Snowden – Rocscience Collaboration

Rocscience always welcomes and encourages feedback from our software users. With each program upgrade, the majority of new functionality is a direct result of the many suggestions and requests that we continually receive from our customers and colleagues worldwide. Special requests for specific new features are always seriously considered, and implemented whenever possible.

This article describes a recent addition to the strength modeling options in *Slide* (our limit equilibrium slope stability program) requested by **Snowden Geotechnical Engineering (Snowden)** in Australia. The anisotropic linear strength models were implemented based on recommendations and specifications developed by Snowden. These models were originally developed for analysis of slopes in the highly anisotropic bedded rock masses of the Pilbara iron ore formations in Western Australia. They are nevertheless applicable to similar rock masses elsewhere. These models include:

- Anisotropic Linear Strength (implemented in 2007)
- Snowden Modified Anisotropic Linear Strength (new 2011)

Slope model with anisotropic rock structure

Anisotropic Linear Strength Model

Snowden has been a user of Rocscience software for many years. In 2007 Snowden contacted Rocscience about implementing a new anisotropic strength model in our limit equilibrium slope stability program *Slide*. This is now referred to as the **Anisotropic Linear** model.

The **Anisotropic Linear** model is based on the Mohr-Coulomb criterion, and assumes that the minimum shear strength occurs in the direction of the bedding planes, and is given by cohesion and friction angle c1, phi1. As the angle to the bedding plane is varied, there is a linear increase in strength until the maximum rock mass strength is achieved, given by c2, phi2.

The **Anisotropic Linear Strength** model is intended to simulate the behaviour of certain anisotropic rock masses with a predominant weak bedding orientation. The parameters A and B allow the user to define a linear transition from bedding plane strength to rock mass strength, with respect to shear plane orientation.

Define Material Properties	ହ <mark>×</mark>
Material 1	Material 1
Material 3	Name: Material 1 Colour: 🗨 Hatch:
Material 5	Unit Weight: 20 kN/m3 Saturated U.W. 20 kN/m3
Material 7	Strength Type: Anisotropic Linear 👻
Material 9	Strength Parameters
Material 11	c1: 1 kN/m2 Phi1: 35 deg A: 0 deg
Material 13	c2: 1 kN/m2 Phi2: 35 deg B: 30 deg
Material 15 Material 16	Angle (ccw to 1): 0 degrees 2
Material 17	Water Parameters
Material 19	Water Surface: None Ru Value: 0
Сору То	Show only properties used in model

For further information see the <u>Anisotropic Linear</u> help topic.

Snowden Modified Anisotropic Linear Model

In 2011 Snowden made some refinements to the original Anisotropic Linear model, and this was implemented in *Slide* as the **Snowden Modified Anisotropic Strength** model. The Snowden Modified Anisotropic strength model is an extension of the Anisotropic Linear strength model. There are two main differences between the models.

- The bedding and rock mass strength can now be defined by non-linear shear-normal functions
- The anisotropy can be non-symmetric with respect to the bedding orientation

Non-symmetrical Anisotropic Linear Function

The Snowden Modified Anisotropic Strength model recognizes that c and phi for a typical rock mass and bedding plane is a function of the stress state within the rock mass and along the bedding plane. As a result, this model requires either a shear stress versus normal stress function or a function relating cohesion and friction angle to normal stress.

The second difference is in the transition from rock mass to bedding plane strength. For the Anisotropic Linear model the transition is through two parameters, A and B and is symmetric around the bedding plane orientation. In the Snowden Modified model, the transition is a function of 4 parameters, A1, B1, A2, B2. The transition can be non-symmetric as shown in the above figure.

Define Material Properties	ନ୍ଧ <mark>×</mark>
Define Material Properties Material 1 Material 2 Material 3 Material 3 Material 4 Material 5 Material 5 Material 6 Material 7 Material 7 Material 8 Material 9 Material 10 Material 11 Material 11 Material 12 Material 13 Material 14 Material 15 Material 15 Material 15 Material 16 Material 16 Material 16 Material 17 Material 16 Material 16 Material 17 Ma	Material 1 Name: Material 1 Colour: Hatch: Unit Weight: 20 kN/m3 Strength Type: Snowden Modified Anisotropic Strength Parameters Bedding Strength Function A1: 0 deg A2: 0 deg Rock Mass Strength Function B1: 30 deg B2: 30 deg Angle (ccw to 1): 0 degrees 2 0 deg
Material 18 Material 19 Material 20	Water Parameters Water Surface: None Ru Value: 0 Show only properties used in model OK Cancel

In the Define Material Properties dialog you can define strength functions for the bedding and rock mass, using either shear-normal or normal-cohesion-friction functions.

Defi	ne Bedding Strength Function	? ×	ηr	Def	ine Bedding Strength Fun	ction	8	x	
Functi Sh Co	ion Type: iear-Normal Function ihesion-Friction Function			Func © S © C	tion Type: hear-Normal Function ohesion-Friction Function				
	X 🖻 💼 📴 🏍 🗮				እ 🖻 🖲 💤 左 🚊				
#	Normal Stress (kPa)	Shear Stress (kPa)		#	Normal Stress (kPa)	Cohesion (kPa)	Friction Angle (degrees)	E	
1	0	0		1	0	0	70	-	
2	200	101		2	0.031548	0.025485	62.726		
3	400	195		3	4.1129	0.49594	45.67		
4	600	286		4	8.1942	1.2251	41.373		
5	800	376		5	12.275	1.7713	39.514		
6	1000	465		6	16.357	2.2834	38.242		
7	1200	553		7	20.438	2.7768	37.268		
8	1400	640		8	24.519	3.2575	36.477		
9	1600	727		9	28.601	3.7289	35.809		
10	1800	813		10	32.682	4.192	35.233		
11	2000	898		11	36.763	4.6492	34.725		
12	2200	983		12	40.845	5.1007	34.27		
13	2400	1068		13	44.926	5.5469	33.86	-	
1	Import Impo								

Snowden Modified Example

The **Snowden Modified Anisotropic** model can be used to replicate any underlying non-linear strength criterion. However, when analysing bedded rock masses, the easiest way to apply the Snowden Modified Anisotropic model is to first define the strength of the rock mass using the Generalized Hoek-Brown (GHB) failure criterion, and the strength of the bedding using the Barton-Bandis (BB) strength model. These models are two of the most common strength models used in rock engineering, and both represent the nonlinear change in strength with stress.

Once the strength is determined, it is an easy matter of using the Rocscience *RocData* program to convert both the GHB and BB strength models to Shear-Normal models. These Shear-Normal envelopes can then be imported into *Slide* using the following steps:

1. In the *RocData* Project Settings dialog, make sure the Generalized Hoek-Brown failure criterion is selected.

roiert Title	
nalysis of Rock/Soil Strength usin	g RocData
tress Units: Megapascals (MF	°a) 🔻
Strength Criterion	
Generalized Hoek-Brown	C Mohr-Coulomb
○ Barton-Bandis	C Power Curve
Generalized Hoek-Brown Modulu	s Estimation Method
C Simplified Ho	ek-Diederichs (2006)
C Hoek,Carranz	a-Torres,Corkum (2002)
Generalized H	loek-Diederichs (2006)

- 2. Enter the values for sigci, GSI, mi, D.
- 3. In the Failure Envelope Range, enter a Custom Application and a value of **sig3 max** for your slope. The resulting shear stress versus normal stress envelope should cover the range of effective normal stresses you anticipate on all possible failure surfaces.

4. In the File...Export menu, select the Slide Shear/Normal Function option.

<u>(</u>	Roc	Data - [RocData1*]	a lan dini	-CAD Wand TOTAL Distance of
/@	File	e Edit View Analysis	Window	Help
۵	۵	New	Ctrl+N	€ € € € & 1 8 8 8 5 8 2 4
-H	i 🖉	Open	Ctrl+O	
		Close		/
		Save	Ctrl+S	Hoek-Brown Classification intact uniaxial comp. strength (s
		Save As		GSI = 50 mi = 10 Disturban
		Evenert		Image File
		Export	, , , , , , , , , , , , , , , , , , ,	inage me
	۵	Page Setup		Slide Snear/Normal Function
1	D.	Print Preview		Rock Mass Parameters
-H	8	Print	Ctrl+P	tensile strength = -0.069 MPa
		Proforancos		global strength = 5.230 MPa
		Fleterences		modulus of deformation = 3686.
		Recent Folders	•	
		1 Barton Bandis Clav.roc		3
		2 GHB Weak Rock.roc		
- 6				
1	Apr	EXIT		
	-hh			ļ
		sig3max 2.0000 _ MPa	a	

- 5. In the *RocData* Project Settings dialog, change the strength criterion to Barton-Bandis and follow the same procedure described in steps 1-4.
- 6. In *Slide*, when defining the Shear-Normal functions for the Snowden Modified Anisotropic model, use the **Import** option to import the Shear-Normal function files saved in steps 4 and 5 above.

Material 1	Material 1					
Material 2						
Material 3	Name: Material 1 Colour: 💌 Hatch: 🛶					
Material 4						
Material 6	Unit Weight 20 kN/m3 Saturated U.W. 20 kN/m3					
Material 7						
Material 8	Strength Type: Snowden Modified Anisotropic 🔹					
Material 9						
Material 10	Strength Parameters					
Material 11	Redding Strength Function			<u></u>		
Material 12	Al: 10 deg A2: 10 deg				/	
Material 13	Rock Mass Strength Function B1: 20 deg B2: 10 deg	C	Define	Redding Strength Function	2	X
Material 14	IY L		Denne	bedding strength runction		
Material 15	Angle (ccw to 1): 30 degrees 2		Function	n Type:		
Material 17	1 X		Sheat	ar-Normal Function		
Material 18	Water Parameters		Color	sion Existion Exaction		
Material 19	Water Surface: None Ru Value: 0		Cone	salari nedari anciari		
Material 20						
			ШX	🖻 💼 📴 🏍 🗮		•
			#	Normal Street	Shear Strerr	
-			-	(kPa)	(kPa)	=
y 10	Show only properties used in model UK Lancel					_
			1	0	0	_
			2	0.031548	0.086677	
M			3	4.1129	4.7061	
			4	8.1942	8.4423	
			5	12.275	11.896	
			6	16 357	15 175	_
			7	20.428	19 220	_
			,	20,450	21.206	_
			8	24.519	21.386	_
			9	28.601	24.363	
			10	32.682	27.275	
			11	36.763	30.129	
			12	40.845	32.932	
			13	44.926	35.691	
						· ·

Note: This process requires version 4.011 of *RocData*.

Generalized Anisotropic versus Snowden Modified Anisotropic

Slide version 6 has other anisotropic strength models including the <u>Generalized Anisotropic</u> model. With this option you may assign ANY strength model in *Slide* to any angular orientation range. For example, you could create a material which has Generalized Hoek-Brown properties over one range and Barton-Bandis strength properties in another range.

This allows you to create a function similar to the Snowden Modified model, with some differences. The first is the anisotropic transition in strength. The Generalized Anisotropic model has no transition between the rock mass and bedding strength; the strength instantaneously changes from one angular range to another (equivalent to A=B for the Snowden models). Second, the Snowden model uses Shear-Normal envelopes instead of Generalized Hoek-Brown and Barton-Bandis envelopes.

Conclusion

Slide now offers no less than five different options for the modelling of anisotropic material strength. The Snowden Modified model is a powerful addition and extension of the earlier Anisotropic Linear model. The ability to define non-linear strength envelopes for the bedding and rock mass, with a gradual transition between the two is particularly useful. Other anisotropic models have an abrupt strength change at critical orientations, the Snowden model provides a more realistic transition of strength with orientation.

At Rocscience, software feature requests are always considered. Big or small, if there are improvements or new functionality that you would like to see in any of our software programs – just ask!