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Introduction 

This theory manual documents the basic calculations used in RocFall3 version 1.005 and earlier to 

simulate the rock paths as rocks travel down the slope. RocFall3 has 2 engine modes: lumped mass and 

rigid body. The lumped mass mode assumes the rock as a particle (point) and the rigid body mode 

considers the rock’s actual shape and the effects from the shape’s size and angular momentum. 

This theory manual documents calculations for the legacy Rigid Body method used in version 1.005 and 

earlier. If using a newer version of RocFall3, this legacy formulation will be used only if the analysis type 

is Rigid Body and “Use Spheres v1.005 and earlier” is selected. 

 

 

Rockfall trajectories consist of 3 main parts: projectile, impacts and sliding/rolling.  
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1. Projectile 

The physics for projectile motion of the rock is the same for both the lumped mass and rigid body modes. 

While a rock is flying through the air, there are no forces acting on the rock except for gravity. For the rock 

at any given time t, let’s define the following variables: 

�⃗⃗�  = position (x,y,z) vector 

�⃗⃡� 𝒓= rotation matrix   

�⃗⃗�  = velocity (x,y,z) vector 

�⃗⃗⃗�  = angular velocity (x,y,z) vector  

With only gravity as the force, �⃗⃗�  =  �⃗⃗� 𝒈  =  𝑴 ∙ �⃗⃗� = 𝑴 ∙ (0, 0, −9.81). 

We can then write: 

 �⃗⃗� (𝒕) = �⃗⃗� 𝒐 ∙ 𝒕 + 
𝟏

𝟐
�⃗⃗� ∙ 𝒕𝟐              …...(1.1)    

�⃗⃗� (𝒕) = �⃗⃗� 𝒐 + �⃗⃗� ∙ 𝒕               …...(1.2) 

And with �⃗⃗⃗�  and t, we can get the rotating axis �⃗⃗� =
�⃗⃗⃗� ∙𝒕

| �⃗⃗⃗� ∙𝒕|
 and the angle to be rotated is 𝜃 = ‖�⃗⃗⃗� ∙ 𝒕‖. We 

can then construct the rotation matrix [1]: 

𝑅 = [ 

𝑐𝑜𝑠𝜃 + 𝑢𝑥
2(1 − 𝑐𝑜𝑠𝜃) 𝑢𝑥𝑢𝑦(1 − 𝑐𝑜𝑠𝜃) − 𝑢𝑧𝑠𝑖𝑛𝜃 𝑢𝑥𝑢𝑧(1 − 𝑐𝑜𝑠𝜃) + 𝑢𝑦𝑠𝑖𝑛𝜃

𝑢𝑦𝑢𝑥(1 − 𝑐𝑜𝑠𝜃) + 𝑢𝑧𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 + 𝑢𝑦
2(1 − 𝑐𝑜𝑠𝜃) 𝑢𝑦𝑢𝑧(1 − 𝑐𝑜𝑠𝜃) − 𝑢𝑥𝑠𝑖𝑛𝜃

𝑢𝑧𝑢𝑥(1 − 𝑐𝑜𝑠𝜃) − 𝑢𝑦𝑠𝑖𝑛𝜃 𝑢𝑧𝑢𝑦(1 − 𝑐𝑜𝑠𝜃) + 𝑢𝑥𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 + 𝑢𝑧
2(1 − 𝑐𝑜𝑠𝜃)

] 

Updated rotation of the rock after time t  is then: 

�⃗⃡� 𝒓(𝒕) = 𝑹 ∙  �⃗⃡� 𝒓𝒐 ∙ 𝑹𝑻      …...(1.3)    
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2. Impacts 

The Rigid Body method in RocFall3 assumes both the rock and the slope are rigid bodies during impacts. 

It is assumed that there are no deformations nor break-ups. The impact theory is based on non-smooth 

dynamics developed by Dr. JJ. Moreau [2]. The impact is viewed as a non-smooth event where the 

velocities are allowed to change or jump instantaneously. The change of velocity over time is not a 

continuous/smooth function at the time of impact.  

Before the impact calculations, we rotate the rocks to a 1/2/3 (first tangential, second tangential and 

normal directions) frame. 

Impulses (dP) or the change of momentum (mass x velocity) are key to determine the outgoing velocities 

of the rock after impacts. We can write the relationship [4] as: 

  𝑑𝑣 = 𝑚−1𝑑𝑝          ……………………………(2.3a) 

where 𝑑𝑣  is the change in relative velocity (velocities between the slope and the rock), m is the effective 

mass and 𝑑𝑝  is the relative impulse. Since the slope doesn’t move and that its mass approaches infinite 

comparing to the rock, in figuring out rockfall impact problems, 𝑑𝑣  is just the change in velocity of the rock 

and the effective mass m is just the mass (M) of the rock. 

 𝑑�⃗� = 𝑀−1𝑑�⃗�    ……………………………(2.3b) 

The above velocities (𝑑�⃗� ) are at the centre of mass of the rock. During impact, change in angular 

momentum (𝑑�⃗� ) can affect the rock’s rotations as well.  

 𝑑�⃗⃗� = �⃡�−1𝑑�⃗�    ……………………………(2.4) 

where �⃗⃗�  is the angular velocities and �⃡� is the moment of inertia matrix of the rock. Change in angular 

momentum can be related to the impulses by the moment arm (r):  

𝑑�⃗� = �⃡� ∙ 𝑑�⃗�    ……………………………(2.5) 

where �⃡� is the rotational matrix from the centre of mass to the contact point. 

𝑟 = [

0 −𝑟3 𝑟2
𝑟3 0 −𝑟1

−𝑟2 𝑟1 0
]  ……………………………(2.6) 

where [

𝑟1
𝑟2
𝑟3

] = 𝐶𝑂𝑀 − 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑜𝑖𝑛𝑡 

combine (2.4) and (2.5) we get: 

𝑑�⃗⃗� = �⃡�−1 ∙ �⃡�𝑇 ∙ 𝑑�⃗�   ……………………………(2.7) 

The relationship between the rock’s contact point velocity (𝛾 ) and the centre of mass velocity (�⃗� ) and be 

expressed as follows: 

𝛾 = �⃗� + 𝑟 ∙ �⃗⃗�    ……………………………(2.8) 

To further simplify, we first define: 
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𝑤 = [

1 0 0 0 −𝑟3 𝑟2
0 1 0 𝑟3 0 −𝑟1
0 0 1 −𝑟2 𝑟1 0

] 

w is simply a rotational matrix that transforms centre of mass velocities into contact point velocities: 

𝛾 = [

𝛾1

𝛾2

𝛾3

] = �⃗⃡� ⋅ �⃗�               ……………………………(2.9) 

Then we define a mass and inertia matrix: 

𝑀 =

[
 
 
 
 
 
𝑚 0 0 0 0 0
0 𝑚 0 0 0 0
0 0 𝑚 0 0 0
0 0 0 𝐼11 𝐼21 𝐼31

0 0 0 𝐼12 𝐼22 𝐼32

0 0 0 𝐼13 𝐼23 𝐼33]
 
 
 
 
 

   

We make 𝐺 = 𝑤 ⋅ 𝑀−1 ⋅ 𝑤𝑇 and we can relate contact point velocities directly with impulses 

𝑑𝛾 = 𝐺 ∙ 𝑑�⃗�               ……………………………(2.10) 

If we know the change in contact velocities, we can obtain 𝑑�⃗� . With 𝑑�⃗� , from (2.3b) and (2.7) we can find 

the centre of mass translational and angular velocities after impact.  

 

There are many theories are how to obtain change in contact point velocities (𝑑𝛾 ). One of the most 

popular theory is through the use of coefficient of restitution 𝜀.  

𝜀 = [

𝑟𝑇 0 0
0 𝑟𝑇 0
0 0 𝑟𝑁

] 

Newton’s experimental law of Impacts states: 

𝛾 ′ = 𝜀 𝛾                 ……………………………(2.11) 

where 𝛾 is the incoming velocity and 𝛾′ is the outgoing velocity.  

𝑑𝛾 = 𝜖 ∙ 𝛾 − 𝛾 = (𝜀 − 1)𝛾  ……………………………(2.12) 

 

To summarize, to calculate rigid body impacts, we first obtain the contact point velocities from (2.8). Solve 

for change in contact point velocities with (2.12). Plug it into (2.10) to get 𝑑�⃗� . With 𝑑�⃗�  use (2.3b) and (2.7) 

to get 𝑑�⃗�  and 𝑑�⃗⃗� . 

 

One thing to note that Newton’s experimental law only described the impact in the normal direction. The 

impulse in the tangential direction is limited by the frictional force, as described by Coulomb’s Law, in the 

direction opposite to incoming tangential velocities. Therefore,  

𝑑𝑃𝑡 = 𝜇 ∙ 𝑑𝑃𝑛   ……………………………(2.13) 

However, it’s been observed this constraint limits the amount of energy loss in the tangential direction and 

is often insufficient to correctly describe rocks’ impacts with slopes. Afterall, rocks and slopes are hardly 
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infinitely rigid. Moreau [2] introduced the tangential coefficient of restitutions (𝜀𝑇) with “inelastic or …soft” 

impacts with Nonsmooth Dynamics. We decided to make this a project settings option, so the user can 

decide whether to apply this cap on tangential impulses. 

 

3. Sliding/Rolling 

The physics for rigid body rolling and sliding are the same as that of the lumped mass mode, except that 

the friction acts on the contact point and the gravitational force acts on the centre of mass. The eccentric 

frictional force affects not just the rock’s translational velocity but also its angular velocity. The diagram 

below [3] illustrates the forces acting on a rolling 2D body: 

 

Figure 3.1: Rigid body 2D object rolling (Figure 4.19 Ashayer [3]) 

 

3.1.1. Rolling 

For a rock to be considered pure rolling, the tangential contact point velocities must be very small or close 

to 0. Contact point velocities can be calculated per equation 2.8. F in Figure 3.1 above is the unknown 

frictional force that includes rolling friction and static friction. For rolling condition to hold, we need to 

compare F  to the dynamic friction force to make sure it’s smaller after all the forces are solved.  

 |𝐹| ≤ 𝜇 ∙ 𝑁   ……………………………(3.9) 

If equation 3.9 is not met, the rock is considered to start sliding during rolling. (See next section.) 
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We first define the following:  

𝒈𝟏 = �⃗⃗� ∙ 𝒕𝟏⃗⃗  ⃗ 

𝒈𝟐 = �⃗⃗� ∙ 𝒕𝟐⃗⃗  ⃗ 

𝒈𝟑 = �⃗⃗� ∙ �⃗⃗�  

where �⃗⃗� = (0, 0, −9.81) 

�⃗� = 𝑪𝑶𝑴 − 𝒄𝒐𝒏𝒕𝒂𝒄𝒕 𝒑𝒐𝒊𝒏𝒕 

 𝒂 𝑖𝑠 𝑡ℎ𝑒 𝐶𝑂𝑀 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 𝜶 𝑖𝑠 𝑡ℎ𝑒 𝐶𝑂𝑀 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

We re-write equation 4.5.1 Ashayer [3] to include the extra dimension in the balancing equations. The 

equations follow the same t1/t2/n frame. 

1) 𝑀 × 𝑔1 + 𝐹1 = 𝑀 × 𝑎1 

2) 𝑀 × 𝑔2 + 𝐹2 = 𝑀 × 𝑎2 

3) 𝑁 + 𝑀 × 𝑔3 = 𝑀 × 𝑎3 

4) −𝐹1(𝑟3) + 𝑁(𝑟1) = 𝐼22 × 𝛼2 

5) 𝐹2(𝑟3) + 𝑁(−𝑟1) = 𝐼11 × 𝛼1 

6) 𝐹1(𝑟2) − 𝐹2(𝑟1) = 𝐼33 × 𝛼3 

7) 𝑎1 = 𝑟3 × 𝛼2 − 𝑟2 × 𝛼3 

8) 𝑎2 = −𝑟3 × 𝛼1 + 𝑟1 × 𝛼3 

9) 𝑎3 = −𝑟1 × 𝛼2 + 𝑟2 × 𝛼1 

We have 9 equations and 9 unknowns (𝑎1, 𝑎2, 𝑎3 𝛼1, 𝛼2, 𝛼3, 𝐹1, 𝐹2, 𝑎𝑛𝑑 𝑁).  

Equations 3.10 describe the case where there’s no rolling friction. To introduce rolling friction we replace 

equations 1 and 2 in 3.10 with: 

1) 𝑀 × 𝑔1 + 𝐹1 + 𝑛1̂ × 𝑝1 × 𝜇𝑟 × 𝑁 = 𝑀 × 𝑎1 

2) 𝑀 × 𝑔2 + 𝐹2 + 𝑛2̂ × 𝑝2 × 𝜇𝑟 × 𝑁 = 𝑀 × 𝑎2 

where  

𝑛2̂ = 𝜔1/|𝜔1|  

𝑛1̂ = −𝜔2/|𝜔2| 

 𝑝1 =
|𝛾1|

√𝛾1
2+𝛾2

2
 and 

 𝑝2 =
|𝛾2|

√𝛾1
2+𝛾2

2
 

 

 

……(3.10) 

……(3.10b) 

……(3.11) 
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3.1.2. Rolling-Sliding 

Rolling-Sliding mode occurs when tangential contact point velocities are not 0 or if the solved static 

friction force (F) is greater than dynamic friction (𝜇 ∙ 𝑁). During sliding, the frictional force is known and is 

constant is opposite to the direction of travel [3].  

 𝐹𝐹𝑅 = 𝜇 ∙ 𝑁 

We replace equations 7 and 8 in 3.10 with:  

 𝐹1 =
−𝛾1

|𝛾1|
× 𝑝1 × 𝜇 × 𝑁 + 𝑛1̂ × 𝑝1 × 𝜇𝑟 × 𝑁 

 𝐹2 =
−𝛾2

|𝛾2|
× 𝑝2 × 𝜇 × 𝑁 + 𝑛2̂ × 𝑝2 × 𝜇𝑟 × 𝑁 

 where 𝑛1̂, 𝑛2̂, 𝑝1 and 𝑝2 can be calculated by equations 3.11. 

Equation 3.10 are now down to 7 equations with 7 unknowns (𝑎1, 𝑎2, 𝑎3, 𝛼1, 𝛼2, 𝛼3 𝑎𝑛𝑑 𝑁). 
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