebound velocities of non-circular objects. 

To illustrate the effect of impact geometry on rebound velocities and energies, the planar 

impact of an ellipsoidal object on a surface is studied as a numerical experiment. Figure 4.8 

shows the impact of an ellipsoid on a flat surface at different impact angles, γ, and different 

initial orientations, θ, with a constant initial normal velocity equal to -10 (m/s). This ellipsoid 

has the minor and major axes of 1 and 2 meters, respectively. 

Vini,hor = 10 m/s

Vini,ver = -10 m/s

(+)

θ

γ
ω

= 45o

 

Figure 4.8: The impact of an eccentric object on a rigid half space at variable impact 
angles and different orientations, under zero gravity force. 

For the first example of RBIM application, values for the impact properties, considered to be 

typical values in rockfalls, are used: * 0.5e = , and tan(30) 0.58µ = =  for a friction angle of 

30o. The ellipsoid is projected at the half-space (ground) at an angle of 45o, Vini,hor = 10 m/s, 

and with different initial orientation angles, θ, under zero gravitational force. Figure 4.9 
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shows the object rebound velocities and energies resulting from the RBIM application. The 

impact rebounds are recorded every 5 degrees of orientation from 0o to 180o. The plots show 

that although the object is impacting the surface at an angle continually changing by 5o, the 

rebound velocities are highly dependent on the mass distribution around the contact point, 

and not solely on the angle of impact. The definition of high, medium, or low impact angle, 

as discussed in Section 4.2.3, is also dependent on this distribution. A similar sphere with the 

same contact properties experiences constant coefficients of restitution of Rt = 0.71 and Rn = 

0.5. In contrast, the variation of these values for an eccentric object like an ellipsoid is highly 

nonlinear.  

Figure 4.9a shows the variation of normal rebound velocity versus impact orientation. 

Normal rebound velocity varies between -3.5 and 7.0 (m/s), resulting in a normal coefficient 

of restitution, Rn, between -0.35 and 0.70. The average normal velocity is 2.5 m/s showing a 

normal COR equal to 0.25; if, however, the object were a sphere, the normal COR would be 

constant and equal to 0.5. The definitions of low, medium, and large modes of impact are 

used to categorize the variations in tangential direction. As a result, less sharp effects are 

apparent in this curve when compared, for example, to a tangential velocity variation curve. 

Sharper variations in the curve occur when the mode of contact varies, for example, from a 

large to a medium impact angle. The increasing trend of the curve reverses at the angle of 

125o, when the angle of impact changes from a low impact angle to a medium and finally to a 

large impact angle, which occurs in a pure sliding case. 

Figure 4.9b plots the variation of tangential rebound velocity against initial orientation, θ. 

Again, the variation is highly nonlinear. In this plot, the rebound tangential velocity varies 

between 1.1 and 10.6 m/s with an average of 6.2 m/s. These values indicate a variation in 

tangential COR between 0.11 and 1.06. This range of variation is significantly different from 

the range of variation for a sphere: Rt = 0.71-1.0. At an angle of 135o, the slip-reverse mode 

in the tangential direction ceases and the contact experiences pure rolling, i.e. the decreasing 

trend of tangential velocity reverses to an increasing trend. 
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Figure 4.9: Variation of velocities and energies versus object orientation for planar 
impact of an ellipsoid at an impact angle of 45o (Vini,hor = 10 m/s):  (a) rebound normal 
velocity at the center, (b) rebound tangential velocity at the center (m/s), (c) rebound 
rotational velocity (rad/s), and (d) ratio of retrieved energies after impact to initial 
energies: the total retrieved energy consists of rotational and translational energies, the 
ratio of translational energy to total initial energy, and the ratio of rotational energy to 
total initial energy (in the above figures low, med., and large impact angles refer to the 
conventions defined in Table 4.1 and demonstrated in Figure 4.3). 

Figure 4.9c shows the variation of rebound rotational velocity between -2.7 and 7.7 (rad/s), 

which follows the variation of rebound tangential velocity, except in the case of large angle 

impact, where its trend of variation is opposite to the trend of tangential velocity. 

Figure 4.9d depicts the ratios of retrieved rotational, translational, and total energies after 

impact to the initial kinetic energy. The highest retained energy occurs at an orientation angle 

of 40o and is approximately 77% of the initial total energy. This is despite the constant value 
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of * 0.5e = , which should result in a constant value of retrieved energy, 2
*e , equal to 25% of 

initial energy. The lowest retrieved energy occurs at an orientation of 140o, and is equal to 

10% of initial energy. This low energy point occurs when the velocity and orientation vectors 

coincide, occurring during the pure slipping mode, when the sliding energy dissipation is also 

significant. 

When using numerical models, a series of parameters and settings affect the calculation of 

rebound values. In other words, the coefficients of restitution are not constant values. These 

parameters can be grouped into the following categories: 

• impact model 

• impact parameters 

• rock geometry and the rock aspect ratio 

• impact angle (or the ratio of tangential to normal contact velocity) 

• object orientation at the contact instance (or mass distribution around the contact point). 

In the following sections the effect of each category is studied in detail. It should be 

mentioned that θ, the object orientation at time of impact, is the primary variable of interest 

in the following chapters, varying from 0o to 180o, according to symmetry, with results 

calculated every 5o. θ is chosen as the main variable, as the mass distribution around the 

contact point has the most significant effect on the rebound parameters, when compared to 

other input parameters. 

4.4.1 Effect of the impact model on object rebound parameters 

The impact model significantly affects the rebound velocities. In this section the RBIM is 

compared with the models proposed by Descouedres et al. (1988) and Azzoni et al. (1995). In 

this comparison, the set-up of Figure 4.8 is utilized, with an impact angle of γ = 45o. Figure 

4.10 plots comparisons between the rebound velocities and energies which result from the 

application of the different models. 
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Figure 4.10a shows the variation of normal rebound velocity at the center of the ellipsoid. 

The Stronge and Descouedres models predict almost identical rebound normal velocities 

between angles 0o and 120o; in these orientations the stick process is the dominant tangential 

process for both theories. From an angle of 120o, when pure sliding starts in Descouedres, the 

two variations diverge. The close variation of the two theories is only limited to normal 

direction, as both theories assume impulsive behavior for the variation of the normal 

direction. Both theories consider the energy dissipation in the restitution phase, as defined by 

the two Equations (4.2.11) and (4.3.11). Azzoni’s model predicts the rebound negative 

velocity for the first 90o of the orientation, where r1 > 0, and the object is supposed to 

experience the second impact. In an orientation between 90o and 180o, Azzoni derives 

positive, relatively small, rebound velocities with Rn < 0.2. Here, it is found that using this 

theory to model the rock in full geometry is not feasible, as the object loses the normal 

velocity rapidly. Also as a result of rotation, after a few bounces, the rock reaches an early 

arrest when compared to the other models. This behavior has also been noticed when 

simulating several other shapes in different impact settings.  

Figure 4.10b shows the tangential rebound velocities. In the tangential direction the rebound 

velocities derived from Stronge’s theory are significantly different from those derived from 

Descouedres’ model. This is because the criterion for sliding-stick mode differs between the 

two models. RBIM employs Amontons-Coulomb’s dry friction law for impulse increments, 

while in Descouedres’ model, the sliding criteria are checked based on the final impulses. In 

Descouedres’ model, sliding occurs if the ratio of tangential termination impulse to the 

normal impulse is smaller than the friction coefficient. In addition, Descouedres’ model is 

not capable of predicting the stick situation that occurs when the initial sliding halts on rough 

surfaces. When the stick situation occurs for angles between 0o and 90o, such as in Figure 

4.10b, Azzoni’s model predicts tangential velocity values which are closer to the values 

predicted by RBIM. However, for the cases of centric impact, the responses of the two 

models are exactly equal. This equality is due to Azzoni’s assumption that sticking on the 

contact point always represents a pivot point; an assumption shared by RBIM model in this 

specific impact configuration. 



Chapter 4: Application of Rigid Body Mechanics to Rockfall Simulation  78 

 

-10

-5

0

5

10

0 45 90 135 180

Initial orientation, θ  (degrees)

Stronge (RBIM)
Desc.  &  Zimm.

Azzoni et al.
Re

bo
un

d 
no

r. 
ve

lo
ci

ty
 (m

/s)

 

0

5

10

0 45 90 135 180

Initial rotation, θ  (degrees)

Re
bo

un
d 

ta
n.

 v
el

oc
ity

 (m
/s)

 
(a) (b) 

-5

0

5

10

0 45 90 135 180

Initial rotation, θ  (degrees)

Re
bo

un
d 

ro
t. 

ve
lo

ci
ty

 (r
ad

/s)

 

0

0.25

0.5

0.75

1

0 45 90 135 180

Initial rotation, θ  (degrees)

Ra
tio

 o
f r

et
riv

ed
 e

ng
. t

o 
in

iti
al

 e
ng

.

 
(c) (d) 

Figure 4.10: Variation of velocities and energies versus object orientation for planar 
impact of an ellipsoid at an impact angle of 45o, Vini,hor = 10 m/s, using different impact 
models:  (a) rebound central normal velocity (m/s), (b) rebound central tangential 
velocity (m/s), (c) rebound rotational velocity (rad/s), and (d) ratio of retrieved energies 
after impact to initial energies. 

Figure 4.10c shows the rebound rotational velocities. Because of the aforementioned 

differences in tangential impulse, the Descouedres model predicts different rotational 

velocities than RBIM for stick situations (other than the continuous sliding case). In contrast, 

for the sliding range, between 130o and 170o, the values are almost the same. On average, 

Descouedres’ model predicts considerably higher rotational velocities, 6.2 rad/s, in 

comparison to RBIM, with an average of 3.4 rad/s. The results from Azzoni’s model differ 

significantly from the other two models in the continuous-sliding range, although the results 

are much closer in other ranges. Furthermore, the results from Azzoni’s model are able to 

predict exact values for centric impacts at 0o and 90o. 
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Figure 4.10d shows the ratio of retrieved kinetic energies to the initial energy for different 

models. Descouedres’ model predicts the highest retrieved energy, while Azzoni’s model 

predicts the lowest. At zero orientation, RBIM predicts that 37.5% of the energy will be 

retained, while Descouedres’ model predicts 51% retention. When sliding occurs, the results 

for the Descouedres’ and RBIM methods are close. As both models predict similar normal 

rebound behavior, the difference in energy prediction is mainly a function of their tangential 

rebound velocity. 

Figure 4.11 plots the variation of the ratio of retrieved energies to initial energy for the 

models offered by Descouedres and Azzoni. As explained earlier, in Descouedres’ model, for 

impact angles of 0o to 45o, most of the energy transfers to rotational energy when the object 

is in continuous sliding mode. This is in contrast with RBIM, where, generally, the 

translational energy is the dominant retaining energy mode. For orientation angles of 45o to 

110o, almost equal portions of energy are retained in translational and rotational energies. In 

Azzoni’s model, Figure 4.11b, translational energy is the dominant mode of retrieved energy. 

However, during the energy check situation, for an impact angle of 10o to 80o and as can be 

seen in Figure 4.11b, Azzoni scales both translational and rotational energies in order to keep 

the maximum retrieved energy equal to 0.5.  
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Figure 4.11: Variation of the ratio of retrieved energies to initial energy versus object 
orientation for planar impact of an ellipsoid at an impact angle of 45o, Vini,hor = 10 m/s, 
using different impact models:  (a) Descouedres’ model, and (b) Azzoni’s model. 
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4.4.2 Effect of RBIM parameters on object rebound parameters 

The two impact parameters, *e  and µ, have a direct effect on the restitution values. The 

impact setup of Figure 4.8 is reapplied here with the tangential velocity, Vt, equal to 10 (m/s) 

at an angle of 45o. The numerical investigation is performed twice: the first time using 

different energy CORs, with the rebound values plotted versus the friction coefficient; and 

the second time using different friction coefficients, with the variations of rebound 

parameters plotted versus energy COR. Figure 4.12 shows the plots of rebound parameters 

against friction coefficient at different constant energy CORs. Figure 4.13 provides the same 

data at different friction coefficients versus energy COR.  

Figures 4.12 and 4.13 are plotted using the average rebound values versus friction coefficient 

and energy COR. To acquire data for each point on the figures, the rock is shot 36 times 

against the rigid half space at an angle of orientation varying each time by 5o. This number of 

impacts is sufficient to produce a smooth variation of the rebound parameters. Equations 

(4.4.1) show the formulas used for calculating the average total retrieved energy and the 

average rebound normal and tangential velocities.   

180 180 180

, ,
0 0 0

, ,36 36 36

E r n r t

E r n r t

R V V
R V Vα α α= = == = =

∑ ∑ ∑
  (4.4.1) 

4.4.2.1 Rebound parameters versus friction coefficient 

Figure 4.12a plots the variation of the average normal rebound velocity versus the friction 

coefficient. At zero friction, and with * 1e = , when there is no energy dissipation, the object 

geometry effect sets the average rebound velocity equal to 4.1 m/s, resulting in Rn,ave = 0.41. 

Increasing the friction angle increases this value, and also Rn,ave, as the governing mode of 

sliding changes from continuous-sliding to sliding-stick or sliding-reverse. The figure shows 

that friction values greater than 0.7 have almost no effect on the average values. This is 

further supported by the other three graphs in Figure 4.12. As expected, *e  has a direct 

uniform effect in decreasing the average normal rebound velocity.  
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Figure 4.12b plots the variation of the average tangential rebound velocity versus the friction 

coefficient. It illustrates the minor effect of *e  on the average tangential velocity. The friction 

coefficient has a direct effect on the decrease of the average tangential velocity to a minimum 

of 5.8 m/s at µ = 0.7; however, this value stays constant after µ rises. This is due to 

assumptions in RBIM model, which is applicable to impacts with low tangential compliance. 

This means that the high values of friction coefficients can not decrease the tangential 

rebound velocity, significantly. 
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Figure 4.12: Variation of the average velocities and retrieved energies versus the friction 
coefficient for the planar impact of an ellipsoid at an impact angle of 45o, Vini,hor = 10 
m/s, using RBIM at different energy COR, *e : (a) averaged rebound normal velocity at 
the center, (b) averaged rebound tangential velocity at the center, (c) variation of the 
standard deviation of tangential rebound velocity, and (d) averaged ratio of retrieved 
total energy after impact to initial energy. 
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Figure 4.12c plots the variation of the standard deviation of tangential rebound velocity 

versus the friction coefficient. The standard deviation increases to approximately half of the 

object’s initial velocity at µ = 0.7, showing an increase in tangential velocity dispersion at 

higher friction coefficients. This effect is caused by object shape and impact orientation. The 

increase in standard deviation suggests that the friction angle increases the highest roll-out 

distance during rockfall. 

Figure 4.12d plots the variation of the ratio of retrieved energy to the initial energy versus the 

friction coefficient. Energy COR has a direct effect on this ratio, as a decrease in energy 

COR decreases the average ratio of retrieved energy to the initial energy; however, this trend 

is diminishing, as by decreasing the *e , the ratio plots parallel curves that are close together. 

The friction coefficient decreases the energy ratio, and the lowest average of retrieved energy 

occurs at around µ = 0.5 for all energy COR. 

4.4.2.2 Rebound parameters versus energy coefficient of restitution  

In Figure 4.13, the graphs are modified to depict the average velocities and energies for 

different friction coefficient versus the energy COR.  

Figure 4.13a plots the variation of the average normal rebound velocity versus the energy 

COR, *e . This figure shows the linear variation of average, Rn, versus the energy COR for all 

values of friction coefficients. A negative COR average means a higher chance of an 

immediate second impact, which occurs more frequently at lower values of µ and *e . The 

friction coefficient appears to have a minor effect on the average normal COR in contrast to 

the major influence of *e . 

Figure 4.13b plots the variation of tangential rebound velocity versus *e . This figure strongly 

shows that *e  has only a minor effect on the average tangential rebound velocity, in contrast 

to the direct effect of the friction coefficient. However, lower *e  has an indirect effect on the 

distance by changing the motion mode from impact to rolling more quickly than higher 

values of *e . 
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Figure 4.13c shows the variation of standard deviation of the average normal rebound 

velocity versus *e . An increase in both the friction coefficient and the energy COR increases 

the standard deviation considerably, with a linear trend. At a typical value of *e  = 0.5, the 

standard deviation is equal to 2.5 m/s. This value is half of the normal COR that occurs 

during a centric impact, which confirms the results indicating the dispersion of the 

distribution caused by the rock shape when there is an ellipsoid with a ratio of 2:1. 
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Figure 4.13: Variation of the average velocities and retrieved energies versus the energy 
COR, *e , for planar impact of an ellipsoid at an impact angle of 45o, Vini,hor = 10 m/s, 
using RBIM at different friction coefficients:  (a) averaged rebound normal velocity at 
the center (m/s), (b) averaged rebound tangential velocity at the center (m/s), (c) 
variation of standard deviation of normal rebound velocity (m/s), and (d) averaged ratio 
of retrieved total energies after impact to initial energies. 

Figure 4.13d shows the variation of the average ratio of retrieved energy to the initial energy 

for different friction coefficients. This graph depicts the direct effect of *e  and µ on the 



Chapter 4: Application of Rigid Body Mechanics to Rockfall Simulation  84 

 

average retrieved energy; however, this effect is not obvious for energy COR lower than 0.3 

and friction coefficients greater than 0.5. For the usual parameters used in rockfall modeling, 

*e  between 0.2 and 0.5 and µ between 0.3 and 0.7, on average, for this specific 

configuration, 35% to 50% of the energy is retrieved during a single impact. The increasing 

trend at µ = 0.75 can also be seen in Figure 4.12d due to an impact mode change in higher 

friction coefficients at some orientation angles. 

4.4.3 Effect of object geometry on rebound parameters 

Rock geometry affects the rebound velocities and energies. Both the rock shape and its 

aspect ratio, the ratio of maximum to minimum dimension, significantly affect the 

coefficients of restitution and the roll-out distances of the rock during rockfall. To investigate 

the effect of each geometry parameter, the numerical experiment in Figure 4.8 is repeated 

with impact angles, γ, of 0o and 45o. The object orientation, θ, remains as the main variable. 

The statistical parameters of 36 rock impacts against a rigid half space are presented in the 

following section. Figure 4.14 shows the geometries used in these studies. It should be 

mentioned that the objects are three-dimensional, but their impacts are essentially planar. 

These shapes are the most common geometries considered in the literature to represent the 

falling rock. 
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Figure 4.14: Geometries used for rock representation: (a) spheres transferring to 
ellipsoid used in slenderness numerical experiment, aspect ratios from 1:1 to 3:1, and (b) 
Objects used in numerical shape experiment: rectangle, ellipsoid, and superellipsoid with 
ratio 2:1. 
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4.4.3.1 Effect of rock aspect ratio (or slenderness) on rebound values 

Figure 4.14a shows rock geometry modeled as an ellipsoid with aspect ratios of 1:1 to 3:1. 

Objects with aspect ratios higher than 3:1 are not of interest here, since more slender rocks 

tend to break on impact and for high slenderness ratios the source of energy dissipation is by 

wave propagation which is not captured by RBIM.  

Figure 4.15a shows the variation of the average, maximum, and standard deviation results for 

the impact of ellipsoids at an angle, γ, of 45o with different aspect ratios. For an aspect ratio 

of 1.0, i.e., circular impact, the normal rebound velocity is constant and equal to 5.0 m/s 

which results in a value of Rn = 0.5. As the aspect ratio increases, the average of the values of 

the normal rebound velocity decreases significantly, along with a rapid increase in the 

standard deviation. The maximum normal velocity increases to 7.0 m/s at a ratio of 2.0 and 

stays constant, which results in an increase of 40% in the maximum rebound velocity. The 

large increase in the standard deviation indicates that the normal rebound velocities disperse 

due to an increase in the aspect ratio of the ellipsoid. 

Figure 4.15b plots the restitution parameters for tangential rebound velocity. The average 

tangential velocity decreases slightly to its minimum of 6.3 m/s at an aspect ratio of 2.0, a 

12% decrease in comparison to the value at the ratio of 1.0. In contrast, the maximum 

rebound velocity increases to 10.9 m/s at an aspect ratio of 3.0, an increase of 52% from the 

aspect ratio of 1.0, while the standard deviation increases to 3.43 from zero. These results 

suggest that the stop-point distribution for rockfalls caused by slender rocks should be more 

scattered than rockfalls caused by spherical rocks, while the average roll-out distance for 

single impact does not change significantly. 

Figure 4.15c plots the restitution parameters for the ratio of kinetic rebound energy to initial 

energy versus the aspect ratio. It shows that the average retrieved energies remain 

approximately constant with a range of variation from 0.46 to 0.50. As a result of the 

presence of tangential velocity, the maximum retrieved energy grows considerably, to 83% 

of the initial energy, demonstrating that rockfall modeling based on spherical rock geometry 

underestimates the possibility of high impact energy retention during a fall. This might result 

in significantly greater roll-out distances. Figure 4.15c also shows that the standard deviation 
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increases to 25% of the initial impact energy, suggesting a scattered distribution of the 

rebound energy for slender ellipsoids. 
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Figure 4.15: Variation of the average velocities and retrieved energies versus aspect 
ratio for planar impact of an ellipsoid at an impact angle of 45o, Vini,hor = 10 m/s, 
(average, maximum, and standard deviation values): (a) rebound normal velocity (m/s), 
(b) rebound tangential velocity (m/s), (c) ratio of total energy retrieved to initial energy, 
and (d) ratio of retrieved rotational energy to initial total energy. 

Figure 4.15d plots the restitution parameters for the ratio of retrieved rotational energy to 

initial energy versus the aspect ratio. The average ratio of the retrieved rotational energy 

increases from 10% at an aspect ratio of 1.0 to 14% at a ratio of 3.0. This slight increase 

occurs despite the fast growth of the maximums, from 10% to 37% at the same ratios, 

respectively, due to the slenderness of the rock.  
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4.4.3.2 Effect of rock shape on rebound values – 0o impact angle 

The object rebound velocities depend on the mass distribution around the contact point. As a 

result, it is expected that different rebound velocities will be derived for different shapes at 

different orientations. In this section the rebound parameters of four different geometrical 

shapes are investigated as resulting from the numerical test, described in Figure 4.8. In this 

test, the impact angle, γ, is equal to 0, resulting from Vini,hor having a value of 0. The 

investigated objects are: an ellipsoid, a superellipsoid power 4, a superellipsoid power 10, 

and prism with a rectangular cross section, with cross sections as shown in Figure 4.14b. 

Here, superellipsoids with powers 4 and 10 are referred to as ellipsoid-n, where n shows the 

object’s power, as shown in Equation (4.4.2) and in the object’s local coordinate system. The 

prism is sometimes referred as a rectangular section, or simply rectangle. The geometrical 

properties of the objects used here are presented in Chapter 5. 

( , ) 1 0n n nF x y x y z= + + − =  (4.4.2) 

Figure 4.16a shows the variation of the normal rebound velocities versus the impact 

orientation. For ellipsoidal objects, the normal rebound velocity varies between 1.1 and 5.0 

m/s, resulting in a normal coefficient of restitution, Rn, between 0.11 and 0.50. For 

rectangular objects, the domain of variation of the normal COR is even wider, due to the 

corner impact effect, which can result in a negative normal COR with the values as low as     

-0.38. The COR is negative when the object impacts the surface at a corner adjacent to the 

longer side having a low angle with respect to the surface. In this case, the object has a 

tendency to experience a second impact. This effect highlights the importance of corner 

modeling for polygonal objects, identified by some researchers like Giani et al. (2004) and 

Azzoni et al. (1995) as having an important influence on rockfall trajectories. The normal 

velocity for superellipsoid-4 varies between 0.09 and 5.0 m/s, resulting in Rn values between 

0.09 and 0.50. Superellipsoid-10 can result in a normal velocity as low as -1.9 m/s. Both 

these values and the shapes of the variations show that superellipsoids are suitable 

representatives of rectangular objects; however, the results show that higher powers produce 

improved results for this representation. 
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Figure 4.16b plots the variation of tangential rebound velocities versus object initial 

orientation, θ. For ellipsoids, although the incoming tangential velocity is zero, the variation 

of the tangential COR is highly nonlinear, ranging from -5.6 to 5.6. Even without any initial 

tangential or rotational velocity the object may be thrown to either side. For rectangular 

objects, in addition to the features described above, there are sharp variations at impact 

angles near 0o and 90o, reflecting the sensitivity of the rebound to the impact angle. Similar to 

normal velocity variations, both superellipsoids have ranges of variation between those of the 

other shapes considered. Similar to rectangles, superellipsoid behavior changes rapidly near 

0o and 90o orientation angles.  

Figure 4.16c shows the rebound rotational velocities for ellipsoids which vary between 

approximately -4.1 and 4.1 rad/s, where the shape of variation is similar to the variation of 

the rebound tangential velocity. Rectangular rocks have a greater range of variability in 

comparison with ellipsoidal rocks, from -4.6 to 4.6 rad/s, because of the larger impact vectors 

which outweigh the effect of the object’s higher radius of gyration. The variation of 

superellipsoids tends to be a stretched variation of an ellipsoid close to the variation of a 

rectangular object. Discontinuities are seen around the orientation angles of 0o and 90o for 

prisms and superellipsoids. 

Fig. 4.15d depicts the ratios of retrieved kinetic and rotational energies after impact, to the 

initial kinetic energy for different geometrical objects. The lowest retained energy is equal to 
2
*e  which is 25% of the initial kinetic energy, occurring at the centric impact, at angles of 0o 

and 90o. For ellipsoidal objects, this value increases to 44% at an angle of 30o, while for 

rectangular objects, the highest value, 63% of the initial energy, occurs at an angle close to 

zero. This value is almost 2.5 times the minimum value of 25%. The results show that, due to 

the geometrical impact setup, ratios of retrieved energy higher than 2
*e  are observed. These 

results conflict with the common belief in lumped-mass models that 2
*e  is highest value of 

retrieved energy, in the case of zero-tangential velocity. This may be also due to the expected 

dissipations of additional energy due to frictional forces. It is also expected that further 

energy dissipation occurs due to frictional forces. The maximum ratio of retrieved energy for 
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superellipsoids-4 and -10 are 50% and 58% of the initial energy, respectively. The average 

retrieved energy is almost the same for all three objects between the values of 34% to 36%. 
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Figure 4.16: Variation of the rebound parameters versus object orientation for rocks 
with different geometries (shown in 4.14b) and with the configurations of Figure 4.8 
with an impact angle of 0o (Vini,hor = 0): (a) rebound normal velocity, (b) rebound 
tangential velocity, (c) rebound rotational velocity, and (d) ratio of retrieved total and 
rotational energies to initial energy. 

Fig. 4.15d also plots the ratio of the energy transferred into rotational energy mode to the 

initial kinetic energy versus orientation angles. The highest value of rotational energy for 

ellipsoids occurs at an angle of 35o, and is equal to 17% of the initial energy. For the 

prismatic object, the highest value occurs at an angle of 5o, equal to 36% of the initial kinetic 

energy. The figures show that the amount of energy transferred to rotation mode is the 

highest for the rectangle.  
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Substituting spheres for these objects reduces the normal rebound velocity to a constant value 

equal to 50% of the initial velocity, with a retention of 25% of the initial energy. 

Incorporating the rock shape into the model results in an increase in retrieved energy. 

Therefore, simplifying the rock shape to spheres is not a conservative assumption, because it 

can seriously underestimate the amount of retrieved energy, which might lead to catastrophic 

rockfall events. Capturing the variation of object geometry is the main motivation for the 

introduction of the roughness angle to the models proposed by Pfeiffer et al. (1989). 

4.4.3.3 Effect of rock shape on rebound values – 45o impact angle 

Similar to the previous section, the impact of four different geometrical shapes are 

investigated as part of the numerical test described in Figure 4.8. In this study the objects are 

shot at an impact angle, γ, equal to 45o resulted from a horizontal velocity of 10 m/s, with the 

object’s initial orientation varying from 0o to 180o. Figure 4.17 plots the variation of rebound 

velocities and energies. The statistical parameters for the variations of the rebound 

parameters for the objects are presented in Table 4.4.  

Figure 4.17a shows the variation of the normal rebound velocity versus the impact 

orientation. For all four objects, the domain of variation in comparison to a 0o impact angle 

increases significantly without a change in the material property or the rock shapes. Similar 

to the rectangular section, the ellipsoids normal COR extends to negative values, causing 

immediate second impacts for initial orientations from 15o to 60o. Ellipsoidal objects have 

both the maximum and highest average of Rn, as shown in Table 4.4. However, the lowest 

normal rebound velocity, -6.2 m/s, occurs after the impact of the rectangular object. This 

value is 2.8 m/s lower than the minimum rebound velocity for ellipsoids, -3.4 m/s. 

Discontinuous variation in rebound normal velocity occurs for rectangular sections around 

impact angles of 0o and 90o. The same discontinuous variations can be also observed for 

superellipsoids; however, higher order superellipsoids capture this behavior closer to 

rectangular sections. 

Figure 4.17b depicts the variation of the tangential rebound velocity versus the impact 

orientation. No negative Rt is observed. However, for this impact angle the range of variation 

for tangential COR becomes wider when compared to an impact angle of 0o. Rt for the 
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rectangular objects, varies from 0.1 to 1.01 and from 0.11 to 1.06 for the ellipsoidal objects. 

These values show a COR larger than 1.0, which cannot be explained by lumped-mass 

models. On average, the rectangular section has the highest tangential COR, as shown in 

Table 4.4. Again, the variations for tangential velocity for superellipsoids are between the 

variations of the other two objects. 
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Figure 4.17: Variation of the rebound parameters versus object orientation for rocks 
with different geometries (shown in Figure 4.14b), with the configurations of Figure 4.8 
at an impact angle of 45o and Vini,hor =10 m/s: (a) rebound normal velocity, (b) rebound 
tangential velocity, (c) rebound rotational velocity, and (d) ratio of the retrieved total and 
rotational energies to initial energy. 

Figure 4.17c plots the variation of rebound rotational velocity versus the orientation. Other 

than the highly nonlinear variations around the 0o and 90o impact angles, the four objects 

have the same trend of variation between initial orientations of 0o and 135o. The negative 
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rotational velocity occurs between impact angles of 135o and 180o; again, this behavior can 

neither be predicted nor modeled by lumped-mass models and constant COR. The ellipsoid 

has both the highest rotational velocity and the highest average, as shown in Table 4.4. 

Figure 4.17d shows the ratios of retrieved energies and the energy transferred to rotational 

mode to initial energy for the different objects versus initial orientation. The rectangular 

object experiences the second impact at an initial orientation angle of 5o. In this impact angle, 

up to 79% of the initial energy may be retrieved with 30% of the kinetic energy being 

rotational energy. In this scenario, 77% of the initial energy can be retrieved in the ellipsoidal 

object and 29% of the initial energy can transfer to rotational energy. These values for 

superellipsoid-10 are 77% and 34%, respectively.  These values demonstrate that corner 

abrasion can completely change the rebound energy values. On average, rectangular sections 

have the highest retrieved energy.  

In order for these comparisons to be complete, multiple impacts must be studied to 

investigate whether or not the object can depart from the contact surface after the first 

impact. This investigation is performed in Chapter 6. 

Table 4.4: Statistical data for COR, rebound rotational velocity, and the ratio of retrieved energy to 
initial energy for different rocks, corresponding to Figure 4.17 

Ellipsoidal Superellipsoidal 
power 4 

Superellipsoidal 
power 10 

Prismatic with 
rectangular cross 

section  

mean max min mean max min mean max min mean max min 
Rn 0.25 0.70 -.34 0.24 .068 -.41 0.22 0.68 -.53 0.18 0.68 -.62 
Rt 0.62 1.06 0.11 0.64 1.00 0.12 0.64 1.00 0.12 0.67 1.01 0.10 
ω, Rot. vel. 3.5 7.7 -2.7 3.0 7.1 -3.7 2.7 6.5 -4.5 2.5 0.60 -4.6 
Ratio         
retrieved 
eng.* 

0.46 0.77 0.10 0.46 0.75 0.10 0.48 0.77 0.10 0.50 0.79 0.10 

Eng. ratio        
transferred 
to rot. eng. 

0.11 0.29 0.00 0.13 0.34 0.00 0.13 0.34 0.00 0.13 0.30 0.00 

*As the impact configuration does not change, the total energy is equal to the kinetic energy 
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4.4.4 Effect of impact angle on rebound parameters 

To define the effect of the impact angle on the restitution parameters, the numerical 

experiment described by Figure 4.8 is repeated, and this time the impact angle, γ, is the 

resulting variable. Therefore, the horizontal impact velocity, Vint,hor varies from 0 to 30 m/s 

resulting in the variation of impact angle between 0o and 72o. For every impact angle, the 

average rebound velocities and energy ratios are calculated and plotted versus impact angle, 

as shown in Figure 4.18. The ellipsoid aspect ratio is kept constant at 2:1. 

Figure 4.18a shows the variation of the average, maximum, and standard deviation for 

normal COR resulting from the impact of an ellipsoid at varying impact angles, using the 

same configuration as described in Figure 4.8. Figure 4.18a shows a slight decrease in the 

average normal rebound velocity, despite the dramatic increase in the standard deviation. The 

standard deviation is greater than the mean values of normal rebound velocity, showing a 

highly dispersed distribution for higher impact angles. Also, the maximum value of the 

normal COR increases rapidly versus the impact angle. 

Figure 4.18b shows the variation of the average, maximum, and standard deviation for 

tangential COR versus the impact angle. This figure shows an increase in the average of 

tangential COR in higher angles; here it increases from 0.56 to 0.78 units. This increase is 

mainly due to a change in the sliding process in the tangential direction, from a sliding-stick 

mode to a continuous-sliding mode, occurring at higher impact angles. At lower impact 

angles due to energy transfer from the normal direction, the maximum velocity is 

considerably higher than the value of normal velocity prior to impact. 

Figure 4.18c depicts the variation of the average ratio of retrieved rotational energy 

parameters to initial energy versus the impact angle. As this figure shows, the ratio of energy 

transferred to rotational energy increases until the peak value at an impact angle of 56o. After 

this point, the average retrieved rotational energy decreases to approximately the initial value 

at 0o impact angle. This trend of variation also occurs for the maximum and the standard 

deviation of the rotational energy.  
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Figure 4.18d plots the variation of the average ratio of retrieved restitution energy parameters 

to initial energy versus the impact angle. It shows that the average ratio of retrieved energy to 

initial energy increases versus the impact angle. This figure shows that at impact angles 

greater than 50o, on average, 50% of the initial energy can be retrieved. High impact angles 

usually occur during the impact of a rock with highly inclined slope surfaces. Furthermore, 

such angles may occur during the impact of rocks on horizontal surfaces when the normal 

contact velocity is dissipated and the motion of the rock is a combination of small jumps and 

rolling-sliding. In this case the rocks may travel a long distance, much further than the pure 

rolling-sliding case. 
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Figure 4.18: Variation of the average rebound parameters versus impact angle for planar 
impact of an ellipsoid at Vini,hor = var. (form 0 to 30 m/s): (a) ratio of rebound normal 
velocity to initial normal velocity, (b) ratio of rebound tangential velocity to initial 
tangential velocity, (c) ratio of total retrieved energy to initial energy, and (d) ratio of 
retrieved rotational energy to initial rotational energy. 
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4.5 APPLICATION OF RIGID BODY ROLLING IN 
ROCKFALL SIMULATION 

When the contact normal velocity approaches zero, the object stays in contact with the 

surface. In this case the rock undergoes a complex rolling-sliding motion that is totally 

dependent on the geometry of the rock, the slope angle, and the contact material properties. 

Therefore, it is very rare to see an object experience pure rolling or sliding; the mode of 

motion is usually a combination of rolling, sliding, and small jumps.  

Hybrid dimensionless rockfall simulators such as Pfeiffer et al. (1989), Stevens (1998), 

Guzzeti et al. (2002) usually ignore the rolling mode and merely consider sliding. 

Descouedres et al. (1987) suggested solving the simultaneous equations of motion for rolling 

at each time step. Azzoni et al. (1995) solved the rigid body equations of rolling motion for 

two-dimensional circular disks undergoing pure rolling, deriving simplified closed-form 

equations as a function of distance. They extended these simplified equations for more 

complicated shapes. 

Here, the two-dimensional equations for the rolling-sliding motion for circular and 

noncircular objects are derived from the application of rigid body mechanics and the friction 

and rolling friction coefficients.  

4.5.1 Rolling for non-circular objects 

In rolling mode, an eccentric object experiences two perpendicular accelerations: normal and 

parallel to the rolling surface. Initially, assuming that pure rolling occurs at the contact point, 

the equations of motion, in the assumed framework of Figure 4.19, are written as follows: 
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where µ is Coulomb friction and µr is the rolling friction coefficient. This value has a length 

dimension and is described by Azzoni et al. (1995) and Bozzolo et al. (1988). In Equation 

(4.5.1) F and N are the surface and reaction forces of the contact, α is the angular 

acceleration, a1 and a3 are the oscillatory accelerations of the object’s center of gravity, ψ is 

inclination of the contact surface, g is the gravitational acceleration, kr is the polar radius of 

gyration, r1 and r3 are the contact vector components, and rn is the modified tangential 

contact vector in tangential direction defined in Equation (4.5.3). Simultaneously solving 

Equation (4.5.1) leads to an expression for the angular acceleration: 

3
2 2

1 3
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= −
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 (4.5.2) 

1 ˆn r rr r nµ= + ⋅  (4.5.3) 

where ˆrn  shows the direction of rotation and is equal to ω ω .  
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Figure 4.19: Rigid body object rolling in the local Cartesian framework. 

Equation (4.5.2) is only valid if certain conditions hold. First, the friction force must be large 

enough to prevent the object from sliding on the surface, expressed by: F Nµ≤ ⋅ . Second, 

the tangential contact velocity must be small enough, smaller than the tolerance level.  
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4.5.1.1 Rolling-sliding mode 

If one of the two mentioned conditions does not hold, the objects start sliding during rolling. 

During sliding, the friction force, F, is constant and is opposite to the sliding direction: 

ˆF f Nµ=  (4.5.4) 

where f̂  shows the friction force direction (or the opposite direction of slip), and can defined 

as: ˆ
t tf v v= , (when there is no slip, the direction of friction force is against the inclination). 

Replacing the fourth equation of Equations (4.5.1), with Equation (4.5.4), the rotational 

acceleration changes to: 

3
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ˆ cos cos
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µ

−
= −

+ −
 (4.5.5) 

4.5.2 Rolling for circular objects 

For circular disks or spheres the normal acceleration of the object center, a3, in Equation 

(4.5.1), is equal to zero; therefore there is no oscillation in the normal local direction. As a 

result, the angular momentum of a spherical object using Equation (4.5.2) and substituting 

the value of 2 22 5rk R= , reduces to: 

2ˆ ˆ5 2( ) cosr rf R n g Rα µ µ ψ= − −  (4.5.6) 

A sphere undergoing sliding has an angular acceleration equal to: 

2ˆ5 7 ( sin cos )r rR n g Rα ψ ψ µ= − +  (4.5.7) 
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4.5.3 Rigid body toppling 

Any polygonal object in side contact with the surface, whether stationary or sliding, may 

experience toppling. According to Equation (4.5.2), toppling happens when the rotational 

acceleration α, is greater than zero. This causes the object to rotate on one of the contact 

corners. In other words, toppling occurs when the direction of the gravity vector passes the 

corner. Referring to Figure 4.20, toppling takes place if either of β1 or β2 is smaller than the 

inclination of the slope.  Considering β1, this can be expressed by: 

1
1 1 3tan ( ) toppling occursr rβ ψ−= < ⇒  (4.5.8) 
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ω
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Figure 4.20: Object vulnerable to toppling around corner. 

4.6 SUMMARY 

• In the application of RBIM, offered by Stronge (1994), it is shown that by using RBIM, 

the rebound velocities can be calculated explicitly in a two-dimensional analyses, 

reducing computational cost to the lowest possible level, which is not significantly higher 

than that of lumped-mass models. When the contact configurations are defined, the 

rebound velocities can be calculated for any geometrical object. 

• It is shown that an object’s coefficients of restitution are strongly affected by its geometry 

and configuration at the instant of impact.  
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• Several parameters other than the impact model affect the coefficients of restitution 

including: rock slenderness, impact angle, impact orientation, and material parameters 

(friction coefficient, µ, and energy COR, *e ). These make field investigation of the rock 

shape, slope geometry, and rock-slope material parameters a vital step in the estimation 

of mitigation distances. Infrastructure might be in the safe zone for the fall of spherical 

rock but in the danger zone for an ellipsoidal rock. 

• It is the author’s opinion that rigid body impact mechanics should eventually replace the 

existing particle models currently used in most rockfall simulations. 
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CHAPTER  5 

GEOMETRICAL ROCKFALL SIMULATION: GeoRFS 

 

5.1 INTRODUCTION: ROCKFALL SIMULATIONS IN THE 
LITERATURE 

Understanding the rockfall phenomenon involves investigating two main mechanisms: 

triggering and post-failure. Historically, researchers have pursued only one of these 

directions at one time. The current work studies the post-failure procedures which predict the 

rock trajectory during a fall from the detachment point on the slope. Guzzetti et al. (2002) 

described different rockfall models developed in the last three decades, and based on the 

impact model, categorized the models in three main groups: lumped mass, hybrid, and rigid 

body, as described in Table 5.1. In addition to the impact model, which was addressed in the 

last chapter, two additional assumptions affect modeling and computation cost: model 

dimensions, and the availability of probabilistic analyses. Table 5.1 illustrates that, due to 

dramatic computational cost, hardly any of the rockfall programs address all the important 

characteristics of rockfall simulation simultaneously. This means that there is no three-

dimensional rigid body probabilistic model. Any computer simulation program incorporating 

all these aspects loses the ability to be run as a routine engineering application, its execution 

will be limited to the powerful supercomputers in research labs. 
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Lumped mass or stereomechanical models benefit from high computational efficiency but 

suffer significantly from a loss of accuracy. These models consider the impact point as a 

result of the intersection of the freefall parabola with the impact surface. The impact model is 

simplified by applying only two coefficients of restitution, one in each normal and tangential 

direction. Accordingly, the rolling phase is simplified to a sliding phase. Lumped-mass 

models are widely used in two and three-dimensional rockfall analyses. Approximately, 40% 

of the existing rockfall models are of this type; however, as these models do not incorporate 

rock shape, they are outside the scope of this study. 

To improve the lumped mass models, hybrid models, which utilize simplified mathematical 

impact models for calculating the rebound velocities, were developed by Bozzolo et al. 

(1982). The contact search procedure for these models is similar to the lumped-mass models. 

These models can incorporate some aspects of the rigid body impact models, including: rock 

shape effect, rotational velocity, and energy loss mechanisms. Both the lumped-mass and 

hybrid models perform their intensive calculations, due to the presence of repetitive 

probabilistic analyses, in a highly cost-effective manner. 

Table 5.1: Different computer simulation models for rockfalls categorized based on their main 
characteristics, after Guzzetti et al. (2002) 

Year Author(s) Program name Dimensions Approach Probabilistic 

1976 Piteau and Clayton Computer Rockfall Model 2-D Lumped-mass Partly 
1982-86 Bozzolo and Pamini SASS-MASSI 2-D Hybrid Yes 
1985 Bassato et al. Rotolamento Salto Massi 2-D Lumped-mass No 
1987 Descouedres and Zimmermann Eboul 3-D Rigid body No 
1989-91 Pfeiffer and Bowen 

Pfeiffer et al. 
CRSP 2-D Hybrid Yes 

1990 Kobayashi et al. - 2-D Rigid body No 
1991-95 Azzoni et al. CADAMA 2-D Hybrid Yes 
1991 Scioldo Rotomap 3-D Lumped-mass No 
1998 Stevens RocFall ver. 4.0 2-D Hybrid Yes 
1999 Paronuzzi and Artini Mobyrock 2-D Lumped-mass Yes 
2000 Jones et al. CRSP 4.0 2-D Hybrid Yes 
2002 Guzzetti et al. STONE 3-D Lumped-mass Yes 
This work Ashayer and Curran GeoRFS 2-D Rigid body Yes * 
* Probabilistic analysis is achieved in the research version of RocFall® 
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Introducing the third dimension into the two-dimension rockfall simulation will increase the 

system’s degrees of freedom from three to six, making the contact search computation cost 

prohibitive. Consequently only a small fraction of commercial software tools are three-

dimensional, although, the general trend seems to indicate an increase in such applications.  

In rockfall modeling, the rock initial position and its motion characteristics are not known. 

As a result, any successful model should consider probabilistic analysis to compensate for 

these unknown values in the following stages: initial rock position and orientation, initial 

translational and rotational velocities, rock shape and geometry, and slope geometry and 

material. A more precise look at these variations and their applicability to rockfall modeling 

are considered in Chapters 4 and 6. 

Bozzolo et al. (1982-86) proposed the first hybrid model SASS in which the contact search 

process is based on the parabola-line intersection and the impact model considers the impact 

of an ellipse with the impact surface. Later, they proposed a modified version of their 

simulation, MASSI, which finds the geometry-surface contact point. However, the rolling in 

MASSI utilizes simplified assumptions, causing the simulation to be considered a hybrid 

model. Azzoni et al. (1995) later developed their impact model, a specific mathematical 

model discussed in detail in Chapter 4. 

Pfeiffer et al. (1989) proposed the most well-known and widely-used rockfall model, CRSP, 

adopted in other simulations such as Stevens (1998) and Jones et al. (2000). The most 

important limitation of this model is the simplicity of the rock shape geometry, which is 

considered to be circular, and the lack of proper definition for the tangential coefficient of 

restitution. Defining this coefficient of restitution for geometrical objects is not applicable in 

Pfeiffer’s model because the size of the circle is shrunk to a dimensionless circular object. 

This model is briefly studied in Chapter 4, in comparison to other rigid body models. This 

model and its implementations can entirely incorporate probabilistic analysis, and may be 

applied in three-dimensional space. 

Kobayashi (1990) proposed a two-dimensional rigid body model, limited to circular rock 

geometry, where the deployed impact constitutive model is a modified version of the impact 
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model developed by Bozzolo et al. (1986). In this model, it is assumed that the components 

of the reactive forces are proportional to the tangential and perpendicular trajectories of the 

velocity in reference to the contact surface. In rolling mode, the simulation determines the 

velocities and accelerations of a rock at the end of a segment when the rolling ends. The 

rolling constitutive model consists of three coefficients: viscosity, friction, and rolling 

friction, where the viscous resistance is proportional to the velocity of the rock and is higher 

at higher velocities, and the rolling friction is constant and dependent on the slope material. 

Azzoni et al. (1995) proposed a two-dimensional hybrid model for ellipsoidal rock shapes 

where the impact model is a modified version of the model offered by Bozzolo et al. (1986). 

This model is thoroughly investigated in Chapter 4, with comparison to other impact models. 

The contact search algorithm in this model is based on parabola-line intersection and the 

applied rolling model is based on the pure rolling of a circular object where no sliding 

occurs.  

Descouedres and Zimmermann (1987) offered a three-dimensional rigid body model where 

the rock geometry may be considered either ellipsoidal or polygonal for both the impact and 

the rolling modes of motion. A detailed study on the kinetic impact model is presented in 

Chapter 4, where it is compared to the other models. In addition, the closed-form equations 

are derived for two-dimensional space, while in three dimensions the iterative solution is 

needed. This model is the most sophisticated rigid body model offered in rockfall literature; 

however, the proposed simulation does not support probabilistic analyses and does not 

properly consider the tangential impact sliding modes. 

5.1.1 Hybrid versus geometrical modeling 

In this work, it is necessary to justify the application of rigid body models, versus the 

application of hybrid models, as the contact search procedures in rigid body models are much 

more computationally intensive. On the other hand, it is practical to pursue the other hybrid 

models and, based on the improved impact model, RBIM, create another hybrid simulation 

model. Hybrid models are far more efficient than rigid body models due to their 

straightforward contact search procedure in contrast to rigid body models which need the 
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exact contact point and the object position at the time of contact. The hybrid model users 

might argue that because there are a lot of uncertainties in rockfall simulations, such as rock 

dimensions, initial rock configurations, or slope material prosperities, any additional attempts 

to find precise contact configurations are unwarranted.  

5.1.1.1 Conventional hybrid models  

To underline some deficiencies involved in hybrid modeling, a numerical investigation is 

proposed in Figure 5.1a, which shows the typical contact search method used in most hybrid 

models. This test tries to highlight the errors involved in the calculation of the impact angle. 

It should be noted that, incorporating the rebound situation in addition to the incoming 

situation doubles the amount of error involved in the calculations. For the ellipse shown in 

Figure 5.1a, the following assumptions are made: Vin,hor = 0, ω0 = 5 (rad/s), a:b = 2 , θ0 = 

90o, and Vini,ver is variable. These values illustrate a typical impact configuration when the 

rock initial orientation is vertical. 

Figure 5.1b plots the variation of the ellipse impact orientation angle versus the size of the 

ellipse major axis, a, at variable impact normal velocities. This figure shows that the object is 

subjected to extensive over-rotation between two situations: the orientation angle at the time 

of intersection and the orientation at the time of the imaginary intersection of the trajectory 

parabola and the impact surface. The figure shows that at normal velocities lower than 5 m/s, 

with the size of boulder equal to 1 m, an over-rotation of 45o might occur.  In the previous 

chapter, Figure 4.8, it was demonstrated that a variation in the object orientation, for example 

from an angle of 0 to 45o, may change the normal coefficient of restitution from 0.5 to -0.27 

and the tangential coefficient from 0.5 to 1.03. Meanwhile, the retrieved energy varies from 

38% to 77%, a 103% increase, demonstrating that the contact situation entirely changes to a 

new contact configuration. 
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Figure 5.1: Hybrid contact search methods: (a) parabola-surface contact search method 
surface, and (b) error involved in estimation of the object orientation at contact for 
hybrid model. 

Spherical objects are the only shapes for which the rebound parameters are not affected by 

their orientation at the time of impact. Therefore introducing a hybrid model for spherical 

rocks is reasonable if the rock geometry is similar to spherical shapes, which is not always 

correct. 

5.1.1.2 Circumscribing hybrid models 

In order to improve the proposed hybrid contact search method, a modified version of the 

model, which is called single-circle circumscribing hybrid model (SCCHM), is offered. This 

improvement is due to the high computational efficiency of the circle-line contact search 

procedure. In this method the object is circumscribed by a circle. The contact point between 

the circle and the imaginary line is considered to be the impact contact point, as shown in 

Figure 5.2a. Therefore, the object orientation at the time of contact is different from the 

actual impact orientation.  

This procedure still suffers from over-rotation. To demonstrate the highest possible over-

rotation, an ellipse with the major and minor axes of a and b is dropped at an initial 

orientation of 0o, an initial normal velocity of 1 m/s, and a is considered constant equal to 1.0 

m while b is assumed to be variable. Figure 5.2b shows the error involved in the evaluation 

of the angle of impact when the object rotates at different rotational velocities against the 
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ellipsoid aspect ratio. The amount of the over-rotation angle for higher rotational velocities is 

significant regardless of the aspect ratio of the rock. If the acceptable amount of error in the 

estimation of the orientation angle is considered to be approximately 5o to 10o, then this 

method is unacceptable due to the inaccuracy in the calculation of the impact orientation 

angle. 

a

Imaginary contact 
point

b

ω

 

0

45

90

135

180

1 1.5 2 2.5 3

Ellipse aspect ratio (a/b)Er
ro

r i
n 

or
ie

nt
at

io
n 

es
tim

at
io

n 
(d

eg
re

es
) ω  = 1.0   rad/s

ω = 3.0   rad/s

ω = 5.0   rad/s

ω = 10.0 rad/s

 
(a) (b) 

a-b

Imaginary contact 
point

a

b

ω

 

0

45

90

135

1 1.5 2 2.5 3

Ellipse aspect Ratio (a/b)Er
ro

r i
n 

or
ie

nt
at

io
n 

es
tim

at
io

n 
(d

eg
re

es
) ω  = 1.0   rad/s

ω = 3.0   rad/s

ω = 5.0   rad/s

ω = 10.0 rad/s

(c) (d) 

Figure 5.2: Hybrid contact search methods: circumscribing hybrid models: (a) Single-
circle circumscribe hybrid method (SCCHM), (b) error involved in estimation of the 
object orientation at contact, (c) double-circle circumscribing hybrid method (DCCHM), 
and (d) error involved in estimation of the object orientation at contact in double circle 
method. 

To improve the contact point search procedure, the double-circle circumscribing hybrid 

model (DCCHM) is suggested. In this method the impact position of the object is the average 

position of two circles: one circumscribing the ellipse (or any other eccentric object) and the 
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other circumscribed by the object, as shown in Figure 5.2c. The impact point is the imaginary 

contact point of the object and a line parallel with the surface. Using this method, the 

maximum amount of error reduces to half of the error of the SCCHM method, while the 

computational cost of the contact search doubles. Figure 5.2d shows the error occurring in 

the estimation of the object orientation angle using this method, in comparison with the 

actual geometry based contact search scheme. Even though the amount of error involved in 

this procedure is half of the SCCHM, it is still quite significant. 

Although the hybrid models significantly reduce the search efforts, the previous numerical 

tests show they are not suitable for noncircular rocks with a high aspect ratio. This is due to 

extensive error involved in calculating the object impact orientation, which significantly 

affects the rebound parameters. Therefore, it can be said that the suggested model precision 

would be as low as if choosing the impact rebound parameters randomly. 

5.2 METHODOLOGY FOR RIGID BODY ROCKFALL 
SIMULATION PROGRAM: GeoRFS 

The first two-dimensional rigid body rockfall model was offered by Bozzolo et al. in the 

1982. These rigid body models were later adopted and developed by some other researchers 

including: Descouedres et al. (1987), Kobayashi et al. (1990), and Azzoni et al. (1995). The 

present simulation, GeoRFS, follows some of the conventions made by Bozzolo; however, it 

is capable of implementing the former rigid body impact models in addition to RBIM for a 

wide range of rock shapes, as will be shown in Section 5.4.9. In the following sections, the 

primary assumptions made by the GeoRFS model are presented. 

5.2.1 Basic assumptions 

Rock fracturing and deformation: Most of the existing models, including Bozzolo et al. 

(1986), Azzoni et al. (1995), and Descouedres et al. (1986) ignore rock fragmentation, as 

they consider ignoring this factor to be more conservative for energy calculation. This 
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research accepts this reasoning and assumes that neither fragmentation nor extensive 

deformation occurs in the rock during the collision.  

Multiple-rock impact: The GeoRFS model does not take into account the impact of the falling 

rock with the other rocks. However, there is no theoretical limitation in the consideration of 

the impact of a group of different rock geometries in the application of rigid body impact 

mechanics. It is likely that the lack of data for constructing such a model in addition to the 

different complications of implementation cause the modelers to ignore the modeling of 

multiple rocks. 

 
Figure 5.3: Choosing two-dimensional slope profile from three-dimensional topography, 
after Bozzolo et al. (1986) and Azzoni et al. (1995). 

Two-dimensional model: The movement of the falling rock is constrained to two-dimensional 

space, reducing the system degrees of freedom to three: two translational and one rotational 

on an axis perpendicular to the plane passing through the object center of gravity. Figure 5.3 

shows the two possible two-dimensional slopes selected from a real three-dimensional slope. 

It is the user’s task to decompose and test the most hazardous planes from the slope 

topography, like the Π2 and Π2’ planes in Figure 5.3. There are many successful reports 

concerning the combination of two and three-dimensional simulations such as Giani et al. 

(2004). These show that a simplified three-dimensional method may define the most critical 

planes and a more sophisticated two-dimensional model can analyze the planar rockfall. 
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5.2.2 Slope decomposition 

The slope topographic profile, shown in Figure 5.3, is idealized as a series of rigid segments 

intersecting at nodes, depicted in Figure 5.4a. To take the uncertainties in the slope geometry 

once the polyline is introduced into account, each definite segment may rotate around its 

midpoint at an angle derived from a distribution defined by the user, depicted in Figure 5.4b. 

The new slope is then created by trimming the rotated segments. In this model, barriers can 

be defined in the geometry by introducing multiple line segments with limited or indefinite 

energy capacity. Figure 5.4 shows the slope numbering and the altered slope due to the 

rotation of the segments.  
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Figure 5.4: Slope modeling in GeoRFS: (a) slope made of straight rigid segments with 
node and segment numbering, and (b) segment rotation around middle point representing 
the uncertainties in geometrical modeling of slope. 

5.2.2.1 Slope roughness 

The slope roughness parameter was originally introduced by Pfeiffer et al. (1989) to consider 

the local variation in the impact angle due to the slope unevenness with respect to the scale of 

the rock diameter. This parameter was later adopted by other researchers (Stevens (1998) and 

Jones et al. (2000)).  

Slope roughness parameter was introduced due to the necessity of having an appropriate 

statistical distribution representing the variation in the slope geometry. In contrast to lumped-

mass models, as shown in Chapter 4, many parameters perturb the rebound values in rigid 

body models, including: impact angle, the rock geometry, and the impact orientation. In 
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Chapter 6, it will be shown that, without introducing the slope roughness to the model, 

spherical objects do not exhibit the correct roll-out distribution. The slope roughness in rigid 

body modeling can be introduced by altering the slope inclination in the beginning of each 

simulation as explained in Figure 5.4b. 

5.2.3 Model rock geometries 

It is shown in Chapter 4 that rock geometry dramatically affects rebound velocities and 

energies. The computer model GeoRFS allows the user to choose the appropriate rock 

geometry from a list of a wide range of available shapes. Not only may a rock shape be 

randomly chosen from a seeder consisting of several shapes but also its dimensions can be 

specified using a statistical distribution. The provided geometries can be divided into two 

major groups: polygonal (prismatic) or ellipsoidal (ellipse-extended). There is also the option 

of choosing either two- or three-dimensional objects; however, the three-dimensional objects 

are restrained to move in a plane even though they have three dimensional geometrical 

properties.  

The ellipsoidal objects are derived from the three-dimensional superellipsoids general 

formula, described in Equation (5.2.1), where the center is located at { }0 0 0, , Tx y z  in the 

Cartesian coordinate system. Figure 5.6a shows the available three-dimensional shapes using 

values for the ellipsoid power, n, equal to 1, 2, 3, and 4 in Equation (5.2.1). This figure shows 

that these shapes are suitable for the three-dimensional representation of rocks.  

0 0 0( , , ) 1 0
n n nx x y y z zF x y z

a b c
− − −

= + + − =               (5.2.1) 

The general two-dimensional formula is derived by eliminating the z term from Equation 

(5.2.1). Similar shapes, for different values of n, are plotted in Figure 5.5b. Two-dimensional 

objects are considered to have a third dimension, a thickness t, required for energy 

calculation, shown in Figure 5.5c. In the special case of n = 2 and a = b = r, the ellipsoid 

reduces to a circle, as shown in Figure 5.5d. In two-dimensional space, the superellipsoids 

are called superellipses, shown in Figure 5.5e. The regular polygonal objects are defined by 
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introducing side dimensions, while the irregular ones are defined by setting nodal local 

coordinates, shown in Figures 5.5c and 5.5f, respectively. As shown in Equation (5.2.1), the 

ellipsoid geometry approaches a rectangular shape for higher values of n. 
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Figure 5.5: Rock shape representation in the GeoRFS simulation: (a) 3-D ellipsoids 
defined by Equation (5.2.1) for different values of n, after mathworld.com, (b) 2-D 
superellipse with different values of n, (c) prismatic 2-D objects with thickness, t and 
side number, s in addition to ellipse-extended shape, (d) circular cross section with 
radius r, (e) relative presentation of the rectangle, ellipse, and superellipse, and (f)          
n-sided polygonal section of prismatic object with the nodes P1 to Pn. 

Table 5.2 shows the geometrical properties for different two- and three-dimensional objects. 

In the application of rigid body mechanics, to define the rebound velocities, in addition to the 

contact vector, the polar radius of gyration, kr, is needed. The geometrical properties of 

superellipsoids are calculated using the closed-form equations offered by Jakliéc (2000).  
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In Figure 5.5f, an arbitrary polygon is demonstrated. This could be defined in the simulation 

by defining the nodal points in the local coordinate system. The mechanical properties are 

presented in Table 5.2. 

Table 5.2: List of provided geometrical shapes in GeoRFS and the mechanical properties of motion 

 2D 3D 
Geometrical 
shape 

 Cross sectional area 
(A) 

Polar radius of 
gyration (kr) 

Volume (V) Polar radius of 
gyration (kr) 

Circular 
(Spherical) πr2 2r  4/3πr3 2 5r  

Ellipsoid πab 2 2 2a b+  4/3πabc 2 2( ) 5a b+  

Superellipsoid-3 3.5338ab 2 2 1.8797a b+  5.6966abc 2 2 2.0077a b+  

Superellipsoid-4 3.7081ab 2 2 1.8220a b+  6.4558abc 2 2 1.9060a b+  

Superellipsoid-10 3.9424ab 2 2 1.7530a b+  7.6752abc 2 2 1.7721a b+  

Rectangular-
(Cubic) 4ab 2 2 3a b+  8abc 2 2 3a b+  

Prismatic 
1

1 1
0

( ) 2
n

i i i i
i

x y x y
−

+ +
=

−∑  a I A  b Same as 2D Same as 2D 

a xi and yi are the nodal coordinates, and n is the total number of nodes 
b I is the polar moment of inertia of the polygonal cross section of the prismatic object. Considering 
the polygonal cross section of the Figure 5.5f and nP  as the nodal vector in the local coordinate 
system, the polar moment of inertia is derived based on Equation (5.2.2): 

( )2 2
1 1 1 1

1

1
1
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N
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n n
n
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I

P P

+ + + +
=

+
=

× + ⋅ +
=

×

∑

∑
 (5.2.2) 

5.2.4 Domain of analysis 

The classical models, as a combination of one or several particles, use Newton’s classical 

laws for defining motion. To define the interaction of particles, these models are divided into 

two major groups: event-driven methods (EDMs) and time-driven methods (TDMs), as 

described by Peters et al. (2002). In EDMs the situation of the particles is updated when a 

“collision” event occurs, and between these events the object moves based on the equations 
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of motion. In rockfall studies, this method is widely used in lumped-mass and hybrid models. 

The TDMs are used when the dynamic system is a combination of several particles or when 

the time of the event is smaller than the real time of the collisions. The latter condition occurs 

in geometrical modeling of the rockfall during the rolling phase. In this mode the object is in 

continuous contact with the surface, resulting in continuous variation of the contact forces 

and, consequently, in velocities and accelerations for non-circular objects.  

In the GeoRFS model, time domain analysis is chosen instead of event based analysis. In the 

literature, the only rockfall rigid body model which applies a similar TDM, is the model 

offered by Descouedres et al. (1987). To make the model efficient and reduce the 

computation cost, an efficient optimization method which incorporates some aspects of 

EDMs is used. This optimization method is explained in Section 5.3.2.  

5.2.5 Modes of motion 

A detached rock, either from a cliff or from a loose spot, may acquire the following modes of 

motion: freefall, impact, rolling, and sliding until it finally reaches the equilibrium state 

called arrest. Other than freefall, the rock-surface contact is usually a combination of impact, 

rolling, and sliding modes. Rolling and sliding usually occur simultaneously, while pure 

sliding occurs after side contact of the polygonal objects where the rock may not experience 

toppling. Pure rolling may also occur during rolling on the slopes with a low inclination 

angle, or when the friction coefficient is relatively high. In impact mode, the object may 

experience sliding at the contact point, while a circular object may experience spin without 

any translational motion. Numerically, there are only two modes of motion: freefall and 

contact. Figure 5.6 shows the different modes of motion as the following: 

• Freefall 

• Contact 

o Impact (combined with sliding, rolling, and stick)  

o Rolling-sliding or low normal contact velocity 

o Arrest or low contact velocity  
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In freefall mode the object moves freely based on the gravitational force. If a falling rock 

contacts a surface with a velocity greater than a threshold velocity, the mode of contact is 

considered impact, otherwise the mode of motion is considered rolling. Theoretically, if an 

object’s rebound velocity is smaller than the threshold velocity it cannot separate from the 

contact surface. The magnitude of this threshold velocity may be defined by the user; 

however, in time-domain analyses, it has a minimum value based on time step which will be 

discussed in the following sections. 

  
(a) (b) 

  
(c) (d) 

Figure 5.6: Different modes of motion: (a) freefall, (b) contact: impact, (c) contact: 
rolling-sliding, and (d) contact: arrest. 

5.2.6 Mechanical models of contact 

Rigid body impact mechanics (RBIM) offered by Stronge (1994a) is adopted here for 

modeling the impact mode in GeoRFS program. However, GeoRFS is designed in such a way 

that most of the well known rockfall impact models can be implemented in its structure. 

Already, the impact models offered by Descouedres et al. (1986) and Azzoni et al. (1995) are 

implemented in the GeoRFS simulation for research purposes. The Kobayashi (1990) impact 
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model is also implemented in this simulation for spherical, cylindrical, and discoidal rock 

shapes. Moreover, rigid body rolling is utilized for rolling mode, as described in Section 4.5.  

5.3 CONTACT SEARCH PROCEDURE 

Contact search procedures are needed to accurately identify the rock-surface contact point. 

Any error involved in defining the contact time or the object impact configuration affects the 

rebound velocity calculation and consequently the rock trajectory. In contrast, spending 

excessive computational efforts on contact search procedure is not practical in probabilistic 

rockfall simulation. This is because it is necessary to throw hundreds of rocks from any 

single location to determine the statistical distribution for rebound parameters. As the 

rebound velocities are defined explicitly in two-dimensional problems, the computational 

efforts needed to calculate rebound velocities are much lower than the efforts needed for 

contact search procedures. In this simulation, the rock-slope contact search reduces to the 

repetition of the rock-segment contact search. To establish a robust and efficient contact 

search algorithm, the following steps are suggested: circumscribing, optimization, and an 

object-line contact search. 

5.3.1 Contact search optimization 

In a single rockfall scenario, with a rigid slope, there is only one object having variable 

coordinates. However in a probabilistic analysis, the whole geometry can be reset at the 

beginning of each run. As a result, a combination of two optimization procedures is 

suggested for this simulation: timestep refinement and the griding method.  

5.3.1.1 Circumscribing 

The contact search procedure for circles has the least computation cost among all other 

geometries. Ellipses and rectangles have the next lowest computational cost. As a result, it is 

common in contact mechanics to surround the complicated objects with either circles or 

rectangles. Uniform objects, like superellipses, are appropriate to be surrounded by both of 
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these shapes, while it is practical to circumscribe polygons only by circles. These 

conventions are followed in this simulation, as shown in Figure 5.7a. 

θ

Contact point

Unit circle

Contact point
in local Co.

Tranformation

Back transformation

P1 2P

P1

P2

Impact surface

(x  , y )0 0

 
(a) (b) 

Figure 5.7: (a) Body-based circular and rectangular cells, and (b) geometric 
transformation contact search method. 

5.3.1.2 Dynamic timestep refinement 

Timestep refinement, or splitting the current timestep to n equal fractions, is used prior to 

impact in the simulation procedure. This is performed, when the current timestep is greater 

than the critical timestep. Usually, the discretization number, nfraction, is a natural positive 

value between 10 and 100. 

5.3.2 Object-segment contact search procedure 

An object may contact a segment either at a corner or within a line segment. However, if an 

object contacts a segment with its nodes, the contact type is considered to be a corner contact. 

In this simulation, the contact search procedure is based on the geometrical transformation 

method, (GTM), introduced by Ting (1990), as shown in Figure 5.7b. This method was 

originally developed for ellipse based contact search procedures for application in discrete 

element modeling, but here it is generalized for superellipses and polygons. 
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5.3.2.1 Step 1 – constructing local coordinate system 

In GTM, the contact search procedure is performed in the unit object’s local coordinate 

system. It is necessary to transfer the slope geometry to this local coordinate system which is 

located at the object’s center of gravity. In the unit object’s coordinate system, the ellipse is 

represented by a circle, while higher order superellipse simplify to a unit superellipse given 

in explicit form in Equation (5.3.1). Consequently, rectangles reduce to unit squares while 

randomly generated polygons keep their size. 

( , ) 1 0n nF x y x y= + − =  (5.3.1) 

 

5.3.2.2 Step 2 – geometry transformation 

The slope geometry transformation is achieved by transferring the slope nodal points to the 

object’s local coordinate system. Using the transformation matrices of rotation, scaling, and 

translation (in Hill (2001)), TR, TS, and TT ; any definite point, P, in the global coordinate 

system will be translated to point P′  in the object’s local coordinate system by the following 

successive matrix productions: ( ) ( ) ( )0 01 ,1 ,S R TP T a b T T x y Pθ′ = − − − . The details of these 

matrices are presented in Equation (5.3.2): 

0

0 0 0

0 0 cos( ) sin( ) 0 1 0
( , ) 0 0 ( ) sin( ) cos( ) 0 ( , ) 0 1

0 0 1 0 0 1 0 0 1
S R T

a x
T a b b T T x y y

θ θ
θ θ θ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5.3.2) 

where θ is the object orientation, a and b are the object major and minor axes, and x0 and y0 

are the object’s center. It should be noted that by applying the geometric transformation any 

straight line remains a straight line.  

5.3.2.3 Object-segment contact 

Originally, for the search procedure, the penetration of the object points into the slope 

segments was checked. For example, for polygonal objects, the penetration of nodal points 

into the slope surface was tested. However, it was observed that when the contact event is 
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based on the penetration of the nodal points into the segment, sometimes, an incorrect contact 

event might be found. This occurs when two adjacent segments form a small angle. As a 

result, all the contact search methods, except when they are applied to circles, are based on 

the intersection of the slope segment and another segment which connects the object’s center 

and some potential contact points as demonstrated in Figure 5.8. The procedures of deriving 

the potential points are explained in the following. Using this procedure is more 

computationally expensive than checking the nodal penetration; however, the new procedure 

can resolve the ambiguity of contact search procedures. 

Potential contact
points

1

2 Slope segment

The line connect 
the center and potential line

 

Figure 5.8: The contact search procedure based on the intersection of the slope segment 
and the lines connecting the object’s center and the potential contact points. 

After transferring the segment nodal points into the object local coordinate system, each 

geometrical shape has its own unique contact search procedure:  

Circle (ellipse) - segment: The contact point is: ˆc centerP P R n= − ⋅ , where Pc is the contact 

point, Pcenter is the object center coordinate, here the origin, and R is the radius of circle, here 

a unit value, and n̂  is line normal vector.  

Superellipse - segment: For superellipses the potential contact points are defined based on the 

common normal vector between the superellipse and the slope segment, as shown in Figure 

5.9a. Defining xc and yc by Equation (5.3.3), the potential contact points can be derived as: 

(xc, yc) and (-xc, -yc). One of these two potential contact points can be the object-segment 

contact point as demonstrated in Figure 5.8. 
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( ) ( )
1 2

1 1
2 1 1 2

( ) ( )

1 1
c cn n n nn n
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= =
+ +

             (5.3.3) 

In the above equation 1 2ˆ ( , )n n n=  is the contact (segment) normal vector.  

yn = (n ,n )x
 

n = (n ,n )yx
 n = (n ,n )yx  

(a) (b) (c) 
Figure 5.9: Object segment contact points in the object’s local coordinate system: (a) 
Superellipse-segment contact point, (b) polygon-segment contact, and (c) polygon-
segment side contact when two contact points exist. 

Polygon - segment: A polygon may contact a segment in two different ways: side contact or 

corner contact. Figure 5.9b shows the polygon-segment corner contact which occurs when a 

corner penetrates into a segment. In Figure 5.9c a polygon is contacting a segment on a side, 

which occurs with the penetration of two nodes into a segment. In this case an object contacts 

a surface at a relatively low angle; however, this situation occurs rarely, especially using the 

time refinement procedure. For the sake of completion, the option of side contact in the case 

of one corner contact when the side has a low angle is also provided, Figure 5.10a.   

5.3.2.4 Object-corner contact 

There are a lot of difficulties in finding the object-corner contact point and calculating the 

normal vector. Actual slopes do not have sharp corners, usually there is a gradual variation 

from one surface inclination to another. Defining a curvilinear approximation, instead of 

using sharp corners, results in smoother variation in the rebound parameters; however, this is 

not defined in this simulation as it is less conservative and, besides, it is computationally 

more expensive. 

Corner contact occurs for the ellipsoidal group of shapes, shown in Figure 5.10b, when one 

of the segment nodes lays inside the object, which results in ( , ) 0c cF x y < , where F is the 
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function defined by Equation (5.3.1). In this case, the contact normal vector for superellipses 

is the object gradient vector, ( )ˆ ,c cn F x y= ∇ , where ( , )c c cP x y=  is the corner coordinate.  

Figure 5.10c depicts corner contact for polygonal shapes in flat side contact and simple 

corner contact situations. The normal vector is always perpendicular to polygon side.  

α n = (n ,n )x y

 

n n n

 
(a) (b) (c) 

Figure 5.10: (a) Polygon side contact happening at low angle of impact, (b) object-
corner contact for superellipses, (c) object-corner contact for polygons. 

5.3.2.5 Back transformation 

The local contact point will be transferred back to the global coordinate system using reverse 

transformations, by an opposite succession of matrix multiplications: 

( ) ( ) ( )0 0, ,S R TP T a b T T x y Pθ ′= . The transformation matrices (TS, TR, TT) are defined by 

Equations (5.3.2) and a, b, θ, x0, and y0 are defined in Section 5.3.2.2.  

5.4 MISCELLANEOUS SIMULATION ASSUMPTIONS 

In the following sections some miscellaneous assumptions performed in GeoRFS are 

reviewed. 

5.4.1 Time domain formulation 

A suitable time domain integration method is needed to integrate the differential equations of 

motion. In the rolling-sliding mode, the object is in continuous contact with the surface and 

the acceleration vector varies continuously. Using trapezoidal time integration makes the 
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calculation stable, permits having a larger time step, and prevents the object from 

increasingly penetrating into the surface, following the impenetrability condition more 

rigorously. By deriving the translational and rotational acceleration from the equation of 

motion, the velocities and translations can be defined using Equation (5.4.1). 

( )
( )

( )
( )

2 2 2 2

2

2
2 2 2 2 2

/ 2

/ 2

/ 4
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+∆ +∆ ∆
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= + ∆ +

= + ∆ +

= + ∆ + ∆ +

= + ∆ + ∆ +

  (5.4.1) 

where i = 1, 3 refers to the perpendicular axes in the Cartesian coordinate system, vi and ω are 

translational and rotational velocities, ai and α are translational and rotational accelerations, 

xi is the object’s position, θ is the orientation angle, and ∆ t is the timestep. The superscript, t, 

refers to the time step at which the integration is being performed. 

Unlike discrete or continuum models, in rigid body impact mechanics, the collision occurs in 

infinitesimal time. As a result the collision time is considered zero and the rebound velocities 

are calculated explicitly. Freefall motion is modeled using a simplified version of Equation 

(5.4.1). 

5.4.2 Multiple contacts manipulation 

There are situations when an object collides with the impact surface at more than one contact 

point, as shown in Figure 5.11a; however, this does not commonly occur, as the time step in 

which the impact occurs is small and the impact configurations are not usually symmetric. In 

contrast, the impact of a rolling or sliding object with another surface occurs regularly, as 

shown in Figure 5.11b. Since the utilized impact models are developed for a single impact 

point, some ad-hoc rules are invented which can manipulate multiple contacts. The two 

common cases are: an object having multiple impacts, and a rolling object impacting a 

second surface. 
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Figure 5.11: Multiple contact points in one time step: (a) multiple impact points, and (b) 
one rolling contact point and one impact contact point. 

5.4.2.1 Multiple contacts: all impact modes 

Figure 5.11a shows a rock impacting a contact surface at two impact points; here two 

corners. Since in real rock surface modeling this scenario is not very realistic, as the rock 

always hits one corner earlier, the simulation randomly chooses one of the contact points as 

the target contact point. 

5.4.2.2 Multiple contacts: rolling with impact 

Figure 5.11b plots the impact of a rock which was originally rolling on a rigid half surface. 

By convention, the effective mode of contact in this case is the impact mode, since the rock 

is in equilibrium during the rolling period. As a result, the rebound velocities are calculated 

based on the impact contact point(s).  

5.4.3 Defining contact mode: impact mode versus rolling-sliding mode 

When the contact normal velocity, vc,n , approaches zero, the contact mode transfers from 

impact to the rolling-sliding mode. Numerically, defining a threshold velocity, defined by the 

modeler, is necessary. This velocity can be: 

, , rolling-sliding mode initiatesc n roll trv v< ⇒               (5.4.2) 

where vroll,tr is the rolling threshold velocity and is recommended to be chosen between 0.1 to 

0.5 m/s. 
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5.4.4 Overlap treatment in impact mode 

In this simulation, a contact occurs when an object intersects a surface, as shown in Figure 

5.9. In other words, in addition to the contact point, some parts of the object penetrate into 

the impact surface. In low normal contact rebound velocities, the contact may not be 

terminated by the rebound velocities, thus the object stays in contact with the surface. In this 

case, the normal velocity is also greater than the rolling threshold velocity required to enter 

the rolling mode. This situation occurs when: 

( ),ˆ ˆ ˆ ˆc nv n g n t⋅ < ⋅ ⋅ ∆  (5.4.3) 

where vc,n is the contact normal velocity, n̂  is the contact normal vector, ĝ  is the gravity 

vector, and ∆t is the timestep. To eliminate the overlap numerical problem, the object is 

moved in a direction opposite to the contact normal vector. Assuming the timestep is very 

small, the energy violation, as a result of an increase in potential energy, can usually be 

ignored. 

5.4.5 Critical timestep criteria 

In discrete or explicit computational methods, the stability of the model is based on the 

timestep, and the solution produced by the governing equations will remain stable only if the 

timestep does not exceed a critical timestep, which is related to the minimum natural 

frequency of the total system. In contrast, the stability in the simulation proposed in this work 

is independent of the timestep as the equations defining the rebound velocities are time-

independent and are a function of the contact impulse. However, the timestep affects the 

accuracy by perturbing the accurate contact position; consequently, a larger timestep leads to 

unsatisfactory rock trajectory prediction. 

In this work, it is important to define the timestep accurately. Hence, the object-surface 

overlap or penetration should be decreased to a definite critical value. This overlap depends 

on several parameters, including: the maximum rock dimension, the translational and 

rotational velocities of the rock, and the slope complexity. The maximum timestep, ∆tmax, for 
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an object, with maximum dimension, Dmax, and translational and rotational velocities equal to 

V and ω, is suggested to be: 

max
max fractions

dfnD
t f n

V r
β
ω

∆ =
+

 (5.4.4) 

where βdfn is the diameter fraction number which results in the maximum acceptable overlap, 

suggested to be 100, resulting in a maximum overlap equal to 1% of the diameter; nfractions is 

the number of secondary timestep refinements; and f is the safety factor, usually between 0.7 

and 0.8 as also recommended in PFC2D manual. 

5.4.6 Arrest (termination) criteria 

The arrest terminology was originally used by Descouedres et al. (1987) to indicate a 

termination or stop in the rockfall simulation where the rock shape allows a stable static 

equilibrium. This state of equilibrium can be reached only for polygonal objects when an 

object has the ability of resting on one edge, in contrast to ellipsoidal objects where the arrest 

mode always occurs with oscillation around the contact point. In rigid body modeling, the 

sources of energy dissipation are: plastic deformation at the impact point which is integrated 

in the energy COR, *e ; frictional dissipation which results from the opposing force during 

sliding; frictional dissipation in rolling-sliding mode; and the rolling-friction dissipation 

resulting from the eccentricity of the normal contact force. Hybrid models like CRSP® or 

RocFall® identify the stop point based on a low velocity criterion in sliding mode, which is 

defined by users. 

In this work, arrest is used to indicate that the object has lost a considerable portion of its 

energy, definable by the modeler, while kinetically the object can not accelerate. This state 

depends on the object’s geometry, its translational and rotational velocities, the inclination of 

the contacted surface, and the contact material frictional properties. The model must arrest 

the moving object accurately, otherwise the object is terminated in the model while, in 

reality, it can roll out significantly further. The arrest usually occurs during rolling-sliding 

mode, as a result, mathematically, the arrest criteria can be written as follows: 
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 (5.4.5) 

where Vt and Vn are the tangential and normal object velocities, kr is the polar radius of 

gyration, ω is the rotational velocity, Varrest is the threshold cut-off velocity, suggested to be 

between 0.5 to 1.0 m/s (also recommended by Stevens (1998)); α is the angular rotational 

velocity defined in Section 4.1; γ slope is the slope inclination; and µ is the contact friction 

coefficient.  

5.4.7 Modeling pseudo-code 

A simplified version of the pseudo-code, applied in the GeoRFS simulator, is presented in 

Table 5.3. This pseudo-code is based on the time-driven methodology and traces the rock 

trajectory from the creation instance to the arrest. 

Table 5.3: The simulation pseudo-code applied in the GeoRFS engine  

generate a rock and a slope based on the settings and the statistical distribution  
  define the optimum time step 
  iterate through timestep  
    iterate through walls and barriers 
      perform contact search 
        create a contact object with the configurations  
          create the local coordinate system, vectors and trajectories 
          set contact mode (impact, rolling) 
          randomly generate the material property from the statistical distribution 
    add the contact to the contact list 
    treat contacts penetrations  
    loop over contacts and choose the effective contact 
    compute rigid body rebound velocities 
    map velocities and accelerations back to global coordinate system 
    roll or move the object    
  check truncation (arrest) 
stop 
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5.4.8 Programming language used  

The simulation program GeoRFS is written using the C++ language in Visual Studio .NET 

2003®, using Object Oriented Programming (OOP) techniques. The graphical user interface 

(GUI) is designed using .NET Form Menu facilities. A series of windows set the rock initial 

parameters and the simulation initial settings. As an example, the sample window for 

superellipse properties is shown in Figure 5.12a. Each rock shape is given a unique window. 

The output picture-box plots the rock geometry, which results from the path of the rock, in 

addition to the slope trajectory, which is read from an input file. The rebound velocities and 

energies are shown in an output text-box. This is useful in order to check the energy and 

velocity values after certain impacts. Figure 5.12b shows the trajectory of a rock and the 

different rock energies. 

  
(a) (b) 

Figure 5.12: GeoRFS graphical user interface (GUI): (a) typical input menu for a 
superellipsoid, and (b) typical output window showing the impact of the rock with a 
typical slope. 

5.4.9 UML diagram of the simulation implementation 

Objects in the real world share two characteristics: state and behavior. In OOP, the classes 

are the main unit of programming, describing a set of objects with common attributes, 

operations, semantics, associations, and interactions. As a result, an object, as an instance of 

a class, contains both the attributes and operations representing state and behavior. Using 
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objects in a program may provide a lot of facilities including: encapsulation, data hiding, 

inheritance, code reuse, plug-ability, debugging ease, and polymorphism (Deitel et al. 

(2001)).  

In order to show the classes and their interactions in GeoRFS, a powerful diagrammatic tool 

called the Unified Modeling Language (UML) is used. These models represent the main 

classes and the interactions among them (Bennett (2002) and Peters (2002)), as shown in 

Figure 5.13. As the classes in the model are complicated and contain many attributes and 

operations, only the class names are presented here.  

 

Inheritance
Aggregation

Association

Figure 5.13: UML representation of the main simulation classes used in GeoRFS in 
addition to the class relationship legend. 

The most important classes included in this simulation are: CObject, CWall, CContact, and 

CSolution. In CObject, the main attributes and methods for all of the objects are provided. 

All the geometries, used as rock representations, are inherited from this main class. CLine is 

the class which defines the geometries of a segment and is a parent class to CWall, which 

defines the slope segments with the material behavior. A CContact object instantiates when 

an object intersects with a wall or a wall corner. At this time, two pointers are introduced 

pointing to the intersecting objects, with the CContact object borrowing the contact 

CPoint CNode CObject

CDisk CEllipsoid CSuperellipsiod CRectangular CPolygon

CPoint CLine CWall

CContact
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CStrong CDescoudres CAzzoni …
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characteristics from these objects. Different impact models can be associated with the 

CContact by introducing them as definite classes. Here, the three impact models introduced 

in Chapter 4 (Stronge (1994a), Descouedres (1987), Azzoni (1995)) are defined as three 

different classes. CSolution performs the interactions and message transfers between the 

classes in addition to other essential operations including: contact search, arrest check, 

contact mode setting, overlap manipulation, and defining the local coordinate system and 

vectors.  

5.5 IMPLEMENTATION OF GeoRFS IN RocFall® RESEARCH 
VERSION 

The Object-Oriented engine of GeoRFS is implemented, with the author’s help in both the 

implementation and debugging stages, in the research version of RocFall® by Rocscience®. 

RocFall® benefits from a robust OOP design in addition to a redesigned graphical user 

interface. The new interface provides several facilities including: easy geometry definition, 

either by a drawing tool or by data entry; various probabilistic seeder definitions; 

straightforward barrier and data collector design tools; robust probabilistic material 

definition; sophisticated probabilistic rock shape editor; descriptive animation control boxes; 

and powerful output data graphs and charts in addition to the output data files. Figure 5.14 

shows the RocFall® graphical user interface while modeling a highway passing through a 

mountainous area.  
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Figure 5.14: The RocFall® research version graphical user interface simulating a 
highway slope. 

Three different input menus in RocFall®, directly affected by the GeoRFS and its geometrical 

innovations, are reviewed in the following sections. These key windows are: seeder property, 

material property, and rock geometry editor. 

5.5.1 Seeder Properties Window 

In the Seeder Properties Window, in addition to the location, the user has control over several 

parameters. The properties which complete the features of GeoRFS are: probabilistic 

distribution for the initial vertical, horizontal, and rotational velocities; and probabilistic 

distribution for the rock initial orientation, as shown in Figure 5.15. Moreover, this window 

enables the user to choose the rock geometries. In the project settings, it is also possible to 

choose the number of random rock generations either per rock geometry or per a collection 

of different rocks. By using the mentioned facilities, the study of rockfalls of either a single 

rock shape or as a collection of different rock geometries becomes feasible. Such studies are 

performed in Chapter 6. 
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Figure 5.15: The seeder property window in RocFall® research version. 

5.5.2 Material Property Window 

In the Material Properties Window, multiple material tabs are provided which enable the 

introduction of several materials to the model, this is shown in Figure 5.16. For each material 

type, there are several list boxes which allow the definition of a statistical distribution model 

for the different properties. For each distribution, the mean, standard deviation, and relative 

maximum and minimum are definable based on the distribution type. 

 

Figure 5.16: The Material Property Window in RocFall® research version. 

5.5.3 Rock Shape Editor Window 

The Shape Editor Window, as shown in Figure 5.17, provides the ability to edit the rock 

geometry that is specified for a seeder. The following shape categories may be chosen in this 

window: circular, ellipsoidal, superellipsoidal, uniform polygonal and random polygonal. 

The major and minor dimensions of these shapes, using different distribution models, must 
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be defined. In addition, superellipsoids’ power and the number of sides for polygons can be 

set. The variation of rock mass density can usually be ignored when compared to other 

variables; therefore it is considered constant, and not adjustable by the application. 

 

Figure 5.17: The shape editor window in RocFall® research version showing the 
superellipse case. 

There is a feature which allows random polygon generation, requiring two initial settings: 

first, the total mass of the rock, and second, rock side numbers. Based on these two 

characteristics, the simulation produces a convex polygonal rock with definable thickness 

and with the specified mass and side numbers. 

5.6 SUMMARY 

• In this Chapter, a computer program, GeoRFS, which can successfully simulate rockfall 

phenomenon is described. This program is based on rigid body mechanics (RBIM). 

• The modeling of complicated rock geometries in GeoRFS is limited mainly by the ability 

to find the point of contact of the falling rock with the slope. 

• Although RBIM is the primary impact model used in GeoRFS, the other impact models 

by Descouedres et al. (1987) and Azzoni (1995) are also implemented in the program. 

• The geometric transformation contact search procedure in GeoRFS demonstrated a robust 

performance in defining the contact points. 
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• Despite the fact that only simple optimization procedures were used in GeoRFS, running 

time of the application was quite satisfactory for use in practical engineering applications. 

This is in contrast to Discrete Element Modeling (DEM) programs, which are 

dramatically slower. 
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CHAPTER  6 

RIGID BODY IMPACT MECHANICS IN ROCKFALL 
ANALYSIS: APPLICATION AND VERIFICATION 

6.1 INTRODUCTION 

In this chapter the application of rigid body impact mechanics (RBIM) to rockfall analysis is 

investigated. Both the GeoRFS and RocFall® research version simulations are used based on 

the facilities provided in their output data manipulations. The RocFall® research version is 

highly sophisticated in that it uses probabilistic analysis to provide different charts and 

figures, while GeoRFS uses deterministic analysis to provide easy output data files. Using 

these simulation programs, the effects of multiple impacts on rebound parameters and the 

object trajectory for rocks with different geometries on horizontal and inclined surfaces are 

investigated. These rebound parameters can be listed as: roll-out distances, height of 

bounces, retrieved energies, and rotational and translational velocities. The field observations 

provided by Pierson et al. (2001) (Oregon Department of Transportation (ODOT)) are 

modeled using RocFall® research version and rebound parameters are compared with the 

simulation output data.  
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6.2 EFFECT OF ROCK GEOMETRY ON MULTIPLE 
IMPACTS 

In Chapter 4, the rebound parameters of a single impact of a rock with a rigid half space were 

studied. In this section, the time parameter is added into the analysis, providing the 

possibility of studying the effects of multiple impacts of a rock on energy dissipation, roll-out 

distance, and bounce height. Formerly, it was shown that in addition to the material 

properties, the rock shape, impact angle, and the mass distribution around the contact point 

have a dramatic effect on the rebound energies and velocities. These studies must be 

extended with additional studies which investigate the effect of the mentioned properties on 

the rebound parameters during multiple impacts.  

In the literature, it is common to model complicated slopes. Researchers are accustomed to 

comparing the model output results with field observations without attempting to address the 

effect of rock geometries or impact configurations on the model results. In this work, several 

numerical experiments are executed in order to investigate the effect of these parameters on 

the rock trajectories through multiple impacts. The experiments are performed ordered from 

the simpler tests to more complicated situations, based on the number of impacts, slope 

inclination, the material properties, and the rock slenderness. 

6.2.1 Equivalent object convention 

Objects which have equal cross sectional area or volume (weight) are assumed to be 

equivalent. All of the numerical investigations which follow are performed on the rebound 

parameters of a group of equivalent objects. In this work, all the rock geometries with 

different aspect ratios have the same volume as a sphere with radius of 1 m. These 

dimensions are illustrated in Table 6.1. 
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         Table 6.1: The dimensions for different equivalent geometrical shapes 

 Ellipsoid power 2 Ellipsoid power 4 Prism with a rectangular 
cross section 

Ratio a b a b a b 
1:1 1 1 0.866 0.866 0.806 0.806 
1.2:1 1.129 0.941 0.978 0.815 0.910 0.758 
1.5:1 1.310 0.874 1.134 0.756 1.056 0.704 
2:1 1.587 0.794 1.374 0.687 1.279 0.640 
3:1 2.080 0.693 1.801 0.600 1.677 0.559 

6.2.2 Double-impact numerical test 

Numerical impact tests, as defined in Figure 6.1, are used to study the rebound parameters 

resulting from the impact of an object on horizontal and inclined rigid half spaces. For 

material parameters, in order to be consistent with the tests performed in Chapter 4, *e  is 

chosen to be 0.5 and the friction coefficient is chosen to be tan (30o) = 0.58. These values 

represent typical material properties for rock impact. The tests are run under gravitational 

forces, therefore the rock initial position is important in the final results. As a result, the rock 

center is located at a vertical distance of 3.0 m from the surface and is projected at a vertical 

velocity of -10 m/s, while the tangential velocity is variable, equal to either 0 or 10 m/s.  

In Chapter 4, it was shown that the object orientation and impact angle strongly affects the 

rebound parameters. As shown in Figure 4.9, the definitions of low, intermediate, and high 

impact angles are not only a function of the ratio of tangential to normal contact velocities 

but also a function of variation of rock mass distribution around the contact point, or initial 

orientation. For dimensionless objects, the rock orientation does not affect the rebound 

velocities, while in geometrical modeling it can dramatically change the rebound velocities; 

therefore, we focus our attention to the rock orientation on the contact as the main variable. 

For all the results, kinetic energy is replaced with total energy. The object velocities at the 

contact point during different orientations are variable, and therefore the kinetic energies are 

also variable. As a result, to compare energies during successive impacts, total energies are 

used instead of kinetic energies. 
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Figure 6.1: Double impact of different geometrical objects on a rigid half space at 
different orientations with Vini,ver = -10 m/s located at a vertical distance equal to 3.0 m 
on: (a) horizontal plane, and (b) inclined plane, here 15o and 30o. 

It should be mentioned that in this chapter a rectangle means a prism with a rectangular cross 

section and ellipsoid-2 and superellipsoid-4 means an ellipsoid with power 2 or 4 with the 

closed-form Equation (5.2.1). 

6.2.2.1 Double impacts on a horizontal plane – 0o impact 

Figure 6.2 plots the variation of the rebound parameters versus initial orientation with the 

initial settings of Figure 6.1a for ellipsoidal objects with powers of 2 and 4 and a prismatic 

object with a rectangular cross section. All these objects have an aspect ratio of 2:1 and are 

projected with an initial horizontal velocity of zero. Therefore, all these objects have the 

same initial total energy. 

Figure 6.2a depicts the variations of the ratio of retrieved total energies to the initial total 

energy after the second impact. This figure shows that the trends of variations of the retrieved 

total energies for the three objects are approximately similar. As shown in Figure 4.16, the 

rectangular object has the highest retrieved energy after the first impact for the orientation 

angles between 0 and 25o, and 165 to 180o. However, this figure shows that after the second 

impact rectangular objects lose more energy in comparison to ellipsoidal objects. In addition, 
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it can be seen that ellipsoid-4 has the highest average ratio of retrieved energy of 0.34, while 

a rectangle has the lowest average ratio of 0.29. This is in contrast to the case of the first 

impact, where a rectangle had the highest average retrieved energy, underlining the 

importance of considering a chain of impacts rather than a single impact. 

Figure 6.2b plots the variation of the ratio of normal velocity after the second impact to the 

initial normal velocity. Ellipsoid-4 has the highest rebound velocity followed by the 

rectangle. However, on average, ellipsoid-2 has the highest average, equal to 0.29, when 

compared to the rectangle, equal to 0.25. Rectangle and ellipsoid-4 still have negative normal 

velocities at some initial orientation angles, showing the possibility of a third successive 

impact.  

Figure 6.2c plots the variation of roll-out distances for the three objects. The rectangle and 

ellipsoid-4 have a relatively small amount of roll-out distance for small and large orientation 

angles, as they experience an immediate second impact. In contrast, at these orientations, 

ellipsoid-2 experiences a large amount of roll-out distance with the values up to 3.2 m to the 

left or right. Between the orientations of 60o and 90o, the ellipsoids are moving in the positive 

direction, while the rectangular object is projected to the left (the negative direction), 

emphasizing a different trend of displacement variation for the three objects which results 

from the presence of corners in the rectangular object. Generally, the displacements 

experienced by ellipsoid-4 are between the displacements experienced by the two other 

objects. Figure 6.2c also shows that the maximum amount of roll-out distance is the same for 

all three objects, although occurring at different orientations. 

Figure 6.2d plots the maximum heights of bounces for the objects between the first and 

second impact. The maximum height for all three objects occurs when the impact is centric at 

90o. Ellipsoid-2 has the highest maximum bounce height as it has larger dimensions, as 

shown in Table 6.1; however, the rectangular cross section has the highest average, equal to 

2.06 m, in comparison to the ellipsoid-2 bounce height equal to 1.98 m. These values, in 

addition to the shape of the variations, show that the heights of the bounces have 

approximately the same trend of variation as each other, while the shape of the variation is a 

function of the objects’ geometry. 
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Figure 6.2: Variation of the rebound parameters versus object initial orientation for 
planar impact of different geometrical objects with the configuration of Figure 6.1a and 
horizontal velocity equal to zero (impact angle of 0o): (a) ratio of the retrieved total 
energy to the initial total energy after the second impact, (b) ratio of the second normal 
rebound velocity to the initial normal velocity, (c) roll-out distances of object up to the 
second impact, and (d) maximum height of bounce after the first impact. 

6.2.2.2 Double impacts on a horizontal plane – 45o impact 

Figure 6.3 plots the variation of the rebound parameters versus initial orientation for objects 

thrown at an angle of 45o. These experiments have the same configurations as the 

experiments described in Figure 6.1a. The objects used are ellipsoids with powers of 2 and 4 

and a prism with a rectangular cross section. All the objects have an aspect ratio of 2:1 where 

the dimensions are defined in Table 6.1, and are projected with the initial horizontal velocity 

equal to 10 m/s and with equal initial total energy. 
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Figure 6.3a plots the variation of the ratio of retrieved energies after the second impact to the 

initial energy for different objects. The rectangle has the highest retrieved energy among all 

objects; however, the rectangle’s maximum ratio is very close to the maximum value derived 

for ellipsoid-2. On average, ellipsoid-2 has the highest ratio of retrieved energy after the 

second impact, with the value equal to 0.35, in comparison to the rectangular section with a 

value of 0.30 after the second impact, while ellipsoid-4 has an average ratio equal to 0.33. In 

Figure 4.17, it is shown that the rectangle has the highest retrieved energy after the first 

impact; however, this figure shows that because of the second immediate impact, the 

rectangular prism loses a considerable amount of its energy.  

Figure 6.3b plots the ratio of the objects’ normal velocities after the second impact to the 

initial normal velocity. The ellipsoid-2 has the highest ratio while, on average, ellipsoid-4 has 

the highest value, equal to 0.41. The ellipsoid-4 also has an average ratio equal to 0.40 and 

the rectangle has the lowest value of 0.36. This figure shows that, for lower initial orientation 

angles, the objects’ negative normal rebound velocity changes to a positive value after the 

second impact.  

Figure 6.3c illustrates the variation of horizontal roll-out distances for the three objects. At 

low orientation angles, all three objects experience the second impact immediately after the 

first impact; therefore, they do not experience significant displacement. At medium 

orientations, from 45o to 60o, the rectangle has the highest roll-out distance and ellipsoid-2 

has the lowest. The average of the 36 orientation angles shows that the ellipsoid-4 object has 

the highest average roll-out distance, with a value of 5.6 m, while the ellipsoid-2 object has 

an average roll-out distance equal to 4.6 m. On average the rectangle rolls out 5.2 m, higher 

than the ellipsoid-2.  

Figure 6.3d depicts the maximum bounce height for objects between the first and second 

impact. The ellipsoid-2 has the maximum bounce height and the largest average bounce 

height; however, the differences between the values of bounce heights for the objects are not 

significant. Generally, the three objects have the same trend of variation, except for the 

effects of corners, which are apparent around the orientations of 0o and 90o. 
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Figure 6.3: Variation of the rebound energies and displacements versus object initial 
orientation for planar impact of different objects at the impact angle of 45o with the 
configuration of Figure 6.1: (a) ratio of the retrieved energy to the initial energy after the 
second impact, (b) ratio of the second normal rebound velocity to the initial normal 
velocity, (c) horizontal displacement of object until the second impact, and (d) maximum 
height of bounce after first impact. 

6.2.2.3 Double impacts on an inclined plane – 0o impact angle 

To produce the first examples of impacts on an inclined surface, in this section the rebound 

parameters of the double impacts of three objects are examined. These impacts use the 

objects and configurations of Figure 6.1b. The rebound parameters for these experiments are 

plotted in Figure 6.4. The horizontal velocity is set to zero and the object is shot 36 times, 

varying each time by 5o, at a surface with an inclination of 30o. All the objects have an aspect 

ratio of 2:1 and have dimensions as defined in Table 6.1.  
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Figure 6.4: Variation of the rebound energies and displacements versus object initial 
orientation for planar impacts of different objects at the impact angle of 0o (Vini,hor = 0 
m/s) at a surface with an inclination angle of 30o with the configuration of Figure 6.1b: 
(a) ratio of the retrieved energies to the initial energy after the first impact, (b) ratio of 
the retrieved energies to the initial energy after the second impact, (c) horizontal 
displacements prior to the second impact, and (d) maximum height of bounce after the 
first impact (normal distance to the plane). 

Figures 6.4a and 6.4b plot the variation of retrieved total energies versus orientation after the 

first and second impacts for different objects. The largest retrieved energies after the first and 

second impacts belong to the rectangle. On average, after the first impact, the rectangle has 

the highest ratio of retrieved energy (0.52) when compared to the ellipsoid-2 (0.50). After the 

second impact, the ellipsoid-2 has the highest ratio equal to 0.34 while the rectangle has the 

lowest ratio, equal to 0.27. This shows that the rectangle loses a considerable portion of its 

energy after the second impact, in contrast to the ellipsoid-2, which retains more of its 

energy.  
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Figure 6.4c depicts the roll-out distances prior to the second impact for the different objects 

versus initial orientation. The ellipsoid-4 has the highest roll-out distance, equal to 7.45 m, 

followed by the rectangle, equal to 7.35 m. In addition, the ellipsoid-4 has an average roll-out 

distance of 3.4 m higher than the average of 3.2 m for the rectangle and 2.6 m for the 

ellipsoid-2. 

Figure 6.4d shows the variation of maximum bounce height versus the object’s initial 

orientation after the first impact for the three tested objects. The maximum bounce height for 

ellipsoid-2 is slightly higher than the other objects; however, the average bounce heights of 

all objects are generally similar, near 2 m.  

6.2.2.4 Double impacts on an inclined plane – 45o impact 

In this section the rebound parameters for the impact of the three objects on an inclined 

surface, are investigated. The initial conditions are set according to the configuration of 

Figure 6.1b. The objects are projected 36 times with different orientations and with a 

horizontal velocity of 10 m/s, representing an impact angle of 45o. To follow the experiments 

performed in the previous chapters, the objects are chosen to be consistent with the 

definitions contained in Table 6.1 and with an aspect ratio of 2:1. Figure 6.5 illustrates the 

rebound energies and displacements occurring after two impacts versus initial orientation. 

The means, maximums, and standard deviations for the three objects are summarized in 

Table 6.2. 

Figures 6.5a and 6.5b plot the variation of the ratio of retrieved energies to the initial energy 

versus the initial orientation after the first and second impacts. As the object’s initial 

tangential velocity is not equal to zero, the energy ratios are higher for the first and second 

impacts in comparison to the values in the last section (case of 0o impact angle). Table 6.2 

shows that the averages and maximums of the ratios of the retrieved energies are higher for 

the rectangle than for the ellipsoids. 

Figure 6.5c shows the variation of roll-out distances prior to the second impact versus the 

initial orientation. The average and maximum roll-out distances for the ellipsoid-2 are higher 

than the other two objects, as indicated in Table 6.2. Considering the other cases of two 
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impact tests, performed in Section 6.2.2, the differences between the statistical values of roll-

out distance for the ellipsoid-2 and the other two objects are considerable. 

Figure 6.5d depicts the variation of bounce height versus the object’s initial orientation after 

the first impact for the three tested objects. The highest maximum bounce height occurs for 

the ellipsoid-2. This value is 16% higher than the value for rectangle. On average, the bounce 

heights for the three objects are approximately the same. 
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Figure 6.5: Variation of the rebound energies and displacements versus object initial 
orientation for a planar impact of different objects at an impact angle of 45o (Vini, hor = 10 
m/s) on a 30o inclined surface with the configuration of Figure 6.1b: (a) ratio of the 
retrieved energies to the initial energy after the first impact, (b) ratio of the retrieved 
energies to the initial energy after the second impact, (c) central horizontal displacements 
prior to the second impact, and (d) maximum height of bounce after the first impact 
(normal distance to the plane). 
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Generally, comparing the rebound parameters of ellipsoids and the prism with a rectangular 

cross section indicates that the trend of variation for the ellipsoid-4 is between the ellipsoid-2 

and the rectangle. The rectangle has the lowest energy decrease after two impacts, while the 

roll-out distances and height of bounces are the largest for the ellipsoid-2. In general, the 

rebound parameters for the three objects do not differ dramatically from each other after two 

impacts; however, the trend of variations between the objects is completely different. 

Because of the sharp corners in the rectangles, the trends of variation for these objects are 

discontinuous. A similar behavior can be observed for ellipsoid-4. It can be predicted that 

ellipsoids with higher orders, and therefore higher values of n in Equation 5.2.1, also 

experience such discontinuities. 

Table 6.2: Variation in the rebound energies and roll-out distances for rocks with variable 
orientations and different geometries on a 30o inclined surface with an initial angle of 45o 

Ellipsoid with 
power 2 

Prismatic with a 
rectangular cross 

section 

Ellipsoid with 
power 4 

 

mean max S.D. mean max S.D. mean max S.D.
Ratio of rebound total 
energy to initial energy after 
the first impact 

0.62 0.83 0.19 0.65 0.83 0.15 0.62 0.79 0.15

Ratio of rebound total 
energy to initial energy after 
the second impact 

0.31 0.64 0.26 0.32 0.73 0.25 0.33 0.70 0.22

Roll-out  distance 8.2 18.2 3.8 7.6 16.8 2.7 8.0 16.6 3.8 
Bounce height* 1.7 3.7 0.8 1.6 3.2 0.6 1.6 3.1 0.7 
* This value is measured based on the normal distance between an object center and the impact 
plane 

6.2.3 Five-impact numerical test 

It is observed that most of an object’s kinetic energy is dissipated after 4 or 5 impacts, when 

the object has a tendency to start rolling. To confirm these observations, the rebound 

parameters of different objects subjected to 5 impacts, are studied in this section. The initial 

configurations are the same as is used in the experiment described in Figure 6.1 and the 

objects are ellipsoids power 2 and 4 and a prism with a rectangular cross section. The 

numerical tests are performed using two impact angles of 0o and 45o. The variation of the 
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rebound total energies, roll-out distances, and height of bounces are studied in the following 

sections. 

6.2.3.1 5 impacts on a horizontal plane – 0o impact angle 

Figure 6.6 plots the variation of the ratio of rebound total energies to the initial total energy 

as well as the roll-out distances versus initial orientation for the three objects with zero 

horizontal velocity and the same configurations as used in Figure 6.1a. All the objects’ 

dimensions follow the convention introduced in Table 6.1 which have an aspect ratio of 2:1. 

The objects are projected 36 times on a flat surface with the energies and roll-out distances 

recorded as presented in the Figure 6.6. 

Figures 6.6a and 6.6b plot the variation of the ratio of total retrieved energies to the initial 

energy and roll-out distances versus initial object orientation for five successive impacts for 

the ellipsoid-2. This figure shows that the ellipsoid-2, when having an initial orientation 

between 60o to 70o (also between 110o and 120o), maintains a considerable portion of its 

energy after 5 impacts. Also, considering that at these initial orientation angles, the object has 

a small variation in roll-out distances after second impact, it can be concluded that the 

ellipsoid has a tendency to start rolling with a high energy. For most of the impact angles the 

ellipsoid does not loose a significant amount of energy after the forth impact, which confirms 

that the object starts to roll. This observation is supported by the variation of roll-out 

distances, showing that the object does not roll out drastically after the fourth impact.  

Figures 6.6c and 6.6d plot the variation of the ratio of total retrieved energies to initial total 

energy and the roll-out distance for five successive impacts of the prism with a rectangular 

cross section. Figure 6.6c shows that the object loses a major portion of its energy at all 

initial orientation angles with a maximum of 23% and average of 14% of the initial total 

energy. The variation of roll-out distances in Figure 6.6d illustrates that the roll-out distances 

for the fourth and fifth impacts are converging. This figure shows that for initial orientations 

from 0o to 15o, when the larger dimension of the rectangular object impacts the surface, not 

only does the object lose its energy quickly but also, because of the immediate successive 

impacts, it does not roll out considerably. This is in contrast to situations where the object 

impacts  the  surface  at  the corners,  when it is impacting at a low angle between the  surface  
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Figure 6.6: Variation of the rebound energies and roll-out distances versus object initial 
orientation occurring during five successive planar impacts of different objects (with an 
aspect ratio of 2:1) at an impact angle of 0o (Vini,hor = 0) on a horizontal surface with the 
same configuration as in Figure 6.1a: (a) retrieved energies for the ellipsoid, (b) roll-out 
distances for the ellipsoid, (c) retrieved energies for the rectangle, (d) roll-out distances 
for the rectangle, (e) retrieved energies for ellipsoid-4, and (f) roll-out distances for 
ellipsoid-4. 
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and object’s smaller side. In this case, around the orientation of 80o to 100o the object 

experiences one of the highest roll-out distances, when compared with other orientations. 

Figures 6.6e and 6.6f depict the variation of the ratio of total retrieved energies to initial total 

energy and the roll-out distance for five successive impacts of an ellipsoid-4. The highest 

retrieved energy ratio after five impacts is 23% and the average ratio is 17% of the initial 

total energy. While the maximum ratio is equal to the maximum ratio of a rectangle, but on 

average the ellipsoid-4 retains more in energy than the rectangle which retains 14% of its 

initial energy. These figures show that the trend of energy variations is similar to the 

variations for the rectangle, while the trend of variation for the roll-out distances is similar to 

the trend of an ellipsoid-2. 

When comparing the energy figures, Figures 6.6a, 6.6e, and 6.6e, after 5 impacts it can be 

seen that the ellipsoid-2 has the highest maximum and average ratio of retrieved total 

energies, equal to 0.26 and 0.17, respectively. The rectangle retains the least energy among 

the three objects.  However, for roll-out distances the order reverses. The Rectangle has the 

highest roll-out distance, equal to 8.8 m, in comparison to the ellipsoid-4 and 2 with the 

values equal to 8.3 and 7.1 m. For the ellipsoid-2 the roll-out distance will increase 

significantly undergoing the rolling mode as the object has conserved 26% of its initial 

energy. This is in contrast to the other objects which have lost a large portion of their energy. 

6.2.3.2 5 impacts on a horizontal plane – 45o impact angle 

Figure 6.7 plots the variation of the ratio of rebound total energies to the initial total energy 

and roll-out distances versus initial orientation for the three objects. These tests use a 

horizontal velocity of 10 m/s and the same configurations as used in Figure 6.1a and the 

objects are ellipsoids power 2 and 4 and a prism with a rectangular cross section. The 

dimensions of the objects are chosen based on the convention of Table 6.1 having an aspect 

ratio of 2:1. The tests are performed 36 times with different initial orientations and with 

impact occurring on a flat surface. The rebound parameters are recorded successively for the 

5 successive impacts. 
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Figure 6.7a plots the variation of the ratio of total energies to the initial energy versus initial 

object orientation for five successive impacts for an ellipsoid-2. At initial orientations around 

70o the object maintains up to 50% of its initial total energy after 5 impacts. In these initial 

orientation angles, the ellipsoid-2 does not roll out further than the distance of the third 

impact, as is shown in Figure 6.7b, indicating that it undergoes rolling after the third impact. 

After five impacts, on average, the ellipsoid-2 retains 18% of its initial energy. 

Figure 6.7b plots the variation of roll-out distances for the ellipsoid-2 versus the initial 

orientation angle for 5 successive impacts. For initial orientations between 135o to 170o the 

object hits the surface collinearly, resulting in small roll-out distances; at the same time, the 

object loses a considerable portion of its energy. At an impact angle of 130o the object 

experiences a negative roll-out distance. Negative roll-out distances can not be derived in 

lumped-mass models in a 45o impact. Figure 6.7b also indicates the presence of another type 

of impact behavior, double impact, which also is referred by Azzoni et al. (1995). This 

occurs between initial orientations of 5o and 70o where the object experiences two 

simultaneous impacts. Despite the situation when the impact is almost collinear, in this 

situation, the object significantly rolls out after the second impact. Between initial 

orientations of 70o and 125o the object bounces from the impact surface after the first impact. 

Figures 6.7c and 6.7d plot the variation of the ratio of the retrieved total energies to the initial 

total energy and roll-out distances for a rectangle. The object uniformly loses its energy at the 

end of the fifth impact with a maximum value of 22% and an average of 11% of the initial 

total energy. As the object dramatically loses a considerable portion of its energy, it does not 

roll out significantly further, and the roll-out after this point mainly occurs as sliding. The 

roll-out distances between the forth and fifth impacts are notably similar, confirming that the 

sliding process started and the object can not roll out significantly further after these number 

of impacts. The maximum value of the roll-out distance for the rectangle is 23.9 m, which is 

greater than the ellipsoid-2 value; however, in average it rolls out 10.6 m which is less than 

the value for ellipsoid-2 equal to 11.0 m. Similar to the ellipsoid-2 between 5o and 45o of the 

initial orientation angles, the impact is succeeded by a second impact and between 135 and 

175o, the impact is almost collinear, resulting in small roll-out distances. 
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Figure 6.7: Variation of the rebound energies and roll-out distances versus object initial 
orientation occurred during five successive planar impacts of different objects (with an 
aspect ratio of 2:1) at an impact angle of 45o (Vini,hor = 10 m/s) on a horizontal surface 
using the configuration of Figure 6.1a: (a) ratio of retrieved energies to initial energy for 
the ellipsoid, (b) roll-out distances for the ellipsoid, (c) ratio of retrieved energies to 
initial energy for the rectangle, (d) roll-out distances for the rectangle, (e) ratio of 
retrieved energies to initial energy for the ellipsoid-4, and (f) roll-out distances for the 
ellipsoid-4. 
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Figures 6.7c and 6.7d plot the variation of the ratio of the total retrieved energies to initial 

total energy and roll-out distances for an ellipsoid-4. Like the rectangular object, the 

ellipsoid-4 loses its initial energy independent of orientation angle after the fifth impact and 

the variation curves for the fourth and fifth impacts are similar, indicating that the object is 

transferring to rolling mode. The ellipsoid-4 object, on average, maintains 14% of its initial 

energy with a maximum of 33%. Generally, the variations of energy and roll-out curves of 

the ellipsoid-4 are between the roll-out and energy variation curves of the ellipsoid-2 and the 

rectangle, as is expected from the object’s geometry. Similar to the other two objects, when 

the ellipsoid-4 has an initial orientation between 135o and 175o, the object does not roll out 

significantly, as the first impact is centric. The ellipsoid-4 has the highest average and 

maximum roll-out distances after five impacts among the three objects equal to 11.4 and 24.3 

m. However, as, on average the ellipsoid-4 has significantly less energy than the ellipsoid-2, 

the ellipsoid-2 will eventually roll out the furthest. 

Figures 6.8a to 6.8c plot the variations of bounce heights for the ellipsoid-2, the rectangle, 

and the ellipsoid-4 using the configurations of Figure 6.1a and an initial velocity of 10 m/s. 

The maximum bounce heights for the three objects are roughly similar, equal to 4.7 m, and 

occurring after the second impact. On average, the ellipsoid-4 has the largest bounce height 

occurring after the second impact and equal to 2.5 m, while this value for the ellipsoid-2 and 

the rectangle is 2.4 m and 2.2 m, respectively, as described in Table 6.3. These values 

indicate that the rocks experience the highest bounce height after the first or second impacts. 

However, in some cases, even if the rocks experience the maximum bounce height after the 

second impact, the rock has not moved very far, as shown in Figure 6.7. These second 

immediate impacts occur when the rock initial orientations are between 0o and 45o. 

Table 6.3: The averages of height of bounces for different objects during the five impacts 

  Impact 1  Impact 2  Impact 3  Impact 4  Impact 5 Average 

Ellipsoid power 2 2.3 2.4 1.7 1.5 1.3 1.85 
Rectangular section 2.2 2.2 1.6 1.3 1.1 1.68 
Ellipsoid power 4 2.2 2.5 1.7 1.5 1.4 1.85 
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Figure 6.8: Variation of bounce height versus object initial orientation occurring during 
five successive planar impacts of different objects (with ratio of 2:1) at an impact angle 
equal to 45o (Vini,hor = 10 m/s) on a horizontal surface with the configuration as used in 
Figure 6.1a: (a) the ellipsoid-2, (b) the rectangle, and (c) the ellipsoid-4. 

6.2.3.3 Shape effect on roll-out distances on a plane with 15o of inclination – 45o impact 
angle 

Figure 6.9 plots the variation of roll-out distance and bounce heights after the fifth impact for 

the three objects with the same configurations as used in Figure 6.1b and an initial horizontal 

velocity of 10 m/s. Similar to previous sections, these objects are an ellipsoid-2, a rectangle, 

and an ellipsoid-4. The tests are performed 36 times using different initial orientations, with 

the objects hitting an inclined surface with an inclination angle of 15o. The rebound 

parameters are recorded at every 5o change of initial orientation. 
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Figure 6.9a plots the variation of the roll-out distance for the three objects after five impacts 

versus the objects’ initial orientation. This figure shows that the maximum roll-out distance 

for the rectangle and ellipsoid-4 are approximately equal to 46 m, while this value for 

ellipsoid-2 is equal to 44 m. However, on average, all objects have approximately the same 

average roll-out distance, equal to 23.0 m. It should be mentioned that these values are 

derived for only first five impacts and that their energy levels determine which object can 

displace the furthest before arrest. 

Figure 6.9b shows the envelope curves for the maximum bounce height occurring during five 

impacts for the three objects. The envelope curve is derived based on the maximum bounce 

heights after the five impacts for each initial orientation angle. The rectangle has the largest 

bounce height among the three objects; however, on average the two ellipsoidal objects 

experience a bounce height equal to 4.1 m, compared to an average of 3.3 for the rectangle. 
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Figure 6.9: Variation of the rebound parameters versus object initial orientation 
occurring during five successive planar impacts for different objects (with ratio of 2:1) at 
an impact angle of 45o (Vini,hor = 10 m/s) on a surface with 15o of inclination and the 
configuration of Figure 6.1a: (a) roll-out distances after five impacts, and (b) bounce 
height envelope curve for five impacts. 

6.2.3.4 Aspect ratio effect on roll-out distances and total energies  

To investigate the effect of an object’s aspect ratio or slenderness on the rebound velocities 

and energies after several impacts, the numerical setup applied in Figure 6.1 is utilized. In 

this test the object is projected at an initial horizontal velocity, Vini,hor = 10 m/s, which results 
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in an impact angle of 45o. The objects’ dimensions follow the convention introduced in Table 

6.1. For each aspect ratio, the rock is projected a total number of 90 times against a rigid half 

space, varying the orientation angle by 2o for each shot. To capture the variation of rebound 

parameters more accurately, especially after successive impacts, the total number of impacts 

in this test is increased from 36 to 90, and therefore the orientation intervals are decreased 

from 5o to 2o. After the fifth impact, Equation (6.2.1) is used to derive the average values of 

the roll-out distance and maximum bounce height using the 90 impact results. The variations 

are presented in Figure 6.10 for the three tested objects. In this example, a flat surface is 

preferred to an inclined surface, as the last stages of rockfall next to infrastructures usually 

occur in horizontal planes adjacent to the talus of the slopes where the rocks undergo 

multiple impacts. 

180 180

0 0

90 90

E

E

D R
D Rα α= == =

∑ ∑
  (6.2.1) 

Figure 6.10a plots the variation of the maximum roll-out distance results for the impacts of 

the three objects versus the aspect ratio in the above mentioned configurations. For aspect 

ratios smaller than 1.5, the rectangle and the ellipsoid-4 have the highest roll-out distance; 

however, for aspect ratios greater than this value, the maximums for the three objects are 

approximately equal. The maximum roll-out distance decreases for the rectangle and 

ellipsoid-4 when the aspect ratio increases. For the ellipsoid-2 the maximum roll-out distance 

occurs for the aspect ratio of 1.5. 

The variations of the average roll-out distances versus the object aspect ratio are plotted in 

Figure 6.10b for the three analyzed objects. The ellipsoid-2 has the largest average roll-out 

distance for aspect ratios smaller than 2.0. The average roll-out distance for the rectangle is 

almost independent of the aspect ratio for aspect ratios smaller than 2.0. In contrast for the 

ellipsoidal objects the average roll-out distance dramatically decreases with respect to 

increasing rock slenderness. It may be observed that for aspect ratios greater than 2.0, both 

the maximum and average roll-out distances are very similar. 
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Figure 6.10c depicts the variation of the maximum ratio of retrieved total energies to initial 

total energy versus object initial orientation after five impacts. Other than for aspect ratios 

lower than 1.3, the ellipsoid-2 has the highest maximum retrieved energies. The ellipsoid-2 

has the lowest because the impacts for ellipsoid-2 become mainly centric with a steady 

energy dissipation trend, while for the other objects, the variations of retrieved energy are 

dispersed. At an aspect ratio equal to 1.0, the ellipsoid-4 has the highest maximum retrieved 

energy, showing that corner abrasion dramatically increases energy retention ratio of 

rectangles from 0.37 to 0.57. Generally, these curves show that a rock can maintain up to 

63% of its initial energy after five successive impacts on a typical rock material surface.  
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Figure 6.10: Average and maximum rebound parameters for different objects versus 
aspect ratio after five successive impacts at an impact angle of 45o (Vini,hor = 10 m/s) on a 
horizontal surface with the configuration used in Figure 6.1a: (a) maximum roll-out 
distances, (b) average roll-out distances, (c) maximum retrieved energies, and (d) 
average retrieved energies. 
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Figure 6.10d shows the variation of the average ratio of retrieved total energies to the initial 

total energy versus aspect ratio after five impacts. On average, the ellipsoid-2 has the highest 

retrieved energy ratio with a decreasing variation trend from 0.35 to 0.18. This high energy 

ratio is very significant, as it shows that ellipsoidal rocks with low slenderness maintain their 

energy before starting the rolling phase. From Figure 6.10b, it may also be concluded that the 

ellipsoid-2 has the highest average roll-out distance. As a result, ellipsoidal rocks with a low 

aspect ratio have the highest roll-out distance value, before entering the rolling phase. The 

ratio of average retrieved energy to initial energy is almost constant for the rectangle, having 

a value of 0.12. This low ratio shows that the motion of these types of objects may be 

terminated after this number of impacts. The ellipsoid-4 has an energy retention ratio 

between the other two geometrical shapes, varying from 0.24 to 0.10. 

6.2.3.5 Effect of friction and energy COR on rebound parameters of an ellipsoid 

In order to study the effect of material parameters, *e  and µ, on successive impact rebound 

parameters, the numerical test setup of Figure 6.1a is used for five successive impacts. The 

initial impact angle is assumed constant, at an angle of 45o, with an initial horizontal velocity 

of 10 m/s (Vini,hor = 10 m/s). The object’s aspect ratio is assumed constant equal to 1.5:1. In 

this numerical test, this aspect ratio is chosen instead of a ratio of 2:1. According to Figure 

6.10b, ellipsoidal objects with this ratio have the largest roll-out. In this case the objects are 

shot 90 times, varying the object orientation every 2o with every shot. The results are 

presented for the ellipsoid-2 and the rectangle objects, in Figures 6.11 and 6.12. The rebound 

parameters are restricted to: roll-out distance, bounce height, and the ratio of retrieved total 

energy to initial total energy. 

Figure 6.11a plots the variation of average roll-out distances after five impacts of the 

ellipsoid-2 for different energy COR versus the friction coefficient. Generally, the roll-out 

distances reduce significantly with the reduction of the energy COR. The friction coefficient 

has a major effect when the values for energy COR are greater than 0.5. For typical rockfall 

COR, which are usually smaller than 0.6, Figure 6.11a shows that friction has a minor effect 

on average roll-out distances. The variation of the maximum roll-out distance is similar to the 

variation of the average values, as shown in Figure 6.10b. The maximum roll-out distance is 
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dramatically affected by energy COR; however, the friction coefficient has only a minor 

effect. 

Figure 6.11c depicts the variation of average maximum bounce height versus friction 

coefficient for different energy COR during five impacts of the ellipsoid-2. Bounce heights 

reduce significantly with a reduction in energy COR, and increase slightly with an increase in 

friction coefficients for friction values less than 0.5. This slight increase occurs due to an 

increase in normal COR, as a result of an increase in the friction coefficient demonstrated in 

Figure 4.11a. This trend of variation can be also observed in the variation of the maximum 

height of bounce as is shown in Figure 6.11d. 

Figure 6.11e shows the variation of the ratio of average retrieved total energy to the initial 

energy for the ellipsoid-2 after five impacts. Generally, for friction coefficients lower than 

0.3, the average ratio of retrieved energy decreases as the friction coefficient increases. At 

energy COR equal to 1.0, the average ratio of retrieved energy increases for friction 

coefficients greater than 0.2 and stays constant at the ratio of 0.87. This increasing trend can 

be explained by observing that, due to a lack of energy dissipation in the normal direction, 

the sliding process is terminated in early stages by a high friction coefficient, changing the 

sliding mode to stick mode. This early sliding termination decreases the total energy 

dissipation. The average retrieved energy decreases for energy CORs smaller than 1.0; 

however, this decreasing trend stops for friction coefficients higher than 0.3.  
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Figure 6.11: Variation of the average and maximum rebound parameters for ellipsoid-2 
versus the friction coefficient for different energy COR after five successive impacts 
occurring with an impact angle of 45o (Vini,hor = 10 m/s) on a horizontal surface with the 
same configuration as used in Figure 6.1a: (a) maximum roll-out distance, (b) the 
average roll-out distance, (c) maximum bounce height, (d) the average bounce height, (e) 
maximum ratio of retrieved total energy to initial total energy, and (f) the average ratio 
of total retrieved energy to initial total energy. 
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In Figure 6.11e, it can be noticed that the average ratio of retrieved energy, for the energy 

COR equal to 0.25, is higher than the values derived when the coefficient is 0.5. This 

unexpected increase in the ratio of retrieved energy is due to a mode change at the impacts 

with small energy COR that changes the object’s impact mode to sliding mode. Furthermore, 

when the variations in impact configurations are small, multiple successive impacts dissipate 

only a small amount of energy. Further reasons for this low energy dissipation can be 

gathered by looking at Figures 6.11a and 6.11c. In these figures, curves showing the average 

roll-out distance and the average bounce height illustrate that the object stays in close contact 

with the surface, resulting in a negligible variation in contact configurations. Figure 6.11f 

plots the variation of maximum ratio of retrieved total energies to the initial energy occurring 

at the end of five impacts, and shows a decreasing trend with energy COR. Figure 6.11f 

shows that the friction coefficient has no meaningful effect on the maximum retrieved 

energy. 

6.2.3.6 Effect of friction and energy COR on rebound parameters of a prism with a 
rectangular cross section 

In order to observe the effects of corners on rebound parameters, all of the numerical tests 

performed in the last section for the ellipsoid-2 are repeated here for a prism with a 

rectangular cross section with an aspect ratio of 1.5:1. The rectangle’s dimensions are 

defined in Table 6.1. The results for the variation in the average values are presented in 

Figure 6.12. 

Figure 6.12a plots the variation of average roll-out distances versus the friction coefficient 

for different energy COR after five impacts for the rectangle. Generally, the roll-out distance 

decreases dramatically when the energy COR decreases; however, this is not true for energy 

COR equal to 1.0 and friction coefficients greater than 0.5. At high friction coefficients and 

when energy COR is equal to 1.0, in many initial orientations, the rectangle moves in 

negative direction after the first impact. Thus opposite roll-out is observed much more than 

for the ellipsoid-2, as shown in Figure 6.11a. Figure 6.12a shows that the roll-out distances 

decrease when the friction coefficient increases; however, for energy COR equal to 0.25, the 

average roll-out distances after five impacts are almost independent of friction coefficient. 
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On average, the effect of the friction coefficient on the average roll-out distances is more 

tangible for the rectangle than for the ellipsoid-2. 

Figure 6.12b shows the variation of average maximum bounce height versus the friction 

coefficient for the rectangle for different energy COR during five impacts. On average, the 

bounce height decreases when the energy COR decreases, as the energy dissipation increases 

and consequently the normal COR decreases. The average bounce height increases when the 

friction coefficient increases. Thus, with higher friction coefficients, the tangential impact 

process changes from pure slip or slip-reversal to slip-stick, resulting in a higher normal 

COR and higher rebound bounce height.  

Figure 6.12c depicts the average ratio of retrieved total energy to initial total energy for 

different energy COR versus the friction coefficient for the rectangle after 5 impacts. At an 

energy COR equal to 1.0, the ratio of retrieved energy decreases from 1.0 at a friction 

coefficient value of 0 to 0.41, at a friction coefficient of 0.27, and then increases to 0.87 at a 

friction coefficient of 1.0. This variation of the ratio of retrieved energy may appear to be 

inconsistent; however, it is not. As was explained in the last section, at energy COR equal to 

1.0, the only source of energy dissipation is due to friction force; consequently, at higher 

friction coefficients, the sliding mode changes to sliding-stick, which results in less 

dissipation. This effect can be also noticed for energy COR equal to 0.75; however it is not 

substantial.  For other values of energy COR, the average retrieved energy decreases as the 

friction coefficient increases before staying at a constant value for friction coefficients 

greater than 0.57.  
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Figure 6.12: Variation of the average rebound parameters for a rectangle versus the 
friction coefficient for different energy COR after five successive impacts occurring with 
an impact angle of 45o (Vini,hor = 10 m/s) on a horizontal surface with the same 
configuration as used in Figure 6.1a: (a) the average of roll-out distances, (b) the average 
of bounce height, and (c) the average of the ratio of retrieved total energy to initial total 
energy. 

Comparing Figure 6.12 with the similar graphs in Figure 6.11 emphasizes the observation 

that the influence of the friction coefficient is more perceptible when rebound parameters are 

varied for rectangles. This is further supported by the variation curves of the coefficients of 

restitution discussed in Section 4.4.3. 

6.2.4 Multiple impact studies using random object generation 

Several parameters affect the rebound parameters in the numerical tests defined in Figure 6.1. 

All the numerical tests performed in the previous chapters consider some of the variables 
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constant including: impact angle, material parameters, geometrical shape and aspect ratio. In 

this section, the numerical test defined in Figure 6.1 is repeated using the research version of 

RocFall® and its random object generation capabilities. In order to be consistent with the 

numerical tests performed in previous chapters, the mean for the material impact parameters 

is chosen to be 0.50 for energy COR and a value of tan (30o) is chosen for the friction 

coefficient. The statistical values and the applied distributions are presented in Tables 6.4. 

This table illustrates that the normal distribution is chosen for material parameters while the 

uniform distribution is preferred for initial orientation and initial horizontal velocity. The 

values set for horizontal velocity indicate that the initial impact angle varies from 26o to 56o. 

In every set of experiments, the rock geometry is considered constant and all the geometries 

follow the convention of equivalent objects defined in Table 6.1. For each scenario, 250 

rocks are generated randomly and are projected on the rigid surface. 

Table 6.4: The model parameters used to randomly generate objects  

Parameter Mean St. Dev.  Min Max Distribution 
Energy COR 0.50 0.05 0.40 0.6 normal 
Friction angle 30o 5o 25o 35o normal 
Initial orientation  90o - 0o 180o uniform 
Hor. velocity (m/s) 10 - 5 15 uniform 
Vert. velocity (m/s) -10 - - - - 

 

6.2.4.1 Effect of aspect ratio on trajectories during five impacts on a horizontal plane 

In this section the ellipsoid-2, the rectangle, and the ellipsoid-4 are tested with different 

aspect ratios. The aspect ratios considered in these series of numerical tests are: 1:1.05, 1:1.5, 

1:2.0 and 1:3.0. Figure 6.13 demonstrates the rocks trajectories during five impacts for 

different objects and the parameter distributions described in Table 6.4. 
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(a) 

(b) 
 

 
(c) 

Figure 6.13: Rock trajectories during five successive impacts for different geometries 
and the configurations used in Figure 6.1a and the settings of Table 6.4 for rock aspect 
ratios of 1:1.05, 1:1.5, 1:2.0, 1:3.0: (a) ellipsoid-2, (b) prism with rectangular cross 
section, and (c) ellipsoid-4. 

Figure 6.13a shows the trajectories resulting from the five successive impacts of the 

ellipsoids on a flat surface with the previously described setup and aspect ratios. This figure 

shows that the maximum roll-out distance belongs to the ellipsoid with the ratio of 1:1.5. 

Figure 6.13b shows the trajectories resulting from the impacts of rectangles at different 

aspect ratios. This figure shows that the rectangle with the aspect ratio of 1:1.05 has the 

maximum roll-out distance; however, this distance is closely followed by the rocks with the 

ratios of 1:1.5 and 1:2.0. It shows also that the rectangular rock possesses a higher height of 

bounce than the other shapes. Figure 6.14c plots the trajectories resulting from the impacts of 
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ellipsoids-4 with different aspect ratios. This figure shows that ellipsoids-4 with ratios of 

1:1.5 and 1:2.0 have the highest roll-out distances.  

The Figure 6.13 confirms that the results derived in Figure 6.10 capture the main elements of 

random object generation. This is achieved by comparing the maximums of roll-out distances 

and height of bounces between the two figures. 

6.2.4.2 Effect of rock shape on trajectories for the objects with a 1:2 aspect ratio 

To define the effect of rock geometry on the roll-out distances further than five impacts, the 

proposed numerical experiment on Figure 6.1a is expanded to include 5 and 10 impacts. The 

applied geometries are ellipsoids power 2 and 4, and a rectangle. To further investigate the 

effect of rolling, a situation where the rocks either arrest or roll for more than 10 seconds is 

also tested. In each case, 250 rocks are generated for each of the three assumed geometries 

and are projected at the flat surface. The initial impact settings are derived based on the 

random object generation from the data presented in Table 6.4 and with aspect ratios of 2:1 

and the conventions of Table 6.1. The trajectories for individual rocks are presented in 

Appendix 3. 

Figure 6.14a shows the rock path trajectories resulting from the five impacts of the three 

rocks on a flat surface. It can be observed from this figure that the three rocks experience 

approximately the same roll-out distance. The maximum height of bounce in this case 

belongs to the rectangle. Figure 6.14b depicts the trajectories resulting from 10 successive 

impacts of the proposed rock geometries. It can be observed that the ellipsoid-4 has the 

highest bounce height and highest roll-out distance after 10 impacts. The rectangle also has a 

maximum roll-out distance higher than ellipsoid-2. These are all in contrast to the case of 5 

impacts where all the rocks with an aspect ratio of 2:1 have the approximately the same 

maximum and average roll-out distance.  

Figure 6.14c depicts the rock path trajectories resulting from the impacts and rolling of the 

three rocks with the initial random object generation mentioned above for a time equal to 10 

seconds. In this test the rolling friction coefficient is set to zero. This figure illustrates that the 

rolling mode for ellipsoidal objects is a significant mode of motion; however, this mode does 
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not occur for prismatic rocks. This figure shows that, on average, the ellipsoid roll-out 

distance is dramatically higher than the prismatic rock; although in some situations, the 

rectangle may experience a significant roll-out distance, resulting from the impact mode. 

As observed in the last sections, the maximum bounce height for the three objects are 

approximately the same. It can be observed from Figure 6.14 that the maximum height of 

bounce may occur for all three objects. 

 
(a) 

 
(b) 

 
(c) 

Figure 6.14: Rock trajectories during several successive impacts for rock geometries 
including: ellipsoids 2 and 4 and a rectangle with the configurations of Figure 6.1a and 
settings of Figure 6.4 for a rock aspect ratio equal to 2:1: (a) 5 impacts, (b) 10 impacts, 
and (c) time limit of 10 seconds. 
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6.2.4.3 Effect of rock shape on trajectories for the unit objects 

The effect of rock geometry on rock path trajectories of unit shape geometries is shown in 

Figure 6.15. In this figure, successive impacts of sphere (an ellipsoid with aspect ratio of 

1:1.05), an ellipsoid-4, a square, and a five and a six-sided polygon are depicted. The initial 

settings are randomly generated using the definitions of Table 6.4, with constant horizontal 

velocity, Vini,hor =10 m/s. For each shape, 250 rocks are generated and the impact trajectories 

are presented in Figure 6.15. 

 
(a) 

(b) 

(c) 

Figure 6.15: Rock trajectories during successive impacts for rock geometries of a near 
sphere (ellipsoid with aspect ratio of 1:1.05) and prisms with square and polygon five 
and six-sided cross sections using the configurations of Figure 6.1a and the settings of 
Figure 6.4 for rock aspect ratio equal to 1:1: (a) 5 impacts, (b) 10 impacts, and (c) 10 
seconds. 

Figure 6.15a depicts the roll-out trajectories of spherical, cubical, ellipsoid-4 rocks during 5 

impacts. It can be observed that all the objects have a similar highest roll-out distance; 
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however, Figure 6.10 states that on average the sphere has the highest average roll-out 

distance. Figure 6.15b shows the trajectories for 10 impacts of the prismatic rock with 

polygonal cross sections (five and six-sided) and the near sphere (ellipsoid 1:1.05). It can be 

observed that the ellipsoid-4 and six-sided polygon have the highest roll-out distance. 

Figure 6.15c shows the trajectory of the five unit objects after 10 seconds and the previously 

described initial settings. This figure illustrates that the ellipsoid-4 has the highest roll-out 

distance followed by the six-sided polygon section. The prism with a five-sided polygon has 

a higher maximum roll-out distance than the rectangle. In this case the sphere has the 

smallest maximum roll-out distance. 

6.3 ROCKFALL CASE STUDY 

Pierson et al. (2001) performed a series of rockfall field tests to develop design charts for 

dimensioning rockfall catchment areas adjacent to highways. These tests were originally 

initiated by Oregon Department of Transportation (ODOT) in collaboration with six other US 

states. The tested slopes consisted of: three main heights, 12, 18, and 24 m; five inclinations, 

vertical, 0.25H:1V, 0.5H:1V, 0.75H:1V, and 1H:1V; and catchment areas with three different 

inclinations, flat, 6H:1V, and  4H:1V. A total number of 11,250 rocks were rolled off the 

slope, where every slope with a different combination of slope inclination and catchment 

received a standard suite of tests containing a total of 250 rocks, with 100 rocks having a 

diameter of 0.30 m, 75 having a diameter of 0.60, and 75 having a diameter of 0.90 m. Figure 

6.16 shows a photo of a sample slope and rockfall in-situ test, performed by Pierson et al. 

(2001). The gathered data was evaluated using statistical and graphical methods. In addition, 

the authors suggested a series of “practitioner-friendly” charts that can be used to dimension 

the catchment areas subjected to specific slope and catchment inclination which satisfy the 

catching/retention requirements. 
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Figure 6.16: Typical rockfall test performed by Pierson et al. (2001) where the slope 
height is 12.0 m and the circles denote the rocks. 

Pierson et al. used the Colorado Rockfall Simulation Program (CRSP), developed originally 

by Pfeiffer et al. (1990), to replicate the rockfall test observations for specific slopes with 

inclination of 0.25H:1V. Unfortunately, there is not enough information on the coefficients 

and/or distributions used as input in the computer program. This information could be used to 

produce the coefficients which are used in the applied simulation programs of this work. In 

this section, the roll-out outputs from the CRSP simulation are presented alongside the field 

observations and the outputs of RocFall® research version. Generally, Pierson et al. were 

satisfied with the results derived from the CRSP simulation; however, it is reported that the 

program underestimates the roll-out distances for the 24 m slope, while it overestimates the 

same distances for 12 m slopes.  

The number of rock samples and the slope configuration were chosen by Pierson et al. (2001) 

and in this work it is intended to replicate the configurations of rockfall tests and to compare 

the simulation outputs with field observations. Unfortunately, there is no detailed report on 
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the rock sample shapes used in Pierson et al.’s simulations; therefore, as a substitute, most of 

the geometries provided in the research version of the RocFall® simulation code are tested 

and the rockfall rebound parameters are compared with in-situ observations, mainly roll-out 

distances.  
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Figure 6.17: Slope configurations used in numerical tests with inclination of 1H:4V and 
catchment areas of flat and 6H:1V. 

As the output results using the program CRSP were provided for 0.25H:1V slopes, this work 

also uses this inclination for all three tested slope heights, 12, 18, and 24 m, in combination 

with two catchment areas, flat and 6H:1V. The typical slopes with the corresponding 

catchment areas are presented in Figure 6.17. For the 18 and 24 m slopes, there is a 0.5 m 

offset for presplit drilling, 12 m from the crest of the slope.  

The ODOT report does not refer to the material properties resulting from performing single 

impact tests, or to the coefficients of restitution used in the CRSP simulation. By sensitivity 

analysis and by referring to relevant literature, the mean energy COR is chosen to be 0.35, 

the mean friction coefficient is chosen to be 0.25, and their variations were chosen to follow 

a normal distribution. The rock seeder is located at a distance of 0.6 m (2 feet) horizontally 

and vertically from the rock crest with uniform variation for rock orientation and initial 

horizontal velocity. The rock mean dimensions are set to 0.30 m, with uniform distribution, 

in each direction and not having a diameter greater than 0.45 or smaller than 0.15. Table 6.5 
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summarizes these assumptions. In the simulations, the rock normal and rotational initial 

velocities are assumed constant, equal to 0.0 m/s and the maximum rock aspect ratio is set to 

1.5. Furthermore, the objects are considered three-dimensional, meaning that the rocks mass 

and radius of gyration are calculated based on three-dimensional shapes, as indicated in 

Table 5.2, while their motion is planar. 

Table 6.5: RocFall® research version parameters used in simulating the Oregon catchment field test 

Parameter Mean St. Dev. Min Max Distribution 
Energy COR, e* 0.35 0.05 0.30 0.40 normal 
Friction, µ 0.25 0.05 0.20 0.30 normal 
Rot. Friction, µ r 0.40 0.05 0.35 0.45 normal 
Rock dimension (m) 0.30 - 0.15 0.45 uniform 
Initial orientation  90o - 0o 180o uniform 
Hor. velocity (m/s) 0.5 - 0.5 1.5 uniform 

6.3.1 Output data analysis 

Rebound parameters of six different objects are tested in the RocFall® research version and 

the results are compared with the in-situ test output data and CRSP simulation performed by 

Pierson et al. (2001). 200 rock samples were thrown for each geometrical shape and the 

results are presented in Figure 6.18. Roll-out histograms for both the CRSP simulation and 

field observation showed that only a small percentage of the rocks travel large distances from 

the slope. As a result, to discard the effect of these stranded rocks, the output roll-out figures 

are prepared for the roll-out of the nearest 90% of the rocks in addition to the average and 

standard deviation figures. This is similar to the procedure followed by Pierson et al. (2001). 

Figure 6.18a plots the 90% roll-out distances versus slope height for different geometrical 

shapes resulted from the RocFall® research version simulation, in addition to the data from 

the field observations and from the program CRSP®. Among the different geometries, the 

prisms with a rectangular cross section and the five-sided polygonal shapes give the best 

prediction for 90% roll-out distances. Simulations using spherical rocks can only correctly 

predict the roll-out distances for a 12 m slope while they underestimate the value for the 

slopes with higher heights. The ellipsoid-2 has the largest roll-out distances and after it, the 
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ellipsoid-4 has the highest roll-out distance. The prism with a cross section of a six-sided 

polygon produces the highest roll-out distance after the ellipsoidal objects. In-situ tests show 

that the difference between the roll-out distances for the slopes with the height of 12 and 18 

m are significantly larger than the difference between the roll-out distances between the 

slopes with the height of 18 and 24 m. The main reason for this phenomenon is the presence 

of the 0.5 m presplit berm for the heights of 18 and 24 m as shown in Figure 6.17. The new 

model offered in this work, which is shape-inclusive, can catch the slope corner effect that 

causes extra roll-out distance. In contrast CRSP, as a hybrid model with the contact search 

based on the contact of a dimensionless lumped-mass model, is not capable of modeling the 

corners. Therefore its roll-out distance estimation varies almost linearly as a function of slope 

height.  

In the Figure 6.18b, the variation of 90% roll-out distances of rocks versus the slope height is 

plotted for different geometrical shapes using the inclined 6H:1V catchment area. The 

simulations using the spherical object underestimate the roll-out distance while simulations 

with the other geometries over-estimate the roll-out distances. Similar to the flat catchment 

area, simulations with the prisms with a rectangular or five-sided polygonal cross section 

object predict roll-out distances very close to in-situ observations, while the roll-out distances 

of simulations with ellipsoids power 2 and 4 overestimate them. The linear variation of 

CRSP highly overestimates the roll-out distances for the 12 m slope, while it underestimates 

the distances for the slopes with a 24 height. 
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Figure 6.18: Variation of roll-out parameters versus slope height for different 
geometrical shapes and for the slopes with the same configuration as used in Figure 6.17 
and the setup of Table 6.4: (a) roll-out distance for 90% caught, flat catchment area, (b) 
roll-out distance for 90% caught, 6H:1V catchment area, (c) average roll-out distance, 
flat catchment area, (d) average roll-out distance, 6H:1V catchment area, (e) roll-out 
standard deviation, flat catchment area, and (f) roll-out standard deviation, 6H:1V 
catchment area. 
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Figures 6.18c and 6.18d plot the average roll-out distances for the flat and inclined modeled 

catchments areas for different geometrical shapes using the slopes in Figure 6.17. It is 

apparent that the stop points are much more restricted by the inclined catchment for both the 

field and numerical tests. The new simulation can predict the average roll-out distances 

which are much closer to the field data when compared to the values predicted by RocFall® 

research version for the 90% roll-out distances. The results for the 6H:1V catchment area are 

even closer to the values observed in the field tests than the flat catchment. Similar to 90% 

roll-out distance curves, prisms with rectangular or polygonal five-sided cross sections give 

the best results. The Figure 6.18d illustrates that the predictions for roll-out distances for the 

12 and 18 m slopes are closer to the field observations when compared to the values 

predicted for the 24 m slope.  

Figures 6.18e and 6.18f show the standard deviation derived for the fall of the different rock 

geometries used and the in-situ test for the slopes shown in Figure 6.17. As it was concluded 

from the 90% and average roll-out distances, the derived standard deviations are greater than 

the standard deviations derived from the field observations. This may be a result of the lack 

of data on in-situ test configurations including: the rock shapes, the material properties, the 

slope roughness, etc.  

To derive the roll-out histograms, the stop points for different geometries are derived and 

plotted in Figure 6.19. These histograms are compared with the histograms derived from in-

situ distributions. 

Figures 6.19a through 6.19d show the frequency diagram for the six objects used in the 24 m 

slope with flat catchment area. It is observed that the roll-out distance variation for the 

ellipsoid-2 and the prism with a rectangular cross section has the same shape as the 

histograms close to the lognormal distribution. However, the ellipsoidal shapes roll out much 

further with a larger average roll-out distance and standard variation. The histograms for the 

prisms with five- and six-sided polygonal shape and the ellipsoid-4 objects are close to the 

gamma distribution.  
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Figure 6.19: Rockfall roll-out distance histograms for different geometrical shapes and 
for the 24 m slope using the configuration of Figure 6.17 and flat catchment area: (a) 
frequency curve for different geometries, (b) cumulative frequencies for different 
geometries, (c) frequency for five and six-sided polygonal shapes, (d) frequency for 
ellipsoidal and prism with a rectangular cross section, and (e) frequency and cumulative 
histogram for field observation after Pierson et al. (2001). 
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Figure 6.19e presents the histogram for the in-situ test results which shows that the stop-point 

distribution curve is a lognormal curve. The cumulative curve is similar to the histograms of 

the roll-out distances for prismatic objects shown in Figure 6.19d, but it can be observed that 

the roll-out distances derived from the simulation are generally larger than the observed 

values. Larger maximum roll-out distances are also reflected in the 90% stop-point values as 

shown in Figure 6.18a. 

6.4 SUMMARY 

Multiple impacts: 

• In the application of RBIM to successive impact modeling, it is shown that after the 

second impact, all the ratios of retrieved energy to the initial energy for different rock 

geometries have a similar trend of variation. This is in contrast to the first impact, where 

the rectangular rock had the highest ratio. 

• After 5 successive impacts of different objects on a horizontal plane, it was shown that 

the ellipsoidal rock has both the highest average and the highest maximum ratio of 

retrieved energy to the initial energy. This shows that the ellipsoidal rock tends to 

maintain a larger portion of its energy, in comparison to the rectangular rock. Ellipsoidal 

rocks transfer reserved energy to the rotational mode.  

• On average, ellipsoidal (including spherical) objects have the highest roll-out distance in 

comparison to rectangular and ellipsoid-4 rocks up to an aspect ratio of 2.0. 

• When testing using conventional slope materials, it was shown that the energy COR 

dramatically effects the roll-out distances of ellipsoidal rocks. The friction coefficient, on 

the other hand, has no significant effect on the roll-out distances. 

• The studies performed on multiple impacts shows that it is important to study a chain of 

impacts rather than a single impact. It is strongly recommended that this type of analyses 
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should be repeated, taking into account specific slope geometry while considering the 

variation of rock geometry and material properties. 

Case study: 

• The different derived curves suggest that the new shape-inclusive simulation program can 

satisfactorily model the roll-out distances performed by Pierson et al. (2001). 

• Prisms with a rectangular or pentagonal cross section replicate the in-situ results 

adequately, while ellipsoidal and prismatic shapes with a six-sided polygonal cross 

section overestimate the distances. However, generally the standard deviation derived 

from the simulation is greater than the field observed values resulting in more dispersed 

stop-points in comparison to the field observations. 

• The provided rock photos in the reports of Pierson et al. confirm that the rock cross 

section is polygonal. 

• The roll-out results are generally conservative. However, it is expected that a two-

dimensional model would overestimate the roll-out distances as the energy dissipation is 

restricted to planar impacts, while in reality a rock tumbles out of a plane causing extra 

energy dissipation. This out of plane displacement is not measured or reported in two-

dimension models, even though it is certainly occurring in the field, as either the rock or 

the slope is not ideally symmetric.  
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE WORK 

 

7.1 CONCLUSIONS 

Within the framework of this thesis, the application of two different theories in rockfall 

simulation was investigated using a wide range of geometrical shapes to represent the falling 

rock. The two applied theories were: discrete element modeling (DEM), and rigid body 

mechanics. Two simulation programs were developed by the author to assist in investigating 

the rock behavior in single impacts or during successive multiple collisions. 

Application of discrete element modeling in rockfall modeling: 

Using discrete element modeling, it was proposed to substitute the linear normal dashpot 

with a nonlinear viscous module, where the damping force is a function of the impact 

velocity and the contact indentation. It was shown that in this system of nonlinear viscosity, 

the normal energy dissipation, or, in other words, the normal coefficient of restitution (COR), 

is velocity dependent. This nonlinearity eliminates the impact forces at the initiation and 

termination of the contact. A closed-form solution was derived for the coefficients of 

restitution using the nonlinear dashpots. A practical method for the calibration of the normal 

viscosity coefficient for the application in rockfall modeling was offered. 
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It was shown that a single particle in DEM is similar to a single particle in discrete compliant 

model (DCM), as offered by Stronge (1994b). Using these models, Maw et al. (1976) showed 

that for most of the range of angles of incidence, spanning from low to medium, the velocity 

at the time of termination is in an opposite direction to the initial sliding direction. The 

rebound velocities predicted by these two models are similar to the elastic solutions, as 

described by Jonson (1985), and also similar to the experimental results of the impact of an 

elastic rubber sphere with a Poisson ratio of 0.5. These models are not suitable for modeling 

impacts with low tangential compliance force, as described by Brach (1988), as the direction 

of tangential force reverses. These ideas led to the introduction of a mono-direction unit in 

the tangential direction of DEM model which modifies this behavior and releases the strain 

energy at the time of tangential reverse. Because it has been observed that the tangential 

dashpot has a minor effect in mobilizing the tangential force in comparison to the tangential 

spring, this dashpot is eliminated from the modified discrete element model (MDEM), which 

is offered in this work. This decreased the total number of parameters in MDEM to four. 

To verify the performance of the new module, several numerical tests were carried out using 

DEM and MDEM. A series of spheres were projected on a horizontal rigid half space with 

constant normal and variable tangential velocity, resulting in variable angles of impact. The 

variations of the tangential contact velocities and contact forces for the two models were 

presented, categorized by low, medium and high angles of impact. There were some 

perturbations in tangential forces and velocities due to the variations in the indentation. In 

another numerical test, where the successive impacts of a sphere on a tangential plane were 

tested, the variations of the sphere’s tangential velocity versus time for different friction 

coefficients were calculated. The mono-direction module successfully eliminated 

inconsistent variations in the tangential velocity after each impact. These rebound tangential 

velocities had approximately 1% difference with the values predicted by other rigid body 

models, for example the model offered by Brach (1984).  

To further investigate the application of MDEM, different rock geometries were modeled 

using rigid body clumps, and rebound velocities were derived for the vertical impact of these 

objects at variable orientation angles. The rebound velocities were compared with the 

velocities predicted by the impact of equivalent geometries in the application of the rigid 
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body impact mechanics (RBIM) proposed by Stronge (1994a). The rebound velocities for a 

three-particle clump, representing an ellipsoid, were generally far from the RBIM 

predictions. For the five-particle clump, the velocities approached the values predicted by 

RBIM, suggesting that the deficiencies were due to poor geometrical representation, not 

faults contained within the model. For a rectangle with aspect ratio of 2.0, represented by 

eight particles, the rebound velocities were in agreement with the results produced by RBIM. 

In the case of four particles, representing a square, the trend of variation of the rebound 

velocities was between the variation of a square and the variation of a unit superellipse-4. 

This result is compatible with expectations, as the clump geometry can be considered as an 

approximation of both the square and the power 4 superellipse. These results strongly suggest 

that if shape geometries can be sufficiently approximated by the clumps, the proposed 

MDEM can replicate the rebound velocities that are predicted by the application of rigid 

body impact mechanics. 

In the last modification of DEM, a rotational module needed to be added in the rotational 

direction for energy dissipation in the rolling mode. This module consisted of two members: 

the rotational spring, and a slider for representing the rolling friction. 

Application of rigid body mechanics in rockfall modeling: 

In the framework of Chapters 4 through 6, the application of rigid body mechanics in rockfall 

studies was investigated. The focus of this thesis was mainly on the application of rigid body 

impact mechanics (RBIM), introduced by Stronge (1994a), in rockfall studies. In this work, a 

practical method for defining the tangential slip process was offered, based on the proposal 

of definitions for critical impulses. These critical impulses halt or terminate the tangential 

and normal velocities assuming that the tangential and normal impulses vary independently. 

A table for defining the impact rebound parameters, which were originally offered by Strong 

(2000), was completed to consider all modes and circumstances in planar impacts. This table, 

based on the tangential slipping process, defines the critical impulses and rebound velocities. 

As most classical rockfall models consider rock geometry as spherical or discoidal shapes, 

collinear impacts were studied as an important type of impact. The definition of critical 

friction was used to define the lowest tangential COR for different rock geometries in centric 
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impacts. It was shown that these minimum tangential coefficients of restitution are in strong 

agreement with the minimum observed values for tangential coefficients of restitution. 

In this work, RBIM was compared with some other rigid body and hybrid models available 

in the rockfall literature. These models were proposed by Azzoni et al. (1995), Pfeiffer et al. 

(1989) and Descouedres et al. (1987) and the advantages and limitations of each model were 

discussed. A closed-form solution was developed by the author for the impact model offered 

by Descouedres et al. (1987) for planar impacts. Proposing several numerical tests, it was 

shown that an object’s coefficients of restitution are strongly affected by its geometry and 

configuration at the instant of impact. A series of numerical tests were suggested to show that 

several parameters and settings affect the rebound values, or, in other words, coefficients of 

restitution. These parameters are as follows: the impact model, the impact material 

parameters, the rock geometry and its aspect ratio, the impact angle (or the ratio of tangential 

to normal contact velocities), and the object orientation at the instance of contact (or mass 

distribution around the contact point). 

It was shown that rock geometry dramatically affects the coefficients of restitution, 

emphasizing that they can not be considered as material properties. In an impact angle of 45o 

for ellipsoidal rocks, it was shown that the normal COR decreases significantly when there is 

a decrease in energy COR, while this value increases when there is an increase in the friction 

coefficient. Tangential COR decreases versus an increase in the friction coefficient while 

energy COR does not affect this value significantly. In vertical impact numerical tests, the 

range of variation of COR for rocks with a rectangular cross section is much wider than the 

range of variation for ellipsoidal objects. Rock slenderness also changes the COR by 

dispersing the rebound velocities. This makes field investigation of the shape of the rocks a 

vital step in the estimation of mitigation distances. Infrastructure might be in the safe zone 

for the fall of spherical rocks but in the danger zone for the fall of ellipsoidal rocks.  

Rolling equations of motion in rigid body mechanics were also derived for both general 

shapes and discoidal objects in two-dimensional space. These equations were implemented in 

the simulation programs as the equations of motion in rolling mode.  
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Introducing the Geometrical Rockfall Simulation program (GeoRFS) 

GeoRFS is a two-dimensional time-domain rigid body rockfall simulation program 

developed in the framework of this work. The code considers the rock motion in two 

different modes: freefall or contact, where in the contact mode, impact, rolling-sliding, or 

arrest may occur. The contact normal velocity separates the rolling-sliding mode from the 

impact mode and the low energy level defines simulation termination, also called arrest. This 

simulation uses the rigid body impact mechanics (RBIM) as the main impact model; 

however, other recognized rockfall impact models are also implemented in the program 

including those developed by Descouedres et al. (1987) and Azzoni et al. (1995). This 

simulation considers different shapes for rock geometries, from ellipsoidal to superellipsoidal 

shapes and from prisms with uniform polygonal cross sections to randomly generated 

polygons. Surface roughness can be incorporated into the simulation by generating slopes 

with a rotated surface. 

In GeoRFS, contact search procedures are performed based on the geometrical 

transformation method, where the system geometry transforms to the object’s local 

coordinate system. To decrease the computational cost, several optimization procedures are 

used, such as: circumscribing objects by a circle or a rectangle, time refinements using a 

relatively large time step, and using the performing grid cell method. Since, in this 

simulation, the contact forces are not calculated and the rebound velocities are defined 

explicitly, all exceptional circumstances should be predicted in advance and handled, 

including: corner impacts, multiple impacts, overlap treatment, and arrest for different 

geometries at different contact configurations.  

The GeoRFS engine was finally transferred into RocFall®, where it benefits from a powerful 

graphical user interface and probabilistic data generation. Several tests proved that the 

programs were working correctly, as is discussed in the following section. 

Application of rigid body impact mechanics in rockfall simulation: 

In Chapter 6, the effect of multiple rock impacts on several parameters and for different rock 

geometries were investigated, including: energy dissipation, roll-out distance, and bounce 
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height. To pursue this investigation, several numerical tests were proposed for rock impacts 

at angles of 0 and 45o on horizontal and inclined planes. The rock geometries used for these 

studies were: ellipsoid, ellipsoid with power 4 and prism with a rectangular section.  Typical 

material parameters were assumed to be: energy COR = 0.5 and µ = 0.57. 

In vertical impacts on horizontal planes, after the second impact, all the ratios of retrieved 

energy to the initial energy for different rock geometries had a similar trend of variation. This 

was in contrast to results collected after the first impact, where the rectangular rock had the 

highest ratio energy amongst all other geometries. After the second impact, the rectangular 

section had the highest ratio of retrieved energy to initial energy, while the ellipsoidal rock 

had the highest average value. The trends for the energy ratios repeat for impacts with an 

initial impact angle of 45o, with the average ratio of retrieved energy being significantly 

higher for ellipsoidal rocks. The average roll-out distance prior to the second impact, for 

ellipsoidal power 4 rocks, was greater than for rectangular rocks, and on average both of 

these rocks roll-out a larger distance in comparison to ellipsoidal rocks.   

In the next test, the previously described numerical investigation was repeated for five 

successive impacts for the three objects and for 0o and 45o impact angles. It was shown that 

the ellipsoidal rock has both the highest average and the highest maximum ratio of retrieved 

energy to the initial energy. This shows that the ellipsoidal rock tends to reserve a larger 

portion of its energy in comparison to the rectangular rock. This tendency is much more 

visible at an impact angle equal to 45o. An ellipsoidal rock can reserve up to 50% of its initial 

energy at some initial configurations, while for rectangular rocks this ratio is less than 22%. 

The high ratio of retrieved energy for ellipsoidal rocks illustrated that the rock has started to 

roll in some initial orientations; however, the rectangular rock can roll out at a larger distance 

in comparison to the ellipsoidal rock at the end of five impacts. The energy ratio and roll-out 

distance for ellipsoids power 4 are between the values for the other two objects.  

In order to investigate the effect of rock geometry and aspect ratio on roll-out distances and 

the ratio of retrieved energy to initial energy, the three different objects were used in a 

numerical test for impact at an initial angle of 45o. After five impacts, for the objects with an 

aspect ratio of 1.0, spheres have the lowest maximum roll-out distance, while the square and 
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ellipsoid power 4 have the highest maximum. On average, ellipsoidal objects have the 

highest roll-out distance up to an aspect ratio of 2.0. The studies suggest that, when the 

aspect ratios increase, all the objects have a similar roll-out distance value. From the energy 

point of view, an ellipsoidal rock may reserve up to 60% of its initial energy, even after five 

impacts, for some certain initial configurations. On average, ellipsoidal rocks have a higher 

retrieval rate for their kinetic energy than rectangular rocks; however, the ratio of retrieved 

energy to initial energy dramatically decreases with an increase in aspect ratio. The average 

ratio of retrieved energy for rectangular rocks versus the aspect ratio is almost constant. 

Ellipsoids power 4 show a behavior which is between the behavior of the rectangular and 

ellipsoidal rocks, highlighting the importance of considering the abrasion of rock corners.  

The effect of slope material parameters on the rockfall trajectories and energies was 

investigated performing a set of 5 successive impact tests with rectangular and ellipsoidal 

rocks on a horizontal plane. When testing using conventional slope materials, the energy 

COR dramatically effects the roll-out distances of ellipsoidal rocks. The friction coefficient, 

on the other hand, has no significant effect on the roll-out distances. Increasing the friction 

coefficient slightly increases the bounce height for the friction values smaller than 0.5 and 

the height bounce stays constant for the friction values greater than 0.5. The same trend of 

variation was observed for the variation of the ratio of retrieved energy to initial energy: the 

friction coefficient decreases the energy ratio only for low values, smaller than 0.3. 

The results for average roll-out distances for rectangular objects showed that the energy COR 

mainly effects trajectory parameters; however, for rectangular objects, the effect of the 

friction coefficient is more significant in comparison to ellipsoids. An increase in the friction 

coefficient decreases the roll-out distance and increases the bounce height. The friction 

coefficient decreases the average ratio of retrieved energy for rectangular rocks up to friction 

values of 0.4. These results demonstrated that, due to geometrical shape, the variation of 

material properties has different effects on rockfall trajectories.  

Another series of numerical tests were carried out using research version of RocFall®, using 

random object generation. Performing these tests, several initial settings could be generated 

randomly, including: slope material properties, initial impact angle, and object initial 
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orientation. The results were in strong agreement with the results from previous sections, 

where only the initial orientation varied. The observations illustrated that in five impact tests, 

all three geometries, ellipsoid, rectangular section and ellipsoid-4, have a near equal 

maximum roll-out distance. However, in ten impact tests, the rectangular section and 

ellipsoid-4 roll out much further than the ellipsoid. Extending the time of calculation to 10 

seconds and ignoring frictional rolling, the figures showed that the ellipsoids started rolling 

while the rectangular objects reached arrest. The ellipsoid-4 inherits from the characteristics 

of both the ellipsoid-2 and rectangle as the ellipsoid-4 can be considered a corner-abraded 

rectangle. As a result, after impact, the ellipsoid-4 has the tendency either to displace 

significantly after impacts or to start rolling.  

Rockfall case study: 

In this work the in-situ experiments of Pierson et al. (2001) were modeled using the research 

version of RocFall®. These tests were originally performed to develop design charts for 

dimensioning rockfall catchment areas adjacent to highways. An attempt was made to 

replicate the initial test settings; however, not all the necessary information was available 

including: slope material properties, and rock sample maximum aspect ratios. The simulation 

results suggest that the shape-inclusive simulation program developed in this work can 

satisfactorily model the performed rockfall in-situ tests using RBIM. In the simulations, 

prisms with rectangular and pentagonal cross sections replicate the in-situ results robustly, 

while ellipsoids and prisms with hexagonal cross sections have predictions for larger roll-out 

distances in comparison to the field observations. Generally, the standard deviations derived 

from the simulation were greater than the field-observed values, resulting in more dispersed 

stop-points compared to the field observations. The predicted roll-out distances were 

generally more conservative, which is consistent with the expectations from a two-

dimensional model.  Lower energy dissipation in two-dimensional space is because no 

energy dissipation occurs in the third dimension due to asymmetries in rock and slope 

geometry. 
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7.2 FUTURE WORK 

Hoek (2007) states that slope geometry is the most important factor in influencing the 

rockfall trajectory. It is generally accepted that two-dimensional (2D) rockfall simulations 

involve major simplifying assumption on the slope geometry in comparison to three-

dimensional (3D) modeling. Therefore, a significant improvement to the present rockfall 

simulator would be to extend the model to full 3D space. 

The effect of rock fragmentation in rockfall simulation is considered by a few researchers, 

such as Fornaro et al. (1990), based mainly on empirical observations. However, most 

researchers ignore rock fragmentation, as they believe the rock translational energies are 

more conservative due to higher kinetic energy (Bozzolo et al. (1986) and Azzoni et al. 

(1995)). This may not be always true, as kinetic energy is proportional to the multiplication 

of rock mass and the square of rock velocity. Moreover, smaller rock pieces resulting from 

the fragmentation may roll out further. To resolve this problem, further experimental and 

numerical investigations are needed. 

The application of rigid body impact mechanics is limited to the impact of rigid rocks and 

rigid slopes, where the deformations of the rocks and slopes are negligible in comparison to 

the rock dimensions, as explained in Chapter 4. In the case of soft-material slopes, due to 

large deformations, different constitutive models are needed for defining the rebound 

velocities. 

7.2.1 Three-dimensional simulation  

In the real world, rocks travel in 3D space, since neither the rocks nor the slopes are 

symmetric. Constraining the rock path into two dimensional space results in approximations 

when determining the rock trajectory and roll-out distances. Theoretically, in 3D models, 

there is no difficulty in defining the rebound velocities using rigid body mechanics; however, 

the computational expense of the simulation increases dramatically on three levels: slope 

modeling, contact search procedures, and the iterative solution of the impact equations. It is 

the author’s opinion that with the recent progress in the speed of processors, optimization 
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procedures, and utilization of parallel processing, rockfall simulation will tend towards the 

3D modeling. In the following sections the 3D impact of rough rigid bodies for the centric 

and eccentric cases using RBIM are reviewed. 

7.2.1.1 3D eccentric collision of objects on rough half space 

During the 3D collision of rough bodies, the magnitudes of the velocity components change 

three dimensionally, provided that the collision is eccentric and the initial direction of sliding 

is not in-plane with two of the three principal axes of inertia for each body, as is stated by 

Stronge (2000). The presence of the dry friction force, which is represented by Coulomb’s 

law, results in a curvilinear path in the plan. This variation, in turn, results in variation of the 

sliding direction in the initial phase of contact in an eccentric contact configuration, shown in 

Figure 7.1a. 
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Figure 7.1: 3D rigid body collision on a rigid half space: (a) eccentric impact of an 
arbitrary object, and (b) collinear impact of a sphere. 

Considering the object velocity, îV , the trajectories of the contact velocity are derived by the 

following equation: 

ˆv Vi i ijk j krε ω= +   (7.2.1) 
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where vi is the velocity vector at the contact point, ωi is the rotational velocity vector, rk is the 

contact vector and εijk is the permutation tensor. Stronge (2000) defines the equation of 

motion for changes in relative contact velocity as follows: 

i ij jdv m dp=  (7.2.2) 

In the Equation (7.2.2), pi is the component of impulse at the contact point and dpi = Fi dt, 

where Fi is the contact force component, t is the time, and dpi is the variation of impulse 

components. In Equation (7.2.2), 1
ijm−  is the inverse of the inertia matrix and is defined as:  

1 11ij ij ikm jln kl m nm M I r rδ ε ε− −≡ +  (7.2.3) 

where M is the object’s mass and Ikl is the inertia tensor passing through the center of gravity. 

Amontons-Coulomb law of sliding friction (Johnson, 1986) relates the tangential to the 

normal component of the impulse by introducing the coefficient of limiting friction, µ. This 

friction force would be active when sliding occurs at the contact point, i.e. 2 2
1 2 0v v+ > , 

where v1 and v2 are the planar trajectories of the velocity. The friction law can be expressed 

as the following: 

2 2 2 2
1 2 1 2

2 21 2
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1 2 1 2

( ) ( ) if 0

, if 0

dp dp dp v v
v vdp dp dp dp v v

v v v v

µ
µ µ

+ < + =

= − = − + >
+ +

 (7.2.4) 

The sliding direction, φ , is defined as the angle between the direction of the sliding vector, s, 

and the direction of n1. These two values can be defined as follows: 

1
2 1

2 2
1 2

tan ( )v v

s v v

φ −≡

= +
 (7.2.5) 

Consequently, the components of tangential velocity can be stated as: 

1 2cos sinv s v sφ φ= =  (7.2.6) 
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Stronge (2000) showed that the variation of the components of tangential velocity can be 

defined as a function of the rate of change of the impulse for the normal component of the 

reaction. The equation of motion for sliding in the direction of ( )pφ  can be derived as a 

function of the variation of the normal impulse, as in the following: 

1 1 1
1 11 12 13

1 1 1
2 21 22 23

1 1 1
3 31 32 33

/ cos sin

/ cos sin

/ cos sin

dv dp m m m

dv dp m m m

dv dp m m m

µ φ µ φ

µ φ µ φ

µ φ µ φ

− − −

− − −

− − −

= − − +

= − − +

= − − +

  (7.2.7) 

These equations of motion are not separable into independent equations, except in two 

situations: when the impact condition is centric and the contact vector passes through the 

center of gravity, or when impact occurs in the smooth condition, in other words, when µ = 0. 

As these conditions are not usually satisfied, the rates of change for the components of the 

tangential velocity are usually different from each other, as a result the direction of slip 

varies, while s > 0.  

7.2.1.2 3D centric collision of objects on rough half space 

Figure 7.1b shows the case of centric impact for a sphere including the object’s velocity 

trajectories at the center of gravity, and the contact point. Strong (1994a) and (2000) defined 

the object’s rebound velocities at the termination impulse, pf, as follows: 
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 (7.2.8) 

In these equations vi is the contact point velocity as defined in Equation (7.2.1), *e  is the 

energy coefficient of restitution illustrated in Section 4.2.2 and îφ  is: 
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= ⎨ − =⎩
 (7.2.9) 

Equation (7.2.8) shows that the variation in the object’s velocity can be as large as 2/7th of 

the velocity at the contact point. A complete discussion of the lowest values of tangential 

velocity for different geometries in collinear impacts is provided in Section 4.2.4. 

7.2.2 Application of RBIM in hybrid modeling 

It was shown in Section 5.1.1 that utilizing hybrid rockfall models incorporates inaccuracies 

into rockfall simulations. It is also illustrated in Chapter 4, using rigid body models, that the 

domain of variation for the coefficients of restitution is much wider than the traditional 

definitions of the COR provided in lumped-mass models (Ashayer and Curran (2007)). Many 

researchers, such as Bozzolo (1986), Pfeiffer (1989), Azzoni (1995), Stevens (1998) and 

Jones et al. (2000), use hybrid models and introduce simplified mathematical models which 

have either mechanical or geometrical approximations in comparison to rigid body models.  

Any hybrid modeling utilizing RBIM will dramatically improve the accuracy of the 

simulation as RBIM thoroughly accounts for the sliding mechanisms.  

As a result, we suggest a new hybrid model using RBIM (or any other rigid body model), 

which applies the following steps: 

1. Define the rock geometry and dimensions based on field observations and an appropriate 

statistical distribution. 

2. Calculate the intersection of the rock path parabola and the slope segment (refer to 

Figures 5.1 and 5.2). The ratio of velocities at the instance of impact determines the 

impact angle. Define the material properties, energy COR, and friction coefficient, from 

the statistical distribution of the material properties.  

3. At the time of contact, rock orientation or mass distribution around the contact point 

dramatically affects the coefficients of restitution (COR). There are two practical 

approaches to estimating the CORs: randomly defining them using the distribution of the 
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coefficients, or randomly choosing the impact orientation. When the impact orientation is 

chosen randomly, the rebound velocities can be determined based on geometrical 

mapping. This geometrical mapping results from the impact of the object and a horizontal 

plane where the impact velocities are mapped to the transformed geometry. This method 

seems to be more practical as the variations of CORs do not always follow a definite 

statistical distribution. Figure 7.2 shows the histogram of variation of the coefficients of 

restitution during the impact of an ellipsoid on a horizontal half space with an impact 

angle of 45o, where the numerical test is described in Figure 4.8.  
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Figure 7.2: Histogram of the variation of the coefficients of restitution for an ellipsoid 
with different aspect ratios for an impact angle of 45o and the settings of Figure 4.8: (a) 
tangential COR, and (b) normal COR. 

7.2.3 Complementing the application of modified DEM in 2D and 3D 
rockfall modeling 

In Chapter 3, the Voigt-Kelvin system of springs and dashpots, which is the most well-

known and widely-used contact constitutive model, was modified to model low-compliant 

impacts. It was shown that this model can accurately replicate the rigid body impact of a 

group of particles, known as clumps. The application of this modified version of DEM 

(MDEM) can be used to model complicated rock geometries. Some of the rockfall features 

like fragmentation can be only captured by models like DEM, while rigid body impact 

mechanics are not capable of capturing these features. 
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Potyondy et al. (2004) used contact bonds to successfully capture the elastic moduli of rocks, 

consisting of a deformable assembly of particles glued together; however, it was shown that 

the spring and dashpot cannot model low-compliant impacts. It is our opinion that MDEM 

can replace the classical spring-dashpot modules used as contact constitutive models in most 

discrete element models. Once the new model been thoroughly tested and verified against 

other models and in-situ and laboratory rockfall experiments, it may also be able to model 

soft impacts and rock fragmentations.   

7.2.4 Extending the application of GeoRFS to soft-soil slopes 

Several rockfall impact constitutive models are proposed to capture soft-soil impacts 

including: Heidenreich (2004), Azimi et al. (1977), and Ushiro et al. (2000). Each of these 

models is offered for certain rock geometries, mainly spherical or cylindrical. In section 

5.4.9, it was explained that GeoRFS is implemented in an object-oriented paradigm. Already, 

in addition to RBIM, two other impact constitutive models offered by Descouedres et al. 

(1987) and Azzoni et al. (1995) are implemented in the program. The application of soft-

ground slope materials can be implemented into GeoRFS which by nature is a geometrical 

model and considers the rock shape. Then, this application can be expanded to hybrid 

modeling using the hybrid concept introduced in Section 7.2.2. This way, complicated soft-

impact constitutive models which predict rock trajectory can be applied and studied. 
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APPENDIX 1  
VALUES OF RESTITUTION, FRICTION, AND ROLLING FRICTION COEFFICIENTS 

Table A.1.1: Values of COR in the literature defined by various researchers as well as different types of coefficient and for different materials 
after Heidenreich (2004) and RocFall® 4.0 (2002) 

Reference Values 
for Rn 

Values 
for Rt 

Values 
for RE 

Values 
for RTE 

Values 
for RKin 

Values 
for µ Values for µrot Remarks 

0.75-0.80       Based on experience in Italy 
Habib 1977 

0.5-0.6       Based on experience in Norway 

0.8-0.9 0.65-0.75      Solid rock 

0.5-0.8 0.45-0.65      Detrital material mixed with large rock boulders 

0.4-0.5 0.35-0.45      Compact detrital material mixed with small boulders 
Piteau and Claton 1977 

0.2-0.4 0.2-0.3      Grass covered slopes 

Wu 1985 0.2-0.8 0.5-0.75      Rock on rock or wood platform 

0.95  0.9     Rock 

0.55  0.3     Gravel layer (35 cm) 

0.45  0.2     Gravel layer (70 cm) 
Heierli 1985 

0.45  0.2     Debris 

   0.7    Rock at a slope angle of 44° 
Bozzolo & Pamini 1986 

   0.55    Debris at a slope angle of 57° 

    0.4 0.5  Vineyard slopes Descouedres & Zimmermann 
1987     0.85 0.5  Rock slopes 

0.53 0.99      Clean hard bedrock 

0.4 0.9      Asphalt roadway 

0.35 0.85      Bedrock outcrops with hard surface, large boulders 

0.32 0.82      Talus cover 

0.32 0.8      Talus cover with vegetation 

Hoek 1987 

0.3 0.8      Soft soil, some vegetation 
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Table A.1.1 (continued):  

Reference Values 
for Rn 

Values 
for Rt 

Values 
for RE 

Values 
for RTE 

Values 
for RKin 

Values 
for µ Values for µrot Remarks 

0.05-0.35 0.5-1 0.02-1     Rock block impacting limestone 
Urciuoli 1988 

~0 0.24      Debris fan 

Gerber 1995 0.17-0.43 0.45-0.88      Rock (limestone) 

Ushiro & al. 2000 0.1-0.4 0.71      ? 

0.37-0.42 0.87-0.92      Smooth, hard surface as paving rock 

0.33-0.37 0.83-0.87      Bedrock or boulders with little soil or vegetation 

0.30-0.33 0.83-0.87      Talus with little vegetation 

0.3-0.33 0.80-0.83      Talus with some vegetation 

0.28-0.32 0.80-0.83      Soft soil slope with little vegetation 

Pfeiffer & Bowen 
1989 

(older versions of 
program CRSP) 

0.28-0.32 0.78-0.82      Vegetated soil slope 

0.5 0.95      Bedrock 

0.35 0.85      Bedrock covered by large blocks 

0.3 0.7      Debris formed by uniform distributed elements 
Giani 1992, Barbierei & al. 1988 

0.25 0.55      Soil covered by vegetation 

      0.3 m3 1.2 m3  

    0.75-0.90  0.4-0.45 0.4 Rock (limestone) 

    0.55-0.6  0.5-0.6 0.4 Fine angular debris and earth (compacted) 

    0.35-0.45  0.7-0.8 0.6-0.7 Fine angular debris and earth (soft) 

    0.45-0.5  0.6-0.7 0.5-0.6 Medium angular debris with angular rock fragments 

    0.4-0.5  0.70-1.00 Medium angular debris with scattered trees 

    0.55-0.7  0.65-1.20 0.60-0.80 Coarse angular debris with angular rock fragments 

    0.5-0.6  0.55-0.65 0.45-0.50 Earth with grass and some vegetation 

    <0.2  0.85 Ditch with mud 

    0.5-0.65  0.50-0.65 Flat surface of artificially compacted ground 

Azzoni & al. 1995 

    0.75  0.40-0.45 Road 

0.1-0.35       Vertical impact of a 220kg rock on hard surface 
Kamijo 2000 

0.1       Vertical impact of a 800kg rock on hard surface 
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Table A.1.1 (continued): 

Reference Values 
for Rn 

Values 
for Rt 

Values 
for RE 

Values 
for RTE 

Values 
for RKin 

Values 
for µ 

Values for µrot Remarks 

0.6-1.0 0.9-1.0      Smooth hard surface and paving 

0.15-0.3 0.75-0.95      Bedrock and boulder fields 

0.12-0.2 0.65-0.95      Talus and firm soil slopes 

Jones & al. 2000 
(Values gathered by program 

calibration for CRSP 4.0) 
0.1-0.2 0.5-0.8      Soft soil slopes 

Budetta & Santo 1994 (evaluated 
by program calibration) 0.2 0.53    

  
Rock 

      0.64 Rock slope also covered with trees 

      0.38 Rock 

      0.53 Scattered sagebrush, grass, few other boulders 
Kobayashi et al. 1990 

      0.33 Rock 

0.5 0.8      Sparsely forested slope covered by a veneer of very 
fine weathered talus derived from weak schistose  

0.5 0.8      Limestone on bare uniform talus slope formed of 
basalt fragments  Hungr, O. and Evans, S.G. 1988 

0.7 0.9      Rectangular boulder of metamorphosed tuff on bare 
rock and a steep snow covered shelf 

0.32 0.71      Limestone face 

0.3 0.62      Partially vegetated limestone scree 

0.32 0.71      Uncovered limestone blast pile 

0.25 0.49      Vegetated covered limestone pile 

0.28 0.84      Chalk face 

Robotham et al. 

0.27 0.60      Vegetated chalk scree 
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APPENDIX 2 

DEFINING RIGID BODY IMAPCT MECHANICS (RBIM) 
PARAMETERS USING EXPERIMENTAL METHODS  

One of the most important advantages of rigid body impact mechanics is that the two model 

parameters, *e  and µ, are experimentally measurable. As described in Chapter 4, to apply 

rigid body mechanics, another parameter, rolling friction, µr, needs to be defined. There are 

several methods which can be used; however, only the simplest methods are reviewed in this 

Appendix. 

Normal coefficient of restitution, *e : 

Ideally, an object should be dropped vertically when the impact configuration is collinear. In 

this case the definition of the energy coefficient of restitution is the same as the kinetic and 

the kinematic coefficients of restitution. The square root of the ratio of the rebound height, 

h1, to the initial height, h0, defines the energy coefficient of restitution, *e , or simply the 

normal coefficient of restitution, Rn, as shown in Figure A.2.1. It is also possible to use the 

second measured rebound heights, h2, or the third, h3, to define this coefficient as described 

by Equation (A.2.1). It is recommended to use circular shapes or shapes with a curvilinear 

side as the rebound height for these objects are less sensitive to small tilting if when the 

impact configuration is not completely collinear. 

64
* 1 0 2 0 3 0e h h h h h h= = =  (A.2.1) 
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h0 1h

 

Figure A.2.1: Defining rebound height, h1, using the collinear drop test. 

 

Friction coefficient, µ: 

The sliding experiment can be used to calculate the friction coefficient between two objects, 

as shown in Figure A.2.2a. In this case, the velocity of the sliding object at two different 

times, t0 and t1, should be recorded. Using Equation (A.2.2), the friction coefficient can be 

defined as follows:  

[ ]

2 2
1 0

1 0

( ) ( )
tan( )

2 cos( ) ( ) ( )
x xV t V t

g X t X t
µ φ

φ

⎡ ⎤−⎣ ⎦= −
−

  (A.2.2) 

where 1( )xV t  and 0( )xV t  are the velocities parallel to the sliding surface; 1( )X t  and 0( )X t  are 

the object locations at times t1 and t0, respectively; and g is the gravitational acceleration. It 

should be mentioned that if the object slides with a constant velocity, then: µ  = tan(φ). 

Rolling friction coefficient, µ r: 

Figure A.2.2b shows the rolling of a circular object on an inclined surface which can be used 

to define the rolling friction coefficient. If the object’s velocities at the two different times t1 

and t0 are recorded, Equation (A.2.3) can be used to calculate µ r, as defined by Azzoni et al. 

(1995).  
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In the above equation, kr is polar radius of gyration as defined in Section 5.2.3, and the other 

parameters are the same as defined in Equation (A.2.2). Similar to the sliding experiment, if 

the object rolls with a constant velocity, then: µ r  = tan(φr). 
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(a) (b) 

Figure A.2.2: Calculating the friction coefficients: (a) using the sliding test on an 
inclined surface for the friction coefficient, µ, and (b) using rolling test on an inclined 
surface to define the rolling friction coefficient, µr. 
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APPENDIX 3 

EFFECT OF ROCK SHAPE ON ROCK TRAJECTORIES 
PERFORMING RANDOM OBJECT GENERATION  

In this Appendix, the numerical experiments performed in Section 6.2.4.2 are presented, with 

the trajectories for each object given in a separate figure. This separation helps to follow each 

rock geometry more easily in comparison to the case when all of them are shown in one 

figure. The applied geometries are ellipsoids power 2 and 4, and a rectangle. In each case, 

250 rocks are generated for each of the three assumed geometries, and are projected at the 

flat surface. The initial impact settings are derived based on the random object generation 

procedure where the data settings are presented in Table 6.4 and with aspect ratios of 2:1 and 

the conventions used Table 6.1.  

Figure A.3.1 depicts the rock path trajectories resulting from five impacts of the three rocks 

on a flat surface. Figures A.3.1a to A.3.1.c show the trajectories for each individual rock and 

Figure A.3.1 shows the trajectories resulting form the impact of three rocks from another 

rock generation. It can be observed from these figures that the three rocks experience 

approximately the same roll-out distance.  

Figure A.3.2 depicts the trajectories resulting from 10 successive impacts of the proposed 

rock geometries. From Figures A.3.2a to A.3.2.c, it can be observed that the ellipsoid-4 has 

the highest roll-out distance after 10 impacts. Following the ellipsoid-4, the rectangle has the 

next greatest maximum roll-out distance, followed by the ellipsoid-2. It can be observed that 
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ellipsoids-2 roll out much less than the other two shapes, both in average and in maximum 

value. 

Figure A.3.3 shows the rock path trajectories resulting from the impacts and rolling of the 

three randomly generated rocks for a time equal to 10 seconds when the rolling friction 

coefficient is set to zero. Figures A.3.3a and A.3.3b illustrate that the rolling mode for 

ellipsoidal objects is a significant mode of motion; however, this mode occurs more often for 

ellipsoid-2 in comparison to ellipsoid-4. Figure A.3.3c shows that the rectangular rocks lose 

their energy during the simulation period and reach arrest. It can be seen that, no significant 

displacements occur for rectangular rock during rolling-sliding mode of motion.  

According to Hoek (2007), the slope geometry is the most significant factor in controlling the 

roll-out distances. It is recommended to test all the rock geometries with the proposed slope 

and to find the maximum roll-out distances for each rock under the different modes of 

motion, either impact or rolling-sliding. 
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(a) 

 
(b) 

 
(c) 

Figure A.3.1: Rock trajectories during successive impacts for rock geometries with the 
configurations of Figure 6.1a and settings of Figure 6.4 for different rock geometries 
with aspect ratio equal to 2:1 after 5 impacts: (a) an ellipsoid-2, (b) an ellipsoid-4, and 
(c) a rectangle. 
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(a) 

 
(b) 

 
(c) 

Figure A.3.2: Rock trajectories during successive impacts for rock geometries with the 
configurations of Figure 6.1a and settings of Figure 6.4 for different rock geometries 
with aspect ratio equal to 2:1 after 10 impacts: (a) an ellipsoid-2, (b) an ellipsoid-4, and 
(c) a rectangle. 
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(a) 

 
(b) 

 
(c) 

Figure A.3.3: Rock trajectories during successive impacts for rock geometries with the 
configurations of Figure 6.1a and settings of Figure 6.4 for different rock geometries 
with aspect ratio equal to 2:1 after 10 seconds: (a) an ellipsoid-2, (b) an ellipsoid-4, and 
(c) a rectangle. 



REFERENCES     202 

References 

Ashayer P. and Curran J.H., 2007: Coefficients of restitution in the application of rigid body impact 
mechanics in rockfall analysis, SME 2007 annual meeting and Colorado Mining Association 
109th National Western Mining Conference, Denver, 116-121 

Azimi C. and Desvarreux, P., 1988: Les paravalanches: ouvrages de protection contre les avalanches 
et les chutes de pierres. Direction de la formation continue et de l'action internationale, 
Chambéry, 8-10 mars 1988, Paris 

Azzoni A., Barbera G.L. and Zaninetti A., 1995: Analysis and prediction of rockfalls using a 
mathematical model. International Journal of Rock Mechanics and Mining Science & 
Geomechanics, 32(7), 709-724 

Azzoni A. and Freitas M.H., 1995: Experimentally Gained Parameters, Decisive for Rock Fall 
Analysis. Rock Mechanics and Rock Engineering, 28(2), 111-124 

Bardet J.P., 1994: Observations on the effect of particle rotations on the failure of idealized granular 
materials. Mech. Mat., 18, 159-182 

Bennett S., McRobb S. and Farmer R., 2002: Object-oriented systems analysis and design using UML 
(2nd ed. ed.). Toronto: McGraw-Hill 

Belytschko T., 2000: In Liu W. K., Moran B., Nonlinear finite elements for continua and structures, 
New York: John Wiley 

Bozzolo D. and Pamini R., 1986: Simulation of rock falls down a valley side. Acta Mechanica, 63(1-
4), 113-130 

Bozzolo D., Pamini R. and Hutter K. 1988: Rockfall analysis – A mathematical and its test with field 
data. Landslides, Proceedings of the fifth international symposium on landslides, 10-15 July, 
1, 555-560, Lausanne 

Brach R.M., 1984: Friction, restitution, and energy loss in planar collisions. Transactions of the 
ASME Journal of Applied Mechanics, 51, 164-170 

Brach R.M., 1988: Impact dynamics with applications to solid particle erosion. International Journal 
Impact Engineering, 7 (1), 37-53 

Brach R. M., 1991: Mechanical impact dynamics: rigid body collisions. John Wiley 

Chatterjee A. 1997: Rigid body collisions: some general considerations, new collision laws and some 
experimental data, PhD Dissertation, Cornell Uni., Ithaca, NY, USA 

Chau K.T., Wong R.H.C. and Wu. J.J. 2002: Coefficient of restitution and rotational motions of 
rockfall impacts. International Journal Rock Mechanics Mining Science, 39, 69–77 



REFERENCES     203 

Cundall P.A. and Strack O.D.L., 1979: A discrete numerical model for granular assemblies, 
Geotechnique, 29(1), 47–65 

Cundall P.A. and Hart R.D., 1992: Numerical modeling of discontinua. Engineering Computations, 
9(2), 101-113 

Deitel H.M. and Deitel P.J., (2001): C++ how to program (3rd ed.), Upper Saddle River, NJ: Prentice 
Hall. 

Descouedres F. and Zimmermann T., 1987: Three-dimensional dynamic calculation of rockfalls. 
Proceedings of the 6th International Congress on Rock Mechanics, Montreal, 337-342 

Evans S.G. and Hunger O., 1993: The assessment of rockfall hazard at the base of talus slopes. 
Canadian geotechnical journal, 30, 620-636 

Fornaro M., Peila D. and Nebbia M., 1990: Block falls on rock slopes - application of a numerical 
simulation program to some real cases, Proceedings of the 6th International Congress IAEG, 
Rotterdam, NL., 2173-2180 

Giani G.P., Giacomini A., Migliazza M. and Segalini A., 2004: Experimental and theoretical studies 
to improve rock fall analysis and protection work design. Rock Mechanics and Rock 
Engineering, 37 (5), 369-389 

Guzzetti F., Crosta G., Detti R. and Agliardi F., 2002: STONE: a computer program for the three-
dimensional simulation of rock-falls, Computer & Geosciences, 28, 1079-1093 

Giani G.P., 1992: Rock slope stability analysis. Balkema, Rotterdam 

Habib P., 1976: Note Sur Le Rebondissement Des Blocs Rocheux, Instituto Speromentale Modolli E 
Structture. In Meeting on Rockfall Dynamics and Protective Works, Bergamo, Italia, 123-125 

Herbert R.G. and McWhannell D.C., 1977: Shape and frequency composition of pulse from an impact 
pair. Journal of Engineering for Industry, August, 513-518 

Heidenreich B., 2004: Small- and half-scale experimental studies of rockfall impacts on sandy slopes, 
PhD Dissertation, Eclole polytechnique federale de Lausanne 

Hill F.S. 2001: Computer graphics: Using OpenGL (2nd ed.). Upper Saddle River, N.J.: Prentice Hall 

Hoek E., 1986: Rockfall - a program in Basic for the analysis of rockfalls from the slopes. Golder 
Associates/University of Toronto, Unpublished notes 

Hoek E., 2007 (new edition): Practical rock engineering, course notes, University of Toronto 

Hunt K.H., and Crossley, F.R.E. 1975: Coefficient of restitution interpreted as damping in 
vibroimpact. Transactions of the ASME, Series E, 42(2), 440-445 

Iwashita K. and Oda M., 1998: Rolling resistance at contacts in simulation of shear band development 
by DEM. Journal Engineering Mechanics, 124(3), 285-292 



REFERENCES     204 

Jakliéc A., Leonardis A. and Solina F., 2000: Segmentation and recovery of superquadrics. Boston, 
Mass.: Kluwer Academic Publishers 

Johnson K.L., 1985: Contact mechanics. Cambridge UK, Cambridge University Press 

Jones C.L., Higgins J.D. and Andrew R.D., 2000: Colorado Rockfall Simulation Program Version 
4.0. Colorado Geological Survey, Colorado 

Keller J.B., 1986: Impact with friction. Journal of Applied Mechanics, ASME, 53(1), 1-4 

Kobayashi Y., Harp E.L. and kagawa T., 1990: Simulation of rockfall triggered by earthquakes. Rock 
Mechanics and Rock Engineering, 23: 1-20 

Maw N., Barber J.R. and Fawcett J.N., 1977: The rebound of elastic bodies in oblique impact. 
Mechanics Research Communications, 4, 17-22 

Maw N., Barber J.R. and Fawcett J.N., 1976: The oblique impact of elastic spheres. Wear, 38, 101-
114 

Meriam J.L. and Kraige L.G., 1987: Engineering Mechanics – Dynamics. John Wiley 

Munjiza A. and Andrews K.R.F., 1998: NBS contact detection algorithm for bodies of similar size. 
International Journal for Numerical Methods in Engineering, 43(1), 131 

Munjiza A., 2004: The combined finite-discrete element method. Hoboken, NJ: Wiley 

PFC2D theory and background, Ver. 3.0, 2002, Itasca Consulting Group, Inc. 

Peters B. and Dziugys A., 2002: Numerical simulation of the motion of granular material using 
object-oriented techniques. Computer Methods in Applied Mechanics and Engineering, 
191(17-18), 1983-2007 

Pfeiffer T.J. and Bowen T.D., 1989: Computer simulations of rockfalls, Bulletin of the association of 
Engineering Geologists, 26(1): 135-146 

Pierson L.A, Gullixson F.C and Chassie R.G. 2001: Rockfall catchment area design guide, Final 
report, SPR-3(302), Oregon Department of Transportation, USA 

Poison S.D, 1811: Traite de Mecanique, Courier, Paris 

Potyondy D.O. and Cundall P.A., 2004: A bonded-particle model for rock. International Journal of 
Rock Mechanics and Mining Sciences, 41, 1329-1364 

Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P., 2002: Numerical recipes in C : The 
art of scientific computing (2nd ed.). New York, NY, USA: Cambridge University Press 

Ritchie A.M. 1963: Evaluation of rockfall and its control. Highway research record 17, Washington, 
USA  

RocFall® Verification manual, 2002: Rocscience Inc. 



REFERENCES     205 

Shi G.H. and Goodman R.E., 1985: Two-dimensional discontinuous deformation analysis. 
International Journal for Numerical and Analytical Methods in Geomechanics, 9(6), 541-556 

Spang R.M. and Rautenstrauch R.W., 1988: Empirical and mathematical approaches to rockfall 
protection and their practical applications. Proceedings of the Fifth International Symposium 
on Landslides, Lausanne , 2, 1237-1243 

Spang R.M. and Sönser Th., 1995: Optimized rockfall protection by 'rockfall'. Proceedings of the 8th 
International Congress in Rock Mechanics, Tokyo, Japan, 1233-1242 

Stevens W., 1998: Rocfall: a tool for probabilistic analysis, design of remedial measures and 
prediction of rockfalls, M.A.Sc. Thesis, Department of Civil Engineering, University of 
Toronto, Ontario, Canada 

Stoianovici D. and Hurmuzlu Y., 1996: A critical study of the applicability of rigid-body collision 
theory, Journal of Applied Mechanics, 63, 307-316 

Stronge W.J., 1990: Rigid body collisions with friction. Proceedings of the Royal Society London, 
A431, 169-181 

Stronge W.J., 1991: Friction in collisions: resolution of a paradox. Journal of Applied Physics, 69(2), 
610-612 

Stronge W.J., 1994a: Swerve during three-dimensional impact of rough rigid bodies. Journal of 
Applied Mechanics, 61, 605-611 

Stronge W.J., 1994b: Planar impact of rough compliant bodies, International Journal of Impact 
Engineering, 15(4), 435-450 

Stronge W.J., 2000: Impact Mechanics. Cambridge University Press 

Ting J.M., 1991: An ellipse-based micromechanical model for angular granular materials. 
proceedings ASCE engineering mechanics specialty conference on mechanics computing in 
1990’s and beyond, Columbus, Ohio, 2, 1214-1218 

Ting J.M., 1992: A robust algorithm for ellipse-based discrete element modeling of granular 
materials. Computers and Geotechnics, 13(3), 175-186 

Ting J.M. and Corkum B.T., 1992: Computational laboratory for discrete element geomechanics. 
Journal of Computing in Civil Engineering, 6(2), 129(18)-147 

UDEC (Universal Distinct Element Code) theory and background, 2000, Itasca Consulting Group, 
Inc. 

Walton O.R., 1992: Granular solids flow project, Report UCID-20297-88-1, Lawrence Livermore 
National Laboratory  

Wriggers P., 2002: Computational contact mechanics. Hoboken, NJ: John Wiley & Sons 

Wu S.S., 1985: Rockfall evaluation by computer simulation. Transportation Research Record 1031, 
1-5, Washington, USA 




