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1. Notes 

• Directional quantities such as displacement and stress are vertical unless otherwise noted.  No 
subscripts are used when denoting vertical stress and vertical displacement. 

• In keeping with geotechnical practice, all compressive stresses and strains are positive.  

• The top of the soil horizon always has a vertical (z) coordinate of 0 and vertical coordinates below 
the surface are positive.  Distances and displacements are positive downwards. 
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2. Stress 

2.1. Effective Stress 

Settlement depends on effective stress.  The effective stress is the total stress due to gravity and external 

loads minus the pore water pressure.  The vertical effective stress,   at any point is simply: 

 

𝜎 ′ = 𝜎 − 𝑢 

1 

Where  is the total vertical stress and u is the pore water pressure.  Compressive stresses are positive. 

2.2. Initial stress and pore pressure 

The initial total stress is just the stress due to gravity loading.  At any point this stress is found by 

summing the weights of the above material layers.  The weight of any given layer is the unit weight, , 

times the layer thickness.  Therefore the initial total stress at any point is: 

 

𝜎𝑖 = ∑ 𝛾𝐻 

2 

Where H is the layer thickness.  The unit weight  is set to either the saturated unit weight or the moist 

unit weight depending on whether the layer is below or above the piezometric line (water table). 

The initial pore pressure at any point is the pressure due to the weight of overlying water.  If the elevation 

of the point of interest is z and the water table is at elevation zwt, the initial pressure is: 

 

𝑢𝑖 = (𝑧 − 𝑧𝑤𝑡)𝛾𝑤𝑎𝑡𝑒𝑟      𝑧 >   𝑧𝑤𝑡 

 

𝒖𝒊 = 𝟎          𝒛 <=   𝒛𝒘𝒕 

 

3 

 

Where water is the unit weight of water.   

 

The initial effective stress can then be calculated from equations 1, 2 and 3: 

 

𝜎𝑖
′ = 𝜎𝑖 − 𝑢𝑖 

4 
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An example initial stress calculation is shown below. 

 

  

4.3 m 

6.0 m 

 = 16.0 kN/m3 

 = 17.8 kN/m3 

 = 18.1 kN/m3 

1.2 m 
San

d 

Clay 

A 

At point A 

 

i = (1.2 m)(17.8 kN/m3) + (4.3 m – 1.2 m) (18.1 kN/m3) + (6 m)(16 kN/m3) 

    = 173.5 kPa 

 

 ui = (4.3 m – 1.2 m)(9.8 kN/m3) + (6 m)(9.8 kN/m3) = 89.2 kPa 

 

water = 9.8  kN/m3 
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2.3. Stress change due to external load 

External loads such as embankments or fills can be applied in any stage.  These external loads cause a 

change in total stress depending on the geometry and magnitude of the external load.  The stress change 

can be calculated by four different methods. 

 

2.3.1. Boussinesq 

The Boussinesq method uses the theory of elasticity to calculate the vertical stress under a point load in a 

homogeneous, semi-infinite half space: 

𝜎𝐿 =
3𝑄

2𝜋𝑧2
𝑐𝑜𝑠5 𝜃 

5 

Where L is the loading stress at any point and the meaning of the other symbols are as shown. 

 

Useful solutions for stresses under different footing shapes can be obtained by integrating over the area 

of the footing.  

Z 

X 
Y 

 z 

Q 

L 
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2.3.2. 2:1 Method 

The 2:1 method assumes that the zone of influence for an applied rectangular load has a slope of 2:1 as 

shown.  The vertical loading stress at some depth is then calculated by: 

 

𝜎𝐿 =
𝑄

(𝐵 + 𝑧)(𝐿 + 𝑧)
 

6 

For a non-rectangular footing, the stress is calculated by computing the area of the load at the surface.  

With increasing depth, the area over which the load is applied increases at a 2:1 ratio and the magnitude 

of the loading stress decreases correspondingly. 

 

2.3.3. Multi-layer solution 

The complete elastic solution for an arbitrary shaped foundation resting on a layered elastic medium is 

computed by the integration of point load solution (Green’s functions). Yue (1995, 1996) has recently 

provided a computational schema to efficiently compute the point load solutions through Hankel 

transforms. The elastic state of each homogeneous material body is governed by a set of partial 

differential equations and a set of boundary conditions. In this case of homogeneous elastic layers the 

boundary conditions are the set of matching stress and displacement conditions. Hankel transformation is 

used to convert the set of partial differential equations governing each material layer to a set of ordinary 

differential equations and the respective boundary conditions to algebraic expressions. Yue (1995, 1996) 

solved the systems of ordinary differential equations with the matching boundary conditions to a set of 

algebraic system of equations, unknowns being specially constructed functions in the Hankel transform 

domain. The stresses and displacements can be obtained through combinations of the inverse transforms 

Q 

2 

1 

B 
L 

L 

z 
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of these functions. Due to extreme complexity of the functions in the Hankel transform domain, we need 

to resort to numerical methods which are computationally intensive and therefore very slow. 

For our purpose, we need to perform two levels of numerical integration: the first level of computation 

evaluates the point load solutions, and the subsequent level of computation performs numerical 

quadrature to evaluate stresses and displacements due to the distributed loading over the given area. We 

have developed an extremely efficient computational method by combining the two computational levels 

in different order. We have also enhanced the numerical accuracy by converting the area integrals into 

boundary integrals by a method developed by Vijayakumar, Yacoub and Curran (2000). This boundary 

conversion method also circumvents the numerical difficulty associated with the singularity of the point 

load solutions. For any rapidly varying stress locations such as in the vicinity of boundaries, a form of 

adaptive special subdivision scheme is used. 

 

2.3.4. Westergaard solution 

The Boussinesq equation is one the most commonly used methods for obtaining the stress distribution 

induced by an applied vertical load. In developing his point load formula, Boussinesq assumed that a soil 

medium is elastic, isotropic and homogeneous. However, most soils are neither isotropic nor homogeneous. 

In fact, many soils encountered in practice exist in layers with distinctive characteristics. In particular, when 

the soil medium is a layered stratum of fine and coarse material, such as material underneath a road 

pavement or alternating layers of clay and sand, many experts believe that the Westergaard equations give 

a better estimate for the stress.  

Westergaard assumed that an elastic soil medium is laterally reinforced by numerous, closely spaced, 

horizontal sheets of negligible thickness but of infinite rigidity. These sheets prevent the mass as a whole 

from experiencing any lateral strains. Hence, only downward vertical deformations are allowed. These 

assumptions can better represent stratified soils, in which soft layers are reinforced by strong layers. The 

effect of which is a greater lateral stress distribution than what is usually obtained from methods that assume 

isotropic elastic solids. 

Unlike the Boussinesq solution, the Westergaard equations include the Poisson’s ratio of the soil medium. 

For large lateral restraint, the Poisson’s ratio may be taken to be zero. In addition, the main effect of 

Westergaard’s assumptions is to reduce the stresses obtained directly below the center of the load as 

compared to Boussinesq. However, at a certain distance away from the center, stresses obtained from 

Westergaard begin to exceed those calculated from Boussinesq.  

For example, for radius 𝑟 and depth 𝑧 with a Poisson’s ratio 𝜈 = 0.0, Westergaard stresses are about 2 3⁄  

that of Boussinesq when 𝑟 𝑧 = 0⁄ . At 𝑟 𝑧 = 1.5⁄ , both methods give identical values, while for values where 

𝑟 𝑧 > 1.5⁄ , the Westergaard stresses are larger. 

Similar to Boussinesq, closed form expressions for the stress profiles of: 1) the center of a uniformly loaded 

circular area and 2) the corner of a uniformly loaded rectangular area are both available. Further, the 

contributions of adjacent loads can be superimposed to give the total stress at a given point. 

In general, sedimentary soils like natural clay strata accentuate the non-isotropic condition of the soil 

medium. Hence, for these cases, the Westergaard equations serve as better models for reality. However, 

practicing geotechnical engineers often prefer Boussinesq primarily because this method gives more 

conservative results. In any case, the choice of analysis depends on how closely field conditions match a 

model’s basic assumptions. 
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As described in Venkatramaiah (2006), for a soil medium with Poisson’s ratio 𝜈, the vertical stress 𝜎𝑧due to 

a point load Q as obtained by Westergaard is given by: 

𝝈𝒛 =
𝑸

𝒛𝟐

𝟏

𝟐𝝅
√

𝟏−𝟐𝝂

𝟐−𝟐𝝂

[(
𝟏−𝟐𝝂

𝟐−𝟐𝝂
)+(

𝒓

𝒛
)

𝟐
]

𝟑
𝟐

        7 

 

  

For large lateral restraint, 𝜈 may be taken as zero. The vertical stress below the center of a circular footing 

can be obtained analytically by integrating equation 7. The solution of which is given by: 

 

𝝈𝒛 = 𝒒 [𝟏 −
𝟏

√𝟏+(𝒂
𝜼𝒛⁄ )

𝟐
]           8 

 

where:   𝜂 = √
𝟏−𝟐𝝂

𝟐−𝟐𝝂
 and 

    q is a uniform load. 

 

The vertical stress below the corner of a rectangular footing can be obtained analytically by integrating 

equation 7. The solution of which is given by: 

 

𝝈𝒛 =
𝒒

𝟐𝝅
𝒄𝒐𝒕−𝟏 √(

𝟏−𝟐𝝂

𝟐−𝟐𝝂
) (

𝟏

𝒎𝟐 +
𝟏

𝒏𝟐) + (
𝟏−𝟐𝝂

𝟐−𝟐𝝂
)

𝟐

(
𝟏

𝒎𝟐𝒏𝟐)     9 

 

where:  𝑚 = 𝐿/𝑧  𝑛 = 𝑊/𝑧 

 

  L and W are the respective lengths and widths of the rectangle 

  z is the depth 

  and q is a uniform load. 

 

For the case of a square, L = B. Hence, m = n.  
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2.4. Stress change due to change in water table elevation 

If the water table is lowered, then some soil will change from being saturated to unsaturated.  This 

change in weight will cause a decrease in the total stress at all points below the original water table 

elevation.  However, the water table drop will also cause a decrease in pore pressures, and therefore the 

effective stress will increase by equation 1.  This effect is generally larger than the change in total stress; 

therefore there is generally a net increase in effective stress.  The opposite will occur for a water table 

rise. 

 

2.5. Stress change due to excavation 

When material is excavated, the weight of excavated material is calculated from the unit weight and this is 

applied as an upward stress at the bottom of the excavation.  The stress at any point below this is then 

calculated as if a stress was applied due to a negative load (section 2.3).  There is no attempt to calculate 

true three-dimensional stress changes due to excavations.  Also, no changes in water pressure are 

considered. 

 

2.6. Stress change due to rigid load 

We use a point load based (Green’s function) error minimization hybrid method for the computation of the 

stresses resulting from a loaded rigid foundation. The rigid elastic foundation problem is one of the 

important modeling problems in Civil Engineering practice. 

The entire displacement of a rigid foundation will follow a linear function with only 3 hitherto unknown 

variables. On the other hand, the traction on the elastic body will follow an unknown, but much more 

complicated functionality. The coupling between the rigid body and the elastic body lying below is done by 

minimizing the average of the square (RMS) of the difference between the displacements. Here, a 

method using linear piece-wise functions with several parameters via triangular discretizations is adopted 

(Vijayakumar et al, 2009). The elastic response of the piece-wise functions (with the unknown 

parameters) is calculated by the integration of point load solutions over the triangular discretizations. The 

point load solutions are available in the analytical form for a homogeneous elastic body and via 

numerically using the method outlined in Yue (1995, 1996) for a layered elastic body. The unknown 

parameters governing the linear functional form in each triangulation are calculated by the overall 

minimization of the RMS error as mentioned above. Once the parameters are known, the stress and 

displacement at any point in the elastic body can be calculated using the boundary quadrature method 

outlined in Vijayakumar et al, (2000). 

By performing several numerical tests, it has been found that the error minimization method is a very 

efficient and accurate method for the rigid foundation problem. 
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2.7. Horizontal Stresses 

The geostatic stresses in the x- and y-directions are calculated as:  

 

𝜎𝑥0 = 𝑘0𝜎𝑧0 10 

𝜎𝑦0 = 𝑘0𝜎𝑧0 

 

and 𝜎𝑥𝑢 = 𝜎𝑦𝑢 = 𝜎𝑧𝑢 11  

 

The dissipation of excess pore water pressure from a vertical load, Δ𝑢𝑧, is applied to the stresses in all 

directions.  
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3. Settlement 

The total settlement is the sum of three components: 

• Immediate or initial settlement 

• Settlement due to consolidation 

• Secondary settlement (creep) 
 

Each of these is calculated as follows. 

 

3.1. Immediate settlement 

3.1.1. Loading 

The immediate settlement occurs instantly after load is applied and is assumed to be linear elastic.  The 

strain for each element in a string can then be easily calculated from the 1D modulus and the total stress.  

The 1D modulus (or constrained modulus) (Es) is input directly into Settle3. The relationship between the 

1D modulus and 3D Young’s modulus (E) is: 

 

𝐸 = 𝐸𝑠

(1 + 𝜈)(1 − 2𝜈)

1 − 𝜈
 

12 

Where  is the Poisson’s Ratio.  

The vertical strain in each sublayer is calculated by: 

 

𝜀 =
𝛥𝜎

𝐸𝑠

 

13 

Where 𝛥𝜎 is the change in vertical total stress. 

Initial settlement is then calculated from these strains.  For each string, the bottom point is assumed to be 

fixed (non-moving).  The vertical displacement of the point second from bottom is then: 

 

𝛿 = 𝛥𝑧 = 𝜀ℎ 

14 

Where h is the original thickness of the bottom sublayer.  The settlement of the ith point is then the 

settlement of the point below (i+1) plus the settlement in sublayer i: 

 

𝜹𝒊 = 𝜹𝒊+𝟏 + 𝜺𝒊𝒉𝒊                             15 
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3.1.2. Unloading 

In Settle3, the user may supply an unload/reload modulus.  If unloading occurs (due to decreasing the 

magnitude of an existing load or adding an excavation) then the unload/reload modulus (Esur) is used in 

place of Es in equation 13.  If the soil is then reloaded, Esur continues to be used until the soil sublayer 

reaches its previous stress state, at which time Es is again used in equation 13 to compute strain as 

shown. 

 

3.1.3. Immediate settlement with mean stress 

By default, settlement is calculated using only the vertical stress. A more accurate analysis can be 

performed by using the three-dimensional mean stress in the calculations.  The mean stress at any point 

is the average of the volumetric stress components: 

  

h1 

h2 

h3 

3 = 3h3 

2 = 3 + 2h2 

1 = 2 + 1h1 

 

 

Loading 

Slope = Es 

Unload/reload 

Slope = Esur 
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𝜎𝑀 =
1

3
(𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧)  𝑜𝑟  𝜎𝑀 =

1

3
(𝜎1 + 𝜎2 + 𝜎3) 

16 

The Immediate Settlement is then calculated by computing the strain in each sublayer: 

 

𝜀 =
(1 + 𝜈)(𝛥𝜎) − 3𝜈(𝛥𝜎𝑀)

𝐸
 

17 

Where  is the Poisson’s Ratio, 𝛥𝜎 is the change in total vertical stress, 𝛥𝜎𝑀 is the change in mean stress 

and E is the Young’s modulus.  When mean stress is being used, Young's modulus is input directly for 

each material (not the 1D modulus). The unload/reload modulus Eur may be used in place of E as 

described above. 

The mean stress is not used in the calculation of Consolidation Settlement and Secondary Settlement 

because the relationship between strain and mean stress is not clearly defined for non-linear materials. 

 

3.2. Settlement due to consolidation 

Settlement due to consolidation progresses gradually as pore pressures dissipate and effective stresses 

increase.  The settlements are calculated from the strains in each sublayer as in equation 15, however 

the calculation of the strains depends on the type of material as follows. 

 

3.2.1. Linear 

Linear material is assumed to be linear elastic.  Therefore, the change in vertical strain for any given 

element for a change in vertical effective stress  is simply: 

 

𝛥𝜀 = 𝑚𝑣𝛥𝜎 ′ 

18 

Where mv is the one-dimensional compressibility.  During unload/reload cycles, mv is replaced with the 

unload/reload compressibility mvur.   

 

3.2.2. Non-linear 

In non-linear material, the modulus is not constant but is a function of stress.  This relationship is most 

commonly shown on a graph of void ratio versus the logarithm of effective stress as shown.   
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The void ratio in a soil is the ratio of the volume of voids to the volume of solids 

 

𝑒 =
𝑉𝑣

𝑉𝑠

 

19 

The stress level Pc is the preconsolidation stress and represents the maximum effective stress 

experienced by the soil in the past.  If a soil is experiencing an effective stress less than Pc it is 

overconsolidated.  The relationship between the void ratio and the logarithm of the effective stress is 

given by the recompression index, Cr.  A soil that has a stress greater than or equal to Pc is normally 

consolidated and its deformation is dictated by the compression index Cc.  A soil that is unloading is 

always considered overconsolidated as shown. 

For a stress change in an overconsolidated soil layer, the change in void ratio, e, can be calculated from 

the initial effective stress, i and the final effective stress, f  by: 

 

𝛥𝑒 = −𝐶𝑟 𝑙𝑜𝑔 (
𝜎𝑓

′

𝜎𝑖
′
) 

 

20 
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Vertical strain is related to void ratio by: 

 

𝜀 = −
𝛥𝑒

1 + 𝑒0

 

21 

Where e0 is the initial void ratio. 

Therefore,  

 

𝛥𝜀 =
𝐶𝑟

1 + 𝑒0

𝑙𝑜𝑔 (
𝜎𝑓

′

𝜎𝑖
′
) 

 

22 

For a normally consolidated soil, the equation is the same with Cr replaced with Cc.  It is also possible for 

a soil layer to start out overconsolidated and end up normally consolidated if the final stress is greater 

than Pc.  In this case, the vertical strain can be calculated by: 

 

𝛥𝜀 =
𝐶𝑟

1 + 𝑒0

𝑙𝑜𝑔 (
𝑃𝑐

𝜎𝑖
′
) +

𝐶𝑐

1 + 𝑒0

𝑙𝑜𝑔 (
𝜎𝑓

′

𝑃𝑐

) 

 

23 

Note that the initial stress does not necessarily have to refer to the initial in-situ stress due to gravitational 

loading.  For a multi-stage analysis, the change in strain is computed for each stage by using the effective 

stress at the start of the stage and the effective stress at the end of the stage in equation 22 or 23. 

Strains may also be calculated using strain based versions of the compression indices, Cc and Cr.  In 

this case, stress is related directly to strain, rather than void ratio so for a completely overconsolidated 

material equation 22 becomes: 

 

𝛥𝜀 = 𝐶𝑟𝜀 𝑙𝑜𝑔 (
𝜎𝑓

′

𝜎𝑖
′
) 

 

Equations involving normally consolidated material are formed similarly. 

 

3.2.3. Janbu 

The Janbu approach (Janbu, 1963, 1965) can be linear or non-linear depending on the stress exponent, 

a.  The 1D modulus, M is given by: 
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𝑀 =
𝜕𝜎

𝜕𝜀
= 𝑚𝜎𝑟

′ (
𝜎 ′

𝜎𝑟
′
)

1−𝑎

 

 

24 

Where m is a modulus number and 𝜎𝑟
′ is a reference stress, usually equal to 100 kPa.  The change in 

strain for any given change in stress is then found by integrating equation 24.  This yields: 

 

For a > 0 

 

𝛥𝜀 =
1

𝑚𝑎
[(

𝜎𝑓
′

𝜎𝑟
′
)

𝑎

− (
𝜎𝑖

′

𝜎𝑟
′
)

𝑎

] 

 

25 

For a = 0  

 

𝛥𝜀 =
1

𝑚
𝑙𝑛

𝜎𝑓
′

𝜎𝑖
′
 

 

26 

Where i and f are the initial and final effective stress for the calculation stage.  For a = 1, the Janbu 

method is the same as the linear method with  

 

𝑚 =
1

𝑚𝑣𝜎𝑟
′
   a = 1 

 

When a = 0, the Janbu method is the same as the non-linear method with 

 

𝑚 = 𝑙𝑛 10
1+𝑒0

𝐶𝑐
  a = 0 

 

These equations are written for normally consolidated soil.  For overconsolidated soils, m can be replaced 

by mr, the recompression modulus number.  Alternatively, the user can specify a constant modulus Moc 

for overconsolidated soil.  If this option is chosen, then: 
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𝑀 = 𝑀𝑜𝑐 

27 

and 

 

𝛥𝜀 =
1

𝑀𝑜𝑐

(𝜎𝑓
′ − 𝜎𝑖

′) 

28 

 

3.2.4. Koppejan 

The Koppejan method (Koppejan, 1948) computes strain with the following equation: 

 

𝜀 = (
𝑈

𝐶𝑝

+
1

𝐶𝑠

𝑙𝑜𝑔(𝑡)) 𝑙𝑛 (
𝜎𝑓

′

𝜎𝑖
′
) 

 

29 

Where U is the degree of consolidation, Cp and Cs are compression constants, t is time, i is the initial 

effective stress and f is the final effective vertical stress after loading and consolidation.  The degree of 

consolidation U is computed for any location at any time by: 

 

𝑈 = 1 −
𝑢𝑒

𝑢𝑒 + 𝜎 ′ − 𝜎𝑖
′
 

30 

Where ue is the excess pore water pressure and  is the effective stress.  For overconsolidated material, 

Cp and Cs are replaced by Cp and Cs. 

In Settle3, an incremental version is used to get the change in strain for any time step, t: 

 

𝛥𝜀 = (
𝛥𝑈

𝐶𝑝

+
1

𝐶𝑠

𝑙𝑜𝑔 (
𝑡 + 𝛥𝑡

𝑡
)) 𝑙𝑛 (

𝜎𝑓
′

𝜎𝑖
′
) 

 

31 

For the first time step, when t equals 0, the logarithm is replaced by log(t).  This equation allows the 

settlement to be calculated at intermediate times during a settlement analysis. 

The problem with the Koppejan method is how to deal with changing loads.  Traditionally, some type of 

superposition is used (see van Baars, 2003).  Since Settle3 computes the strain in an incremental 
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fashion, this is not really necessary.  Instead, Settle3 performs the following steps when a change in 

loading occurs: 

• The current effective vertical stress is recorded and used as i in subsequent time steps. 

• The degree of consolidation is calculated using the new i.  
 

3.2.5. Overconsolidation and underconsolidation 

The Non-linear and Janbu methods use the preconsolidation stress, Pc, to determine if the soil is over-

consolidated or normally consolidated.   Instead of specifying Pc you may specify either the 

overconsolidation ratio (OCR) or overconsolidation margin (OCM).   

The OCR is related to Pc by  

 

𝑂𝐶𝑅 =
𝑃𝑐

𝜎 ′
 

32 

Where  is the current effective stress.   

The OCM is related to Pc by  

 

𝑂𝐶𝑀 = 𝑃𝑐 − 𝜎 ′ 

33 

(Coduto, 1999, p391). 

 

Therefore if OCR = 1 or OCM = 0 and there is no load applied, then the material is all normally 

consolidated and each point in the soil has a Pc equal to the in-situ stress due to gravity.  When a load is 

applied, the material remains normally consolidated and Pc increases with stress. 

If OCR > 1 or OCM > 0 then the material is all overconsolidated and at each point in the soil, Pc equals 

OCR times the in-situ stress, or OCM plus the in-situ stress.  If a load is then applied, the material 

remains overconsolidated and Pc remains constant until the stress in the soil surpasses Pc at which point 

the material becomes normally consolidated and Pc increases as stress increases.   If the material is then 

unloaded, it will then become overconsolidated again and Pc will remain constant and equal to the highest 

stress attained by the soil. 

If OCR is less than 1 or if OCM is negative, then the soil is underconsolidated.  This means that there is 

still excess pore pressure in the soil due to a previous load that has not yet dissipated.  To account for 

this, Settle3 adds an excess pore pressure to all points in the soil such that  

 

𝑢𝑒 = (1 − 𝑂𝐶𝑅)𝜎𝑖
′ 

34 

Or 
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𝑢𝑒 = −𝑂𝐶𝑀 

35 

Where i is the initial (in-situ) effective stress due to gravity.  Pc is then set according to equation 32 or 

equation 33 and the material behaves as if it is normally consolidated (i.e. Cc is used to compute 

displacements in the non-linear model).  As the excess pore pressure dissipates, Pc increases as the 

effective stress increases.  Note that a material can only be underconsolidated if the ‘Time-dependent 

Consolidation Analysis’ option is turned on in the Project Settings. 

 

3.3. Secondary settlement 

Secondary settlement, or creep, can occur at a constant effective stress for some types of soils.  There 

are several different methods for computing the magnitude of secondary settlement – especially when a 

surcharge load is applied.  Settle3 implements two different methods as described in the subsequent 

sections. 

 

3.3.1. Standard method 

The magnitude of the secondary settlement is assumed to vary linearly with the logarithm of time as 

shown below. 

 

Using the void ratio at the end of primary consolidation, ep, the change in secondary vertical strain for a 

change in time from t1 to t2 is 
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𝜟𝜺𝑺 =
𝑪𝜶

𝟏 + 𝒆𝒑
𝒍𝒐𝒈

𝒕𝟐

𝒕𝟏
 

36 

The secondary displacement can then be calculated by multiplying by the layer thickness as in equations 

14 and 15. 

For linear and Janbu materials, there is no void ratio associated with them.  Therefore instead of Ca, the 

user must input the modified secondary compression index or strain based secondary compression index 

 

𝐶𝛼𝜀 =
𝐶𝛼

1 + 𝑒𝑝

 

37 

So that equation 36 becomes: 

 

𝛥𝜀𝑆 = 𝐶𝛼𝜀 𝑙𝑜𝑔
𝑡2

𝑡1

 

 

To get the time at the end of primary consolidation (tp) some degree of primary consolidation must be 

assumed.  A primary consolidation of 100% only occurs after infinite time.  Therefore a default value of 

95% primary consolidation is used as the starting point for secondary consolidation where degree of 

consolidation is 

 

𝑈 = 1 −
𝑢𝑒

𝑢𝑒0

 

38 

Where ue is the current excess pore water pressure and ue0 is the initial excess pore water pressure at 

time of load application (if different loads have been applied at different times, then ue0 is the maximum 

excess pore water pressure attained).  Note that this definition of degree of consolidation is only strictly 

valid for linear material however it is only being used here as an estimate for the start of secondary 

consolidation, so perfect accuracy is not crucial. 

The percent of primary consolidation at which to start secondary consolidation can be set by going to the 

Advanced options in the Project Settings dialog. Also in this dialog, the user can set the minimum level of 

stress required to start secondary consolidation.  It is not realistic that soil layers subjected to very small 

stress changes will creep, therefore a minimum stress must be obtained for creep to be activated.  By 

default, this is 1% of the initial stress due to gravity.  
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3.3.2. Mesri method 

With this method, a value of C / Cc is specified.  In this way, the secondary consolidation will reflect 

changes in Cc.  In Settle3, Cc remains constant, unless the material goes from overconsolidated to 

normally consolidated or vice versa.  It is understood in the Mesri method, that Cc in the ratio of C / Cc 

can refer to Cr if the material is overconsolidated.  So, for simple loading cases, the Mesri method will give 

exactly the same amount of secondary consolidation as the standard method if C / Cc is chosen 

carefully.  The differences arise in the case of surcharge loading. 

Terzaghi, Peck and Mesri (1996) describe how secondary consolidation follows a different pattern when a 

surcharge (preload) is applied and then removed.  When load is removed at time ts, there is primary 

rebound up to a time of tpr.  This is followed by a small amount of secondary rebound to a time of tl.  After 

tl, secondary compression restarts. 

 

 

 

Settlement versus time for a surcharge load, from Terzaghi et al., 1996 

 

The postsurcharge secondary compression index, C is not constant with time, as shown in the above 

figure.  It generally starts small and then increases in magnitude.  To make secondary settlement 

calculations easier, a secant index, C is proposed as shown.  The secondary compression at any time t 

after tl can then be calculated from C.  The method of calculating secondary compression for a 

surcharge load proceeds as follows: 

A surcharge is applied.  Consolidation occurs and the maximum effective vertical stress before the 

surcharge removal is vs.  The surcharge is removed, leaving behind the desired final load.  Rebound 

occurs and the effective vertical stress at the end of primary rebound is vf.  The effective surcharge ratio 

is then calculated: 
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𝑅𝑠
′ = (𝜎𝑣𝑠

′/𝜎𝑣𝑓
′) − 1 

39 

The value for Rs is then used to compute the time to the start of secondary compression tl by: 

 

𝑡𝑙 = 100𝑡𝑝𝑟(𝑅𝑠
′)

1.7
  𝑆𝑜𝑓𝑡𝑐𝑙𝑎𝑦𝑠 

𝑡𝑙 = 10𝑡𝑝𝑟𝑅𝑠
′    𝑃𝑒𝑎𝑡 

40 

Both tl and tpr are measured relative to the time of load removal, ts.  These equations are obtained from 

laboratory studies as described in Terzaghi et al. (1996), Mesri et al. (1997) and Mesri et al. (2001). 

It is assumed that no secondary settlement occurs until time tl (the secondary rebound is ignored).  To 

calculate the secondary settlement at any time t after tl, the ratio of C/C is determined from one of the 

following charts, depending on the material type.  Charts are obtained from Terzaghi et al. (1996), Mesri 

et al. (1997) and Mesri et al. (2001). 
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With the Mesri method, a value of C / Cc is generally specified.  Therefore the secondary strain at time t 

is:   

 

𝛥𝜀𝑆 =
𝐶𝑐

1 + 𝑒𝑝

𝐶𝛼

𝐶𝑐

𝐶𝛼
″

𝐶𝛼
𝑙𝑜𝑔

𝑡

𝑡𝑙
 

41 

 

3.4. Hydroconsolidation settlement 

Some soils are very sensitive to moisture content and may experience swelling or collapse due to wetting.  

In arid and semi-arid climates, natural soils and man-made fills have been known to experience 

considerable volume reduction as moisture content increases due to irrigation, urbanization etc.  

Hydroconsolidation in Settle3 accounts for these settlements. 

Soil collapse, or hydroconsolidation, occurs when a loose clayey sand is exposed to water and the clay 

bonds break causing significant volume reduction.  The amount of collapse depends on the stress.  At 

very low stresses, these soils may actually experience swelling.   

To quantify the hydroconsolidation behaviour, it is common to perform a series of oedometer tests in 

which the sample is loaded to a certain stress state and then saturated.  The change in void ratio (or 

strain) due to wetting is then measured (see w in the figure below).  From a series of such tests, a curve 

of compaction versus stress can be created.   

Middleton Peat 
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Alternatively, one could simply run two oedometer tests: one with ‘dry’ material and one with wet.  The 

difference in the two curves can then be used to get a curve of compaction versus stress (see w in the 

figure below). 

 

In Settle3, a table of values for w (change in strain) or e (change in void ratio) at different stress states 

is entered.  A hydroconsolidation region is specified.  Hydroconsolidation can then occur through two 

possible mechanisms: 

1. The water table is raised.  When this happens, the soil will collapse if it is within the 
hydroconsolidation region that was previously dry, and then becomes wet.  Note that soil that is 
below the water table in Stage 1 is assumed to be collapsed already and will not collapse further. 

2. A wetting stage can be specified.  This might simulate a broken water pipe or some other wetting 
mechanism that does not necessarily raise the water table.  At this stage and within the specified 
region, the soil will collapse. 

 

The collapse in the soil is calculated by first calculating the stress at the centre of each sublayer in the 

collapsing region.  From this stress, the change in strain is determined and applied according to the user-

defined strain versus stress relationship.  Therefore an instant collapse (or swelling) is observed.   

By default, Settle3 assumes unsaturated unit weight for a wetted material above the water table.  

However you can force the program to consider the saturated unit weight by checking the appropriate box 

in the hydroconsolidation material parameters dialog.  If this option is chosen, the saturated unit weight is 

only used in  calculating the hydroconsolidation settlement.  It will not change the stresses plotted in 

graphs and contour plots and it will not affect calculation of other settlements (immediate, consolidation or 

secondary). 
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4. Pore pressures 

4.1. Initial pore pressure 

The initial pore pressure at any point is the pressure due to the weight of overlying water as given in 

equation 3: 

 

𝒖𝒊 = 𝟎          𝒛 <=   𝒛𝒘𝒕.   

 

4.2. Excess pore pressure when load is applied 

By default, when a load is applied, the pore pressure at each node increases by an amount equal to the 

change in vertical stress at that node: 

 

𝛥𝑢 = 𝛥𝜎 

42 

The excess pore pressure is then simply the pore pressure minus the initial pore pressure due to gravity: 

 

𝑢𝑒 = 𝑢 − 𝑢𝑖 

43 

A more accurate approach is to set the change in pore pressure equal to the change in undrained mean 

stress.  This can be accomplished by choosing the Use mean 3D stress option in the Project Settings 

(Advanced).  The undrained mean stress is the average of the volumetric stress components for an 

undrained (incompressible) material:  

 

𝜎𝑀
𝑢𝑛𝑑𝑟𝑎𝑖𝑛𝑒𝑑 =

1

3
(𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧)

𝜈=0.5
 𝑜𝑟 𝜎𝑀

𝑢𝑛𝑑𝑟𝑎𝑖𝑛𝑒𝑑 =
1

3
(𝜎1 + 𝜎2 + 𝜎3)𝜈=0.5 

44 

An undrained material has a Poisson’s ratio  = 0.5. 

Setting the initial pore pressure equal to the initial stress is only strictly true for a fluid of infinite stiffness in 

a fully saturated soil.  For partially saturated material, the pore spaces are partly filled with air.  In this 

case the pore fluid (air + water) cannot be considered infinitely stiff.  Therefore some load is initially 

carried by the soil matrix.  To account for this effect, the user can specify the Skempton pore pressure 

coefficient B such that 

 

𝛥𝑢 = 𝐵(𝛥𝜎𝑀
𝑢𝑛𝑑𝑟𝑎𝑖𝑛𝑒𝑑) 

45 
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 (Skempton, 1954).   

 

The coefficient B ranges from 0 for dry soil to 1 for fully saturated soil.  If only vertical stresses are being 

used, then the parameter 𝐵̄ is set such that  

𝛥𝑢 = 𝐵̄(𝛥𝜎) 

46 

By default in Settle3, B or𝐵̄ = 1. 

 

4.2.1. Excess pore pressure above water table 

By default, the soil is assumed to be dry above the water table, so an applied load does not generate 

excess pore pressure above the water table. 

If you want the soil to behave as if it were saturated above the water table, then you can select the 

Generate excess pore pressures above water table checkbox under the Groundwater tab of the 

Project Settings dialog. In this case, applied loads will generate excess pore pressure above the water 

table, as if the material were saturated with 𝐵̄ = 1. 

 

4.3. Pore pressure dissipation 

4.3.1. Vertical flow 

Vertical consolidation is dictated by Terzaghi’s 1D consolidation equation: 

 

𝜕𝑢

𝜕𝑡
= 𝑐𝑣

𝜕2𝑢𝑒

𝜕𝑧2
 

47 

Where ue is the excess pore pressure, cv is the coefficient of consolidation and z is the vertical distance 

below the ground surface.  The excess pressure at any time is calculated from this equation and is then 

used to calculate the effective stress (equation 1).  Strains can then be calculated depending on the 

material type and the strains are used to calculate settlement (equations 14 and 15).   

This equation can be solved analytically for a single layer with linear stiffness.  For multiple layers with 

differing coefficients of consolidation and different thicknesses, a finite difference approach can be used 

to solve for the pore pressure. This is the approach adopted by Settle3. 

If the problem domain is discretized in time and space as shown below, equation 47 can be replaced by: 

 

𝜕𝑢

𝜕𝑡
=

𝑢𝑖,𝑡+𝛥𝑡 − 𝑢𝑖,𝑡

𝛥𝑡
 

48 
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𝑐𝑣

𝜕2𝑢

𝜕𝑧2
= (1 − 𝜑) {

𝑐𝑣

(𝛥ℎ)2
[𝑢𝑖−1,𝑡 − 2𝑢𝑖,𝑡 + 𝑢𝑖+1,𝑡]} + 𝜑 {

𝑐𝑣

(𝛥ℎ)2
[𝑢𝑖−1,𝑡+𝛥𝑡 − 2𝑢𝑖,𝑡+𝛥𝑡 + 𝑢𝑖+1,𝑡+𝛥𝑡]} 

 

Where  is a time weighting parameter.  In Settle3,  = 0.5.  Note that we have dropped the subscript, e, 

that indicates excess pore pressure.  These equations still refer to excess pore pressure but the subscript 

has been dropped to simplify the notation.   

 

 

Explicit solution 

This equation can then be solved implicitly or explicitly.  The explicit solution calculates the pressure at 

time t+t for each node sequentially.  Initial excess pore pressures at time t are calculated for all nodes 

according to equation 45 or 46.  The pore pressure at time t+t for node i is then calculated by 

rearranging equation 48 to give: 

 

𝑢𝑖,𝑡+𝛥𝑡 = 𝑢𝑖,𝑡 +
1

2

𝑐𝑣𝛥𝑡

(𝛥ℎ)2 + 𝛥𝑡𝑐𝑣

(𝑢𝑖−1,𝑡 + 𝑢𝑖+1,𝑡 + 𝑢𝑖−1,𝑡+𝛥𝑡 + 𝑢𝑖+1,𝑡+𝛥𝑡) + [1 +
𝑐𝑣𝛥𝑡

(𝛥ℎ)2
−

𝑐𝑣𝛥𝑡

(𝛥ℎ)2 + 𝛥𝑡𝑐𝑣

] 𝑢𝑖,𝑡 

 

Note that the solution for pressure at node i depends on the pressure at node i+1, which has not yet been 

calculated, so the solution requires iterations. 

In addition, the timestep, t, must be small to ensure stability: 

 

𝛥𝑡 < 𝛽
(𝛥ℎ2)

𝑐𝑣
  explicit 

t 

ui,t ui,t+t 

ui-1,t 

ui+1,t 

hi-1 

hi 

z 

time 
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Where  is a dimensionless factor that must be less than 0.5.  For accurate results,  is set to 0.2 in 

Settle3. 

 

Implicit solution 

For models with long time scales, the explicit solution can be slow, therefore an implicit solution is also 

implemented in Settle3.  To perform the implicit analysis, equation 48 is rearranged such that all the 

pressures at time t+t are on the left hand side: 

 

𝑢𝑖−1,𝑡+𝛥𝑡 − (2 +
2(𝛥ℎ)2

𝑐𝑣𝛥𝑡
) 𝑢𝑖,𝑡+𝛥𝑡 + 𝑢𝑖+1,𝑡+𝛥𝑡 = −𝑢𝑖−1,𝑡 + (2 −

2(𝛥ℎ)2

𝑐𝑣𝛥𝑡
) 𝑢𝑖,𝑡 − 𝑢𝑖+1,𝑡 

 

One equation of this form is written for each node.  This leads to a system of linear algebraic equations 

that can be solved simultaneously using matrix inversion.  The system is unconditionally stable, 

regardless of t, however results are poor if t is too low: 

 

𝛥𝑡 >
1

3

(𝛥ℎ)2

𝑐𝑣
  implicit 

 

(Abid and Pyrah, 1988) 

 

Choice of solution method 

In Settle3, explicit timesteps are executed until the time is greater than the minimum timestep required for 

the implicit approach.  The solution then switches to the implicit approach for the remainder of the 

solution.  As the implicit solution progresses, the timestep is gradually increased.  This speeds up the 

solution without loss of accuracy because of decreasing pore pressure gradients. 

 

Non-uniform material 

Most models will not have a constant value for h or cv since different material layers will be present.  To 

account for this, the equations are adjusted slightly.  All ui+1 terms are multiplied by a factor ai: 

 

𝛼𝑖 =
𝑘𝑖

𝑘𝑖−1

ℎ𝑖−1

ℎ𝑖

 

 

Where ki-1 , ki are the permeabilities of the sublayers above and below the node,  

 hi-1 , hi are the thicknesses of the sublayers above and below the node. 
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All ui terms are split into two pieces so for example, in the implicit solution, the term for ui,t+t becomes: 

 

(2 +
2(𝛥ℎ)2

𝑐𝑣𝛥𝑡
) 𝑢𝑖,𝑡+𝛥𝑡  →  (1 + 𝛼𝑖 +

(𝛥ℎ)2

(𝑐𝑣)𝑖𝛥𝑡
+

(𝛥ℎ𝑖+1)2

(𝑐𝑣)𝑖+1𝛥𝑡
) 𝑢𝑖,𝑡+𝛥𝑡 

 

Nodes on the boundaries can be drained or undrained.  For a drained boundary, the pressure is set to 0 

and the calculations are not performed at this node.  An undrained node on the boundary is assumed to 

be impermeable.  To account for this, a dummy node is generated to permit the finite difference 

calculation to proceed.  For example, if the bottom node is impermeable, then a dummy node is created 

below the bottom node.  The distance between the bottom node and the dummy node is the same as the 

distance between the bottom node and the node second from bottom.  The pressure on the dummy node 

is assigned a pressure equal to the pressure of the node second from bottom.  In this way, there will be 

no flow across the bottom node. 

 

 

4.3.2. Horizontal flow due to drains 

Drains may be added to speed consolidation by permitting horizontal flow.  If an array of drains is 

constructed, then the distance the water must flow to the nearest drain is short and the pore pressure 

dissipation will be greatly accelerated.  In addition, the horizontal permeability is often greater than the 

vertical permeability so horizontal flow is faster than vertical flow. 

In general, an array of drains is constructed in a square or triangular pattern. 

 

Soil 

h 

h Impermeable boundary 

un-1 

un 

un-1 

Dummy node 
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These drain patterns ensure that the entire area within the grid is being drained.  Each drain therefore has 

associated with it a zone of influence.  It is assumed that horizontal flow occurs only toward the drain 

within this zone of influence, i.e. the edge of each zone of influence is an impermeable boundary.  For a 

triangular array, the zone of influence is hexagonal and for a square array, the zone is square.  To 

simplify the mathematics, each zone of influence is assumed to be circular and the diameter of the 

equivalent circle is calculated as follows: 

  

De = 1.13D   Square pattern 

De = 1.05D   Triangular pattern 

 

Where D is the actual spacing between the drains as shown. 

For each drain, the pore pressure at any given point in the zone of influence at any given time can be 

calculated analytically using the radial flow equation.  The average pore pressure within the zone of 

influence can then be calculated at any time.  This average value will be the same for all drains, therefore 

everywhere within the drain array is assumed to have the same pore pressure at any given time. 

To make the equations more realistic, a smear zone can be included.  When a drain is constructed, the 

soil close to the drain walls is disturbed forming a smear zone.  The permeability in the smear zone may 

be lower than the permeability of the undisturbed soil and this will affect the pore pressure dissipation.  

The geometry of the problem for a single drain is shown below: 

 

De 

Square pattern 

drain 

Triangular pattern 

D 

De 
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The excess pore pressure within the drain array is then calculated by (Barron, 1948): 

 

𝑢𝑒 = 𝑢𝑒0 𝑒𝑥𝑝 (
−8𝑇𝑟

𝜇
) 

 

49 

Where 𝑇𝑟 =
𝑐ℎ

𝐷𝑒
2, ch is the horizontal consolidation coefficient and  is a function of the drain geometry: 

 

𝜇 =
𝑛2

𝑛2 − 𝑆2
𝑙𝑛 (

𝑛

𝑆
) − 0.75 +

𝑆2

4𝑛2
+

𝑘ℎ

𝑘𝑠

(
𝑛2 − 𝑆2

𝑛2
) 𝑙𝑛 𝑆 
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𝒏 =
𝑫𝒆

𝒅
 

 

𝑆 =
𝑑𝑠

𝑑
 

 

And 
𝑘ℎ

𝑘𝑠
 is the ratio of horizontal permeability in the undisturbed zone to permeability in the smear zone.  A 

common value of S is about 1.5–3 (Hansbo, 1979).  If S = 1 and 
𝑘ℎ

𝑘𝑠
= 1, then there is no smear zone. 

 

Equivalent diameter of band shaped drains 

Wick drains are generally not cylindrical as assumed in the above equations.  Kjellman (1948) showed 

that the draining effect of a drain depends on the circumference of its cross section and not on the cross-

sectional area.  Therefore the equivalent diameter of a band shaped drain with width b and thickness t is 

 

𝑑 =
2(𝑏 + 𝑡)

𝜋
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Well resistance 

The above equations assume that the drain itself has an infinite permeability.  In fact this is not the case 

and for long drains, the well resistance may slow down fluid flow.  To account for this,  in equation 49 

should be replaced by r (Hansbo, 1981) 

 

𝜇𝑟 = 𝜇 + 𝜋𝑧(2𝑙 − 𝑧)𝑘ℎ/𝑞𝑤 

 

Where l is the length of the well, z is the distance from the top of the well, kh is the horizontal permeability 

of the clay and qw is the discharge capacity of the well (volume / time).  If the well drains at both the top 

and the bottom (i.e. the bottom intersects a highly permeable layer), the l is set to half the length of the 

drain. 

 

A Note on permeability 

Although equation 49 uses ch to compute the pore pressure decrease due to drains, most practitioners 

will likely not have this information.  In Settle3, the user may choose to enter the permeability, kh instead.  

The value for ch will then be calculated from the vertical stiffness (see section 4.4).  This is not strictly 

correct since the horizontal stiffness should be used in the calculation, however it is thought that the error 

introduced with this method will be small compared to the uncertainty in the input permeability. 

 



 35  rocscience.com 

4.3.3. Horizontal and vertical flow 

The pore pressure at any time is a function of pressure loss due to vertical drainage and pressure loss 

due to horizontal flow into drains.  To compute the total pore pressure at each time step, the pressure due 

to vertical flow is calculated first using the finite difference approach in equation 48.  This pressure is then 

used as the starting pressure for the calculation of equation 49 that accounts for pressure loss due to 

vertical drains.  The result of equation 49 is then the ultimate pressure for the timestep. 

 

4.4. Permeability and Coefficient of Consolidation 

To solve for pore pressures in a multi-layered material, both the material permeability (k) and material 

coefficient of consolidation (cv) are required.  However in Settle3, the user only needs to specify one or 

the other of these quantities.  This is because these quantities are not independent and are related to 

each other through the material stiffness.  The material stiffness depends on the material type.  Therefore 

if the user enters cv, permeabilities are calculated as follows: 

 

𝑘 = 𝑐𝑣𝑚𝑣𝛾𝑤   linear material 

 

𝑘 =
𝑐𝑣𝐶𝑐𝛾𝑤

2.3(1+𝑒0)𝜎𝑧𝑖
′
  non-linear material 
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𝑘 =
𝑐𝑣𝛾𝑤

𝑚𝜎𝑟
′(

𝜎𝑧𝑖
′

𝜎𝑟
′
)

1−𝑎  Janbu material 

 

𝑘 =
𝑐𝑣𝛾𝑤

𝐶𝑝𝜎𝑧𝑖
′
   Koppejan material 

 

Where 𝜎𝑧𝑖
′ is the initial effective stress and w is the unit weight of pore water.  For overconsolidated 

material, cv is replaced by cvr, Cc is replaced by Cr, m is replaced by mr and Cp is replace by Cp. 

If the user enters k instead, then equation 52 can be rearranged to obtain cv. 

 

4.4.1. Variable permeability 

It is often observed that increasing stress in a soil causes a permeability decrease as porosity (and void 

ratio) decreases.  Several relationships have been proposed to mathematically account for changing 

permeabilities with changing stress.  Settle3 currently implements two different relationships as described 

below. 
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The changing permeability is accounted for in Settle3 by computing stress (and/or void ratio) at the start 

of each stage and setting the permeability for the duration of the stage.  Permeability does not change 

during a stage.  If the material permeability is very sensitive to stress changes and the stress is changing 

rapidly, then the user should specify many stages of short duration to ensure accurate results. 

 

Changing permeability with changing void ratio 

Terzaghi et al. (1996) give the following relationship: 

 

𝐶𝑘 =
𝛥𝑒

𝛥 𝑙𝑜𝑔 𝑘
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Where e is the void ratio, k is the permeability and Ck is a unitless parameter to be specified by the user.  

This equation cannot be used for Linear or Janbu material since no void ratio is specified for these 

material types. 

It is up to the user to specify Ck, however Tavenas et al. (1983) propose the following empirical 

relationship between Ck and e for soft clay and silt deposits: 

 

𝐶𝑘

𝑒0

= 0.50 
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Permeability is a function of effective stress 

Vaughan (1989) proposed that the permeability, k, varies exponentially with the mean effective stress, : 

 

𝒌 = 𝒌𝟎 𝒆𝒙𝒑(−𝑩𝝈′)  
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Where k0 is the permeability at zero mean effective stress and B is a user-specified material property with 

units of AREA/FORCE.  This B should not be confused with the Skempton pore pressure coefficient – a 

completely different parameter.  In Settle3, vertical stress is used instead of mean stress in equation 56. 

 

4.5. Degree of consolidation 

The degree of consolidation is a number between 0 – 100% that indicates the stage of consolidation (0 

for completely unconsolidated to 100% for totally consolidated).  Lambe and Whitman (1969) give two 

definitions for degree of consolidation.  The first is: 
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𝑈 =
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑎𝑡 𝑒𝑛𝑑 𝑜𝑓 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
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This is the equation used by Settle3, where consolidation settlements are used in the calculation (not total 

settlements).   

However, for some situations, namely when 𝐵̄ < 1, then this may be unsatisfactory.  When 𝐵̄ < 1, or when 

the mean stress is used to calculate settlements, the applied load is not completely balanced by excess 

pore pressures so there is some instant settlement.  In these cases you will see the degree of 

consolidation start from some non-zero value and progress to 100% as excess pore pressures dissipate.  

This may not be what you want, so Settle3 also provides another indicator for U called Average Degree of 

Consolidation.  This follows the second method of calculation in Lambe and Whitman (1969) and the 

calculation is performed as follows: 

First, at each point below the surface, the consolidation ratio is calculated: 

 

𝑈𝑧 = 1 −
𝑢𝑒

𝑢𝑝𝑒𝑎𝑘

 

 

Where ue is the excess pore pressure and upeak is the maximum excess pore pressure in the past.  These 

values are then summed over the thickness of a material layer as shown in the figure below. In this way, 

an average degree of consolidation can be calculated for each material layer. 

 

For a linear material with 𝐵̄ = 1, the values for U and Uavg are equal.  In other cases they are not.  It is up 

to the user to decide which indicator is most appropriate.  Keep in mind however, that U reflects the 

consolidation of all soil below the point of interest, whereas Uavg reflects the consolidation of each material 

layer independently. 

given t 

Uz 

z 

areatotal

areashaded
U =
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5. Buoyancy 

5.1. Buoyancy effect 

In practice, as settlement occurs, the stresses at a given point in the soil will change due to a buoyancy 

effect. The buoyancy effect can be described as follows: As a point moves downwards, it descends 

further below the water table. This causes a pore pressure increase at the point and therefore an effective 

stress decrease. 

In addition, if soil that was originally above the water table settles below the water table, then the soil 

becomes saturated and its unit weight may increase.  This causes an effective stress increase at all 

points below the submerged soil. 

 

5.2. Buoyancy in Settle3 

In Settle3, the buoyancy effect can be accounted for by selecting the Include buoyancy effect checkbox 

found in the Advanced option under the General tab of the Project Settings dialog. When this option is 

turned on, Settle3 will account for buoyancy by following these steps for each stage: 

 

1. Settlement is calculated due to changes in applied load, changes in the water table, excavations 
or changes in excess pore pressure (for time-dependent analysis). 

2. The change in stress due to buoyancy effects is computed. 
3. This stress change is applied and the settlement is recomputed. 
4. Steps 2 and 3 are repeated until the difference in settlement between two iterations falls below 

some tolerance. 
 

In Settle3, the total settlement is the sum of immediate settlement, consolidation settlement and 

secondary settlement (creep).  The way that each of these is affected by buoyancy is described below: 

• Immediate settlement: Immediate settlement only depends on total stress, not effective stress.  

Therefore pore pressure changes due to settlement have no effect on the immediate settlement.  

However, changing unit weights of material descending below the water table will affect the 

immediate settlement.  Also, the immediate settlement affects the consolidation settlement since 

changing pore pressures do influence the consolidation settlement. 

• Consolidation settlement:  Changes in pore pressure due to immediate, consolidation and secondary 

settlement will change the effective stress and will therefore influence the consolidation settlement.   

• Secondary settlement:  Buoyancy does not affect secondary settlement because the amount of 

secondary settlement does not depend on stress – only time.  Note however, that the secondary 

settlement will affect the calculation of consolidation settlement since secondary settlement produces 

pore pressure (and therefore effective stress) changes. 
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5.3. Assumptions 

1. When material settles below the water table and its unit weight changes, this stress change does 
not affect all underlying points equally since the settlement does not have an infinite horizontal 
extent.  The stress change at each point below the water table is therefore calculated by 
multiplying the stress change by an influence factor.  The influence factor is the influence factor of 
the most recently applied load.  This assumption may lead to inaccuracies if the most recently 
applied load is not the load that is having the most effect on the settlement. 

2. In a time-dependent analysis, the buoyancy effect should increase gradually as settlement occurs 
with time. In Settle3, the buoyancy effect is only calculated at the end of each stage, therefore 
small inaccuracies will result.  To improve the accuracy of the time-dependent results, you could 
include more stages in the analysis. 

3. The water table can never be higher than the current ground surface elevation (except for the 
case of embankment loads, see number 4). This means that a water table at the surface will 
actually move downwards as settlement occurs to maintain the water table at the top of the soil.  
The stress effect of this moving water table is multiplied by influence factors as in assumption 1. 

4. For embankment loads, if the embankment settles partially below the water table, the water table 
will extend into the embankment material and therefore there will be no change in the water table 
height. If the embankment settles completely below the water table, the water table cannot be 
higher than the top surface of the embankment, therefore the water table is lowered as in 
assumption 3. 

5. As settlement occurs, it is assumed that the density of material increases such that the 
compaction of a material layer does not change its weight.  To account for decreasing soil weight 
due to compaction, see section 6. 
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5.4. Buoyancy examples 

5.4.1. Infinite embankment, water table at the ground surface 

 

 

 

A 

t 

h 

2 

1 

γfill 

γsoil 

 

At point A prior to settlement,  

 

  

Assume an embankment of infinite extent, thickness = t, unit weight = γfill 

The soil has a saturated and unsaturated unit weight both equal to γsoil 

The water table is at the surface and the water unit weight is γ

At point A after settlement,  

 

  

We assume no change in weight of overlying material, therefore the 

change in effective stress due to settlement is simply the change in 

pore pressure: 
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5.4.2. Finite load, water table at depth 

 

 

1 

 

 
1 At a distance, z beneath the centre of a circular load of radius r, the influence factor is 

 𝐼(𝑧) = 1 − {
1

1+(𝑟/𝑧)2}

3

2
 

B 

h1 

h2 

2 

1 

γmoist 

γsat 

Assume a circular load of radius r and magnitude F.  The soil has a moist unit weight of γmoist 

above the water table, and a saturated unit weight of γsat. 

The water table is at a depth of h1 and the water unit weight is γw 

A 

Load F, radius = r  

 

At point B the change in pore pressure is,  

  

And the change in stress due to changing weight of overlying material is: 

  

Therefore the change in effective stress due to settlement is: 
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6. Stress correction due to compaction 

6.1. Compaction effect 

As settlement occurs, the stress at a given point in the soil may decrease as the above layers compact 

and their weight decreases.  In Settle3, you can account for this effect by selecting the Include vertical 

stress reduction due to settlement above a point checkbox found in the Advanced option under the 

General tab of the Project Settings dialog.  The compaction effect also includes the effect of soil above 

the water table settling below the water table and therefore experiencing a change in unit weight.   

Settle3 corrects for compaction by following these steps for each stage: 

 

1. Settlement is calculated due to changes in applied load, changes in the water table, excavations 
or changes in excess pore pressure (for time-dependent analysis). 

2. The change in stress due to compaction effects is computed. 
3. This change in stress is applied and the settlement is recomputed. 
4. Steps 2 and 3 are repeated until the difference in settlement between two iterations falls below 

some tolerance. 
 

The same analysis is performed for immediate settlement and consolidation settlement.  Compaction 

does not affect secondary settlement because the amount of secondary settlement does not depend on 

stress – only time.  Note however, that the secondary settlement WILL affect the consolidation settlement. 

In Settle3, the following assumptions are made: 

1. If the compaction correction is turned on, it is assumed that the density of soil does not change as 
it compacts.  In reality there will probably be some increase in density – therefore Settle3 will tend 
to ‘overcorrect’ for compaction. 

2. For a load of finite extent, the stress change does not affect all underlying points equally since the 
settlement does not have an infinite horizontal extent.  The stress change at each point below the 
load is therefore calculated by multiplying the stress change by an influence factor.  The influence 
factor is the influence factor of the most recently applied load.  This assumption may lead to 
inaccuracies if the most recently applied load is not the load that is having the most effect on the 
settlement. 

3. In a time-dependent analysis, the compaction effect should increase gradually as settlement 
occurs with time. In Settle3, the compaction effect is only calculated at the end of each stage, 
therefore small inaccuracies will result.  To improve the accuracy of the time-dependent results, 
you could include more stages in the analysis. 
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6.2. Compaction Correction Examples 

6.2.1. Infinite embankment, water table at the surface 

 

 

A 

t 

h 

2 

1 

γfill 

γsoil 

 

At point A prior to settlement,  

 

  

Assume an embankment of infinite extent, thickness = t, unit weight = γfill 

The soil has a saturated and unsaturated unit weight both equal to γsoil 

The water table is at the surface and the water unit weight is γ

At point A after settlement,  

 

  

We assume there is no change in pore pressure, therefore the 

change in effective stress due to settlement is: 
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6.2.2. Finite load, water table at depth 

 

 

2 

 

 
2 At a distance, z beneath the centre of a circular load of radius r, the influence factor is 

 𝐼(𝑧) = 1 − {
1

1+(𝑟/𝑧)2}

3

2
 

A 

h1 

h2 

2 

1 γmoist 

γsat 

Assume a circular load of radius r and magnitude F.  The soil has a moist unit weight of γmoist 

above the water table, and a saturated unit weight of γsat. 

The water table is at a depth of h1 

Load F, radius = r  

The difference between these two stresses is  

 

 

 

We assume there is no change in pore pressure.  Therefore to get the change in 

effective stress due to settlement, multiply the above difference by the influence factor: 

 

At point A prior to settlement,  

 

 

 

At point A after settlement, we can calculate 

the stress state as if the settlement was 

infinite in horizontal extent,  
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7. Empirical Methods 

A suite of empirical methods exist for calculating immediate settlement in cohesionless soil.  These 

methods are generally based on data from field tests (Standard Penetration Test, Cone Penetration Test, 

etc.) and require little user input.  In general, settlement can only be calculated for regular shaped loads 

(rectangles and circles).  Several of these methods are implemented in Settle3 as described below. 

 

7.1. Schmertmann Approximation 

The Schmertmann method (1970) calculates settlement from layer stiffness data or cone tip bearing 

resistances, qc obtained from a Cone Penetration Test (CPT).  The method proposed a simplified 

triangular strain distribution and calculates the settlement accordingly.  A time factor can also be included 

to account for time dependent (creep) effects. 

 

7.1.1. Settlement calculation 

The equation for settlement is: 

 

𝛿 = 𝐶1𝐶𝑡𝛥𝑃 ∑
𝛥𝑧𝑖

𝐸𝑠𝑖

𝐼𝑧𝑖

𝑛

𝑖=1
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Where 

C1 = the correction to account for strain relief from excavated soil, 1 −
𝜎𝑜𝑑

′

2𝛥𝑃
 

od = effective overburden pressure at bottom of the footing 

P = the net applied footing pressure (L − od) 

Ct = correction for time-dependent creep, 1 + 0.2 𝑙𝑜𝑔(10𝑡) 

t = time (years) 

Esi = one-dimensional elastic modulus of soil layer i 

zi = thickness of soil layer i 

Izi = the influence factor at the centre of soil layer i as described below. 

The influence factor, Iz is based on an approximation of strain distributions below the footing.  Two 

different ways have been proposed to calculate these factors. 

 

7.1.2. Influence factors from Schmertmann (1970) 

The simplest approach is to assume that the strain influence factor Iz increases linearly from zero at the 

bottom of the footing to a maximum of 0.6 at a depth of ½B below the footing where B is the footing width.  
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The strain influence factor then decreases linearly to zero at a depth of 2B below the footing bottom.  This 

distribution is shown below. 

 

Strain influence factors from Schmertmann (1970) 

 

7.1.3. Modified influence factors from Schmertmann et al. (1978) 

A modified version of the Shertmann approach considers the shape of the load when calculating the 

strain influence factors.  With this approach, the peak value for Iz is calculated by 

 

𝐼𝑧𝑝 = 0.5 + 0.1 (
𝛥𝑃

𝜎𝑜𝑝
′
) 
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Where op is the overburden pressure at the depth of Izp. 

The depth of Izp depends on the shape of the load.  For an axisymmetric load (a circle or a square), Izp 

occurs at a depth of B/2.  For the plane strain case (length of the load is > 10 the width), the Izp occurs at 

a depth of B.  The values for Iz (shown in the figure below) are calculated as follows: 

• Axisymmetric: Iz varies linearly from 0.1 at the bottom of the footing to Izp at a depth of B/2.  The 

strain influence factor then decreases to zero at a depth of 2B. 

D 

0.6 

Strain Influence factor, Iz 

B/2 

2B 

B 

0 

0 0.3 
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• Plane strain: Iz varies linearly from 0.2 at the bottom of the footing to Izp at a depth of B.  The strain 

influence factor then decreases to zero at a depth of 4B. 

In Settle3, Iz is calculated using the axisymmetric equations for circle and square loads.  For rectangular 

loads in which the length is greater than ten times the width, the plane strain approach is used.  For 

rectangular loads in which the length is less than ten times the width, a linear interpolation between the 

axisymmetric and plane strain case is performed, dependent on the length to width ratio. 

 

Strain influence factors from Schmertmann et al. (1978). 

 

7.1.4. Elastic modulus 

The elastic modulus Es can be estimated from the results of a Cone Penetration test: 

 

Es = 2.0qc   Schmertmann (1970) 

 

Es = 2.5qc   Modified Schmertmann (1978), Axisymmetric Footing 

 

Es = 3.5qc   Modified Schmertmann (1978), Plane strain footing 

D 

0.6 

Strain Influence factor, Iz 

B/2 

2B 

B 

0 

0 0.3 

4B 

B 

0.1 0.2 0.5 0.4 

Plane strain 

Axisymmetric 



 48  rocscience.com 

Where qc is the cone tip bearing resistance.  As with the calculation of the strain influence factor, the 

value for Es is calculated to be between the axisymmetric case and plane strain case if the length of the 

load is less than ten times the width (for the modified Schmertmann calculations).   

 

7.2. Peck, Hanson and Thornburn 

The method of Peck, Hanson and Thornburn (1974) uses the results of a Standard Penetration Test 

(SPT) to obtain settlement.  The water table and overburden pressure at the location of the SPT are taken 

into account.  Settlement results are obtained from matching the problem geometry and corrected SPT 

results to empirical curves. 

 

7.2.1. SPT testing 

The Standard Penetration Test produces a value, N, equal to the number of hammer blows needed to 

drive an SPT sample 1 foot through the soil.  Standards dictate the details of the procedure. 

To use the Peck, Hanson and Thornburn method, the N value should be corrected to account for the 

efficiency of your testing system.  Peck et al., assume that a standard test is being performed in which 

60% of the energy is transmitted to the soil.  If your system is more or less efficient, a correction should 

be made: 

 

𝑁60 = 𝑁 (
𝐸𝑚

60
) 
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Where,  

N60 = the SPT N value corrected for field testing procedures 

N is the recorded number of blows per foot,  

Em is the hammer efficiency in percent (generally between 45-95) 

Skempton (1986) proposes further corrections to account for the rod length and borehole diameter: 

 

𝑁60 = 𝐶𝑏𝐶𝑟𝑁 (
𝐸𝑚

60
) 

60 

Where, 

 Cb is the borehole diameter correction (Cb = 1.0 for borehole diameter less than 115 mm, 1.05 for 

borehole diameters between 115 and 150 mm and 1.15 if the diameter is > 150 mm) 

 Cr is the rod length correction (Cr = 0.75 for less than 4 m of drill rods, 0.85 for 4-6 m of drill rods, 

0.95 for 6-10 m, and 1.0 for drill rods more than 10 m) 
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Other corrections are often performed to account for overburden pressure and the water table but these 

are generally method dependent and will be described separately for each method. 

 

7.2.2. Settlement calculation 

The settlement in inches is calculated by: 
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Where L is the applied load, P1 is the load required to produce a settlement of 1 inch and Cw is the 

correction factor for water table depth.  The water table correction Cw is given by: 
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Where 

zw is the depth to the water table 

D is the depth to the bottom of the load 

B is the load width. 

The value for P1 is obtained from the empirical charts shown below.  To use the charts, a corrected blow 

count is required: 

 

63 

 

Where Cn is the correction for overburden pressure.  The overburden correction is given by: 

 

 

64 

 

 

Where od is the initial effective stress in tons/ft2 due to overburden soil. 

The value of (N60) represents the average value between the bottom of the footing and a depth of B 

below the bottom of the footing.  So, if there are multiple layers, the overburden stress is calculated for 

the midpoint of each layer and the correction is calculated by equation 64.  (N60) is then calculated for 
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each layer.  The average (N60) between depths of D and D+B is then calculated and used to get P1 from 

the charts below. 

Once you have obtained (N60), use this value along with your footing width B and ratio of footing depth to 

width D/B to obtain P1 from the charts below.  This is then used in equation 61 to get the settlement.  

Settle3 automatically interpolates between the curves to obtain P1.   

 

Charts used for obtaining P1, the load required to induce a settlement of 1 inch.  The N value refers to 

the blow counts corrected for efficiency, overburden and water table.  Reproduced from Peck, Hanson 

and Thornburn, 1974. 

 

7.3. Schultze and Sherif 

This method, proposed by Schultze and Sherif (1973) is based on the equation for settlement in an elastic 

isotropic half-space: 

 

 

65 

 

Where L is the loading stress,  

B is the load width,  

Es is the one-dimensional modulus and  

fn is an influence factor that is a function of: 

  – Poisson’s ratio 

 L/B – load length divided by load width 

 H/B – thickness of compressible layer divided by load width 

 

n
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The geometry of the problem is shown below. 

The contribution of Schultze and Sherif was to write this equation in terms of the blow counts, N60 instead 

of Es.  Using empirical data, the following equation was derived: 

 

66 

 

The value for fn is taken from the charts shown below.  This assumes that the Poisson’s ratio is 0.  It is 

assumed that below a depth of 2B the influence of the load is minimal so for values of H/B > 2, the value 

of fn at H/B = 2 is used. 

The original equation in Schultze and Sherif (1973) is slightly different from that shown in equation 66.  It 

was derived assuming 'stress' units of kg/cm2.  However the associated fn curves are not given, therefore 

Settle3 uses a modified equation from U.S. Army Corps of Engineers (1990) which expects stress units of 

tons/ft2.  The curves for fn from this reference are shown below.  

 

Geometry of settlement problem for Schultze and Sherif solution 
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Charts used to calculate the settlement influence factor for the Schultze and Sherif method. 

 

7.4. D'Appolonia Method 

This method was proposed by D'Appolonia et al (1968, 1970) based on elastic theory.  Immediate 

settlement is calculated by: 

 

𝛿 = 𝜇0𝜇1

𝜎𝐿𝐵

𝐸𝑠

 

67 

where 

 0 is the embedment influence factor 

 1 is the compressible strata influence factor 

 L is the loading stress 

 B is the load width 

 Es is the one-dimensional modulus 
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The embedment influence factor, 0, is a function of the ratio of footing depth to load width (D/B).  A 

relationship was proposed by D'Appolonia et al however a more accurate version was derived by 

Christian and Carrier (1978) as shown in the figure below.  This is the version used by Settle3. 

The compressible strata influence factor, 1, is a function of the ratio of compressible layer thickness to 

load width (H/B) and load length to load width (L/B).  As with 0, the more accurate version of Christian 

and Carrier (1978) is used by Settle3.  This relationship is shown below. 

 

 

Charts used to calculate 0 and 1 for the D'Appolonia method.  From Christian and Carrier (1978).    

 

The one-dimensional modulus is obtained from SPT blow count values using the empirical relationship 

shown below. 
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Relationship between 1D modulus of compressibility and SPT blow counts.  From D'Appolonia et al 

(1970). 

 

7.5. Burland and Burbidge 

The Burland and Burbidge method (1985) calculates settlement from SPT N values. The method relies on 

the empirical relationship between the slope of the pressure-settlement relationship for the foundation, the 

width of the foundation, and the average SPT blow count over the depth of influence of the foundation. 

The equation for settlement at the end of construction is: 

 

𝜌𝑖 = 𝑓𝑠𝑓ℎ𝑞𝑛𝑒𝑡𝐵0.7𝐼𝑐 mm 

 

Where 

𝑓𝑠 = correction factor for L/B ratio, where L=length of foundation and B=width 

𝑓ℎ = correction for thickness of compressible layer 

𝑞𝑛𝑒𝑡 = net foundation stress 

𝐵 = width of foundation 

𝐼𝑐 = soil compressibility in zone of influence. 

 

The equation for settlement at time t, more than 3 years after the end of construction is: 

 

𝜌𝑡 = 𝑓𝑡𝜌𝑖 mm 
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where  

 

𝑓𝑡 = time correction factor for settlement. 

 

Soil Compressibility 

The soil compressibility in the zone of influence is calculated as: 

𝐼𝑐 =
1.71

𝑁𝑎𝑣𝑔
1.4

 

Where 𝑁𝑎𝑣𝑔, the average N value in the depth of influence, is calculated using the following equation:  

𝑁𝑎𝑣𝑔 =
∑ 𝑁60𝑖

𝑧𝑖
0

𝑛
 

The depth of the zone of influence, 𝑧𝑖, is calculated as: 

𝑧𝑖 = 1.025 + 0.4286𝐵 − 0.000991𝐵2 

The average N value is calculated from the bottom of the foundation, through the depth of influence. 

 

N Value Corrections 

Before determining the average N value over the depth of influence, 𝑁𝑎𝑣𝑔, the SPT N values may be 

corrected based on soil type and depth of groundwater table. The table below summarizes the different 

correction factors. 

For sands, there is no correction made to the N values input. 

For sand & gravel soil types, 𝑁60𝑐
= 1.25𝑁60. 

For fine sands or silty sands beneath the water table, with 𝑁60 ≥ 15, 

 

𝑁60𝑐
= 15 + 0.5(𝑁60 − 15) 

 

The N values for fine sands and silty sands above the water table, or below the water table 𝑁60 < 15, are 

not corrected. 

 

Net Foundation Stress 

The net foundation stress used in the empirical settlement calculation is dependent on whether or not the 

material is over-consolidated or normally consolidated. 

For over-consolidated soils, where 𝑞 ≥ 𝜎𝑣0
′ : 
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𝑞𝑛𝑒𝑡 = 𝑞 −
2

3
𝜎𝑣0

′  

 

where 

𝑞 = applied foundation stress (applied load) 

𝜎𝑣0
′  = maximum previous overburden pressure. 

 

Settlement Correction Factors 

There are three correction factors that may be applied, for L/B ratio of the foundation, for the thickness of 

the compressible soil layer, and for the time after construction. 

The correction factor for L/B, 𝑓𝑠, is calculated as: 

 

𝑓𝑠 = [
1.25 ∗ 𝐿/𝐵

𝐿
𝐵

+ 0.25
]

2

 

 

The correction factor for thickness of compressible layer, 𝑓ℎ, applied only when the thickness of the 

compressible layer, H, is less than the depth of the zone of influence, is calculated as: 

 

𝑓ℎ =
𝐻

𝑧𝑖

(2 −
𝐻

𝑧𝑖

) ≤ 1 

 

Finally, for calculating settlements at any time, t, greater than three years after construction, the correction 

factor 𝑓𝑡 is calculated using the equation below. 

 

𝑓𝑡 =  
𝜌𝑡

𝜌𝑖

= (1 + 𝑅3 + 𝑅𝑡 log
𝑡

3
) 
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9. Table of symbols 

 

 Total stress (vertical) 

 Effective stress (vertical) 

i Initial or in-situ effective stress (vertical) 

L Loading stress 

M Mean stress 

 Soil unit weight 

water Unit weight of water 

 Poisson’s ratio 

 Strain (vertical) 

 Settlement (vertical displacement) 

0 Embedment influence factor (D'Appolonia method) 

1 Compressible strata influence factor (D'Appolonia method) 

a Janbu stress exponent 

B or 𝐵̄ Skempton pore pressure coefficient or load width 

Ca Secondary compression index 

Ca Strain based secondary compression index  

Car Strain based secondary recompression index 

Car Secondary recompression index  

Cc Compression index 

Cc Strain based compression index 

Cp Koppejan compression index 

Cp Koppejan recompression index 

Cr Recompression index 

Cr Strain based recompression index 

Cs Koppejan compression index for secondary consolidation 

Cs Koppejan recompression index for secondary consolidation 

ch Horizontal coefficient of consolidation 

cv Coefficient of consolidation (vertical) 



 61  rocscience.com 

cvr Recompression coefficient of consolidation (vertical) 

d Equivalent drain diameter 

D Drain spacing or load depth 

De Equivalent drain spacing 

ds Diameter of smear zone 

E Young’s modulus 

Es One-dimensional Young’s modulus 

Esur Unload-reload 1D Young’s modulus 

e Void ratio 

e0 Initial void ratio 

ep Void ratio at the end of primary consolidation 

H Layer thickness 

h Sublayer thickness 

k Permeability (vertical) 

kh Horizontal permeability 

kr Recompression permeability (vertical)  

L Load length 

l Drain length 

Moc Janbu overconsolidated modulus 

m Janbu modulus number 

mr Janbu recompression modulus number 

mv One-dimensional compressibility 

mvur Unload-reload 1D compressibility 

N Blow counts from SPT test 

N60 Blow counts corrected to 60% efficiency 

(N60) N60 corrected for overburden stress and water table 

OCR Overconsolidation ratio 

Pc Preconsolidation stress  

qw Drain discharge capacity 

S Ratio of smear zone diameter to drain diameter 

t Time 

u Pore water pressure 
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ue Excess pore water pressure 

z Depth 

 


