
ROCSCIENCE INC.

Locating General Failure Surfaces in
Slope Analysis via Cuckoo Search

Aleck Wu

May - Aug, 2012

ii

SUMMARY

Geoslope stability analysis is an important area in geotechnical engineering. Proper analysis of a

slope geometry can lead to safer development as well as a better understanding of the site in

question. The main objective of slope stability analysis is to locate the critical failure surface—a

surface along which the rock mass or soil is most likely to fail. This "likelihood-to-fail" is quantified

by the factor of safety (ratio of total shear strength go shear stress) associated with each unique

surface. For any generic failure surface described by a polyline of N points, the factor of safety can

be described as a function , where
 ; a

parametric value along the slope surface is used to denote the single freedom the entry and exit

point has. One can locate the critical failure surface by minimizing . Due to geometric and

kinematic constraints and conditions needed to satisfy a valid failure surface, is highly

discontinuous as well as often multimodal, rendering standard optimization techniques highly

unreliable as well as inefficient.

Various global optimization techniques have been implemented over the years in locating the

critical failure surface, including Simulated Annealing implemented in SLIDE—a 2D geoslope

stability analysis software developed by Rocscience Inc. A recent population-based stochastic

algorithm—Cuckoo Search—shows great promise, outperforming some more traditional global

optimization algorithms such as Particle Swarm and Harmony Search under standard test

functions—taking less function evaluations to achieve the same level of solution accuracy.

The current work implements an improved variant of Cuckoo Search, coupling with the Local

Monte-Carlo (LMC) optimizer, in searching for the critical failure surface in SLIDE. Cuckoo Search

incorporates a random walk and random solution generations to escape local minima, while LMC is

a local explorer optimizing an existing failure surface through constantly varying the position of

each polyline vertex. Various refinements were also made on top of the Improved Cuckoo Search

specific to the problem at hand. The algorithm was implemented in C++.

The hybrid method proposed above—Improved Cuckoo Search with LMC—was found to be

superior to Simulated Annealing in locating the true global minimum in slope geometries where

more than one failure mode is present. The quality of solutions found by Improved Cuckoo Search

hybrid with LCM is comparable to those found by Simulated Annealing, with a much improved

computation time of on average three times faster.

iii

TABLE OF CONTENTS

Summary ... ii

Table of Contents .. iii

1 Introduction ... 1

2 Problem formulation and description ... 2

2.1 Dimensionality .. 2

2.2 Constraints and domains .. 3

2.2.1 Bounds for x-coordinates .. 3

2.2.2 Bounds for y-coordinates .. 3

3 Cuckoo Search ... 6

3.1 Initialization ... 6

3.2 Solution refinement... 6

3.3 Solution rejection and replacement ... 6

4 Improved Cuckoo Search .. 9

4.1 Variation of step-size .. 9

4.2 Variation of percentage of rejected solutions .. 9

4.3 Variation of replacement of solutions ... 9

4.4 On the effectiveness of aspects of ICS in locating critical failure surface.................................... 10

5 Refinement and adaptation of Cuckoo Search to current problem ... 11

5.1 No free lunch .. 11

5.2 Generation of random solution vectors .. 11

5.3 Variations of solutions ... 12

6 Very Fast Simulated Annealing, Local Monte Carlos ... 13

7 Results .. 14

7.1 On the effectiveness of the algorithm .. 14

7.1.1 User4 and User4-revised ... 15

iv

7.1.2 User6, User9, User13, User14 .. 17

7.2 On the efficiency of the algorithm ... 22

7.3 Accuracy ... 24

7.4 The effect of dimensionality .. 28

7.5 The robustness of the algorithm on thin layers... 29

7.6 The role of hybridization .. 32

8 Conclusion ... 34

9 Appendix I - Summary for averages of each model ... 35

9.1 Customer files .. 35

9.2 Verification files .. 42

1

1 INTRODUCTION

Slope stability analysis is an important and essential step in the planning and building of various

structures such as dams, embankments, etc. along the sides of slopes. Improper analysis can lead to

damages to expensive structures and human life when soil masses fail and slides under load.

A typical slope failure is shown in Figure 1. Under load,

the top soil mass will fail under shear, and dislocate

from the rest of the slope. In two-dimensional slope

analysis, this line of shear stress failure characterizing

the location of the failure is called a failure surface (in

2D analysis the failure surface is considered to extend

into the page). The stability of the soil mass atop the

failure surface is quantified by a numerical factor of

safety, given as the ratio of shear strength to shear

stress under the specific load (i.e. weight of soil); a

factor of safety under 1 indicates instability.

Prior to slope stability analysis, it is unclear as to whether or not a slope will fail, and if so, along

which failure surface it will do so. Therefore, at the core of slope stability analysis is the location of

the weakest failure surface—the surface along which the soil mass will most likely fail.

Given a failure surface, there are various different methods to calculate a numerical factor of safety.

A well established class of methods is the Limit Equilibrium Methods (LEMs). These methods

divide the slope geometry into slices, and through satisfying forces and/or moments equilibrium,

converges on a numerical factor of safety. Some popular LEMs include the Ordinary Method of

Slices, Bishop's Method, Janbu's Method, and Spencer's Method. For a more thorough description of

LEMs, please refer to "Slope Stability Analysis and Stabilization—New Methods and Insights,

Chapter 2, slope stability analysis methods" by Y.M. Cheng and C.K. Lau.

FIGURE 1 - TYPICAL FAILURE SURFACE

2

2 PROBLEM FORMULATION AND DESCRIPTION

2.1 DIMENSIONALITY

The problem of locating the critical two-dimensional failure surface is in essence a global

optimization (minimization) problem. The function to be minimized is the factor of safety function,

a function consuming a positional vector of the polyline describing a failure surface, and outputting

a scalar factor of safety value associated with such a failure surface— , where

and are 2D points defining a failure surface of n vertices.

The dimensionality of the problem is thus dictated by the number or vertices of the failure surface

polyline; each inner vertex contributes to two extra dimensions, while single parametric values

 are needed describe the entry and exit vertices of the failure surface since both

must lie on the slope surface. Thus, a failure surface of vertices (including entry and exit points)

will translate to a dimension problem.

3

2.2 CONSTRAINTS AND DOMAINS

There are constraints which define the domains of each of the control variables; these

constraints are necessary in order to satisfy primary geometric and kinematic requirements of a

potential failure surface.

The slope surface is first parameterized from left to right between 0 and 1, and as such,

define the entry and exit point of the failure surface. This generates points

2.2.1 BOUNDS FOR X-COORDINATES

In a failure surface of -vertices including entry and exit points, equal-width slices are

generated between and ; these slices bounds the set of -coordinates such that

The domain restrictions of the -coordinates of the inner vertices are clear and logical; they arise by

definition from meaning of the subscripts. In laymen's term, each inner x-coordinate must situate

within its respective slice.

2.2.2 BOUNDS FOR Y-COORDINATES

Dynamic bounds for y-coordinates are used as proposed by Cheng (2007) such that a convex,

kinematically feasible surface can result. The following section will first attempt to describe such

bounds in words, followed by mathematical formulation.

1. Firstly, the entry and exit points are assumed to be already defined and valid on the slope

surface. As well, the x-coordinates of the inner vertices must also be defined and validly

bounded.

2. The y-coordinate of the first point immediately after the entry point is bounded by the slope

geometry, namely the slope surface and bedrock at its corresponding x-coordinate.

4

3. For each subsequent point, aside from the geometric bound which applies as described in 2.,

a kinematic bound is imposed. A line is constructed from the 2 previous points. Another

line is constructed from the previous point and the exit point. The y-values of these two

lines at the point's respective x-value define this aforementioned kinematic bound.

4. The final bounding criteria for each subsequent point is then taken to be the interval

contained by the highest of the lower bounds, and the lowest of the upper bounds.

Below is a more formal mathematical formulation.

1. Assume present and valid as described in previous section. Denote

 the functions describing the slopeline and the bedrock respectively.

2. .

3. , where

As can be seen, the domains for the various control variables are highly dynamic and dependent on

other control variables. Moreover, since a factor of safety for a failure surface is found iteratively, a

numerical solution may not converge for some surfaces even though they are convex and appear to

be kinematically feasible. As such, the function is extremely discontinuous, and valid

only for small "hyper-regions" in the dimensional hyperspace of the problem.

An illustrative example of dynamic bounds can be seen is Figure 2. X-domains can be generated at

the same time, as depicted by the blue arrows, while y-domains must be generated from left to

right, and the y-domain for the current vertex depends on the y-coordinate of the previous as well

as right-most vertex.

5

FIGURE 2 - DYNAMIC BOUNDS OF VERTICES

6

3 CUCKOO SEARCH

Cuckoo Search is a recent global optimization algorithm developed by Xin-She Yang and Suash Deb

in 2009, inspired by the natural parasitic but successful behaviour of the Cuckoo species by laying

their eggs in the nests of other host birds (of other species). In the short amount of time since

inception, Cuckoo Search has been used in spring and welded beam designing, nurse scheduling,

data fusion in wireless network sensors, etc., and obtaining better solutions than those which exists

in literature.

3.1 INITIALIZATION

The CS algorithm starts by initializing a fixed number of valid solutions vectors

 . A fixed number of iteration is also

defined; generally, both and depends on the dimensionality of the problem. The solution

vectors are sorted from worst fitness (i.e. highest factor of safety), to best fitness.

3.2 SOLUTION REFINEMENT

In each iteration in the original Cuckoo Search, for each solution vector , a temporary solution

vector is generated by performing a random walk in the following fashion,

where is a problem related constant step-size, denotes entry-wise multiplication, and is a

vector whose entries are taken from a probabilistic distribution. A random solution (i.e.) is

selected and compared with ; is replaced with if has better fitness. The

solution vectors are then sorted from worst to best fitness again.

3.3 SOLUTION REJECTION AND REPLACEMENT

The last step in the standard Cuckoo Search algorithm is the rejection and replacement of a

percent of the worst solutions with new randomly generated valid solution vectors. This ensures

the global exploration ability of the algorithm never stops.

7

FIGURE 3 - FLOW CHART OF CUCKOO SEARCH

8

FIGURE 4 - PSEUDOCODE OF CUCKOO SEARCH

9

4 IMPROVED CUCKOO SEARCH

Various refinements have been made to the original Cuckoo Search algorithm. These modifications

are mainly to increase convergence rate of the solution vectors.

4.1 VARIATION OF STEP-SIZE

For better global exploration abilities in earlier iterations and better local refinements in the latter

stages, Improved Cuckoo Search proposed

for which and are problem specific, denotes the current generation.

4.2 VARIATION OF PERCENTAGE OF REJECTED SOLUTIONS

Again, to improve convergence rate, the number of solution vectors replaced by randomly

generated solutions decrease over the iterations. In Improved Cuckoo Search, a formula for

was proposed. It was also suggested that instead of the worst solutions being replaced, that each

solution would have a percent chance of being replaced.

4.3 VARIATION OF REPLACEMENT OF SOLUTIONS

Instead of replacing rejected solutions with random solutions, it was proposed that the replacement

solutions to be generated in the following way.

First, solution vectors are randomly shuffled, and two of such random permutations are stored

inside integer arrays and . For example, for a set of 5 reject solution vectors

 , a possible permutation contained in might be . For each rejected

solution, the replacement solution will be generated by

10

Where is a column vector of length (number of dimensions in the problem) filled

with random numbers taken from a uniform distribution . To further speed up convergence,

 can be replaced with (by solution fitness) to put higher selection pressure on

the solutions.

4.4 ON THE EFFECTIVENESS OF ASPECTS OF ICS IN LOCATING CRITICAL

FAILURE SURFACE

It was found that all of the above techniques does allow a faster rate of convergence. However, due

to the high dimensionality of the problem in question as well as the extremely discontinuous nature

of the function, some of the Improved Cuckoo Search improvements hindered the global

exploration ability of the algorithm in escaping local minima (i.e. secondary/tertiary failure modes

of the slope). Hence only the variation of step-size modification was made to the original Cuckoo

Search algorithm, as it was found that global exploration usually happens in the rejection-

replacement phase of the algorithm.

11

5 REFINEMENT AND ADAPTATION OF CUCKOO SEARCH TO

CURRENT PROBLEM

5.1 NO FREE LUNCH

In search and optimization computation, it is stated that any and all of such algorithms'

performances are the exact same when averaged over all search and optimization problems.

Performance of an algorithm can be described by its success to find the correct answer, as well as

the amount of function evaluations it takes to achieve such a result. In many optimization

problems, function evaluation is a computationally intensive process (i.e. iteratively converging a

factor of safety given a failure surface), and the number of function calls dictate the speed of the

algorithm.

As such, each algorithm must be tailored towards the specific problem it was intended to solve; a

series of refinements specific and applicable only to the problem of critical failure surface searching

has been implemented, and are detailed below.

5.2 GENERATION OF RANDOM SOLUTION VECTORS

Random solution vectors must be generated in the initialization phase as well as the rejection-

replacement phase in each iteration. Since only a small and specific subset of the

dimensional space of the problem will return a valid factor of safety, it is important to ensure a high

"success-rate" when generating such solution vectors.

Aside from the procedure described in Section 2.2 on generating valid control variables within each

of their own domain, a further angular restriction is imposed; by default, the inside angle of each

vertices of the failure surface is to be greater than 120 degrees (this of course, can be changed by

the user).

Failure surfaces entering and exiting at the same elevation were also omitted. This can also be

changed by the user in the case of a possible failure due to vertical external loading on a horizontal

surface.

12

Instead of a uniformly distributed probability , each distinct segment of the slope

surface (irrelevant of length) will have an equal probability of being selected as the segment for

which the entry or exit point will lie. After such a slope segment is selected, uniform random

distribution dictates the location of the entry and exit point along that segment. It was found that

because different segments of the slope surface usually means a change in either slope geometry, or

material properties, this modification allowed the algorithm to better survey the whole model.

Lastly, again due to the highly discontinuous nature of the control variable domains associated with

this problem, simple checks were made to ensure that the failure surfaces generated do not cross

and exit the slope surface near (but not at) the entry and exit points.

5.3 VARIATIONS OF SOLUTIONS

In the original Cuckoo Search algorithm, the variation of solutions phase follows

However, due to the high valid-domain dependence of the control variables, certain refinements

were made to ensure a high success rate of being a valid solution vector.

Firstly, the entry and exit points are varied parametrically along the slope surface. Then, all points

are first "re-scaled" according to the new entry and exit points in the following manner:

1. Let be the pre-adjusted entry and exit

points respective; and be the

post-adjusted entry and exit points.

2. For each points

13

Secondly, a non-constant

as was proposed by Improved Cuckoo Search was used, with and .

Moreover, another step-size parameter associated with each control variable is introduced—it is

related to the domain of each control variable in association with what has been adjusted thus far.

1. for entry and exit points, where the parameterized value is to

be adjusted.

2.

 . In other words, step-size for the middle vertices is a

quarter of the width of each slice with regards to the already-adjusted entry and exit points.

3. Finally, the solution vectors are adjusted by following

Lastly, every adjusted solution is bound checked according to the geometric and kinematic

requirement outlined in Section 2.2, and adjusted to the boundary extrema if out-of-bounds.

6 VERY FAST SIMULATED ANNEALING, LOCAL MONTE CARLOS

For a description and formulation of the very fast simulated annealing (VFSA) applied to this

problem, as well as the Local Monte Carlos (LCM) optimizer already implemented in SLIDE, which

compliments VFSA as well as Cuckoo Search, please see "Global Optimization of General Failure

Surfaces in Slope Analysis by Hybrid Simulated Annealing, 2—Methods" by Su, Xiao.

14

7 RESULTS

The final Cuckoo Search algorithm tailored towards critical failure surface searching was executed

on a total of 48 verification models and 19 customer models. These models include a variety of

slope and embankment designs as well as multi-layered geometries, and will test the performance

of the algorithm to find the global minimum in a wide variety of cases. In all cases, Spencer's

method was used due to it being a limit equilibrium method satisfying both force and moment

equilibrium.

The verification cases are published examples from engineering journals and conference

proceedings, including a set of five slope cases as part of a survey sponsored by ACADS (Association

for Computer Aided Design). The user-submitted cases consists of challenging slope geometries

and extreme layering examples, submitted by SLIDE users. These often includes multiple modes of

failure, and presents a true test to any global optimization algorithms.

Extensive testing of 30 runs of each file was conducted for both Cuckoo Search and Simulated

Annealing. The Cuckoo Search with the necessary modifications and refinements described above

along with the LCM performed very promisingly against Simulated Annealing. For all test files,

Cuckoo Search found similar surfaces or completely different surfaces giving a much lower factor of

safety as Simulated Annealing—at a computational time of on average 3 times faster. The results

are summarized in Appendix I - Summary for averages of each model.

Is it also possible to display selected (or all) surfaces explored by the algorithm. This can result in a

"gradient-like" coloring pinpointing on the critical failure surface, as well as display secondary or

tertiary failure modes (local minima).

7.1 ON THE EFFECTIVENESS OF THE ALGORITHM

Both Cuckoo Search and Simulated Annealing are global optimization algorithms; thus, it is

important to discuss their respective success in escaping from local minima to arrive at the global

minimum.

The ability of Cuckoo Search to find the true global minimum is better than that of Simulated

Annealing. This can be seen in a number of customer cases, where various local minima (secondary

failure modes of a slope) exist. These files include User4, User4-revised, User6, User9, User13, and

User14.

15

7.1.1 USER4 AND USER4-REVISED

These two are files with essentially the same slope geometry and material compositions, with

User4-revised having a section of tension cracks along the top of the slope. Both of these cases have

a point-like surficial failure mode with a factor of safety of 0.287, a point-like ledge failure with a

factor of safety of 0.168 (global minimum), and a more substantial into-the-slope failure surface

with a factor of safety of approximately 0.99. The two point-like failure modes can be seen clearly

in Figure 5 by the patch of red dots indicating the center of the circle approximating the failure

surface, while the failure mode with an FOS of 0.99 can be seen on the slope itself. The results of

the 30 computational runs on the two files is summarized in Table 1 below.

 Surficial (FOS = 0.287) In-Slope (FOS = 0.99) Global Minimum (FOS = 0.168)

User4

Cuckoo Search 8 0 22

Simulated Annealing 0 29 1

User4-revised

Cuckoo Search 4 0 26

Simulated Annealing 2 27 3

TABLE 1 - USER4 RESULTS

As is evident, Simulated Annealing is not effective in escaping local minima in this situation. It is

also important to note that although Cuckoo Search failed to find the global minimum a small

fraction of the time, when the surfaces are displayed, it is clear that minima exist in locations of

interests (including the area where the true global minimum lies)—although local exploration

around that area during those few runs were not sufficient to retain those solutions as a candidate

for the global minimum. Upon displaying the results in the SLIDE interpreter, users can easily

further explore the area around which local minima were found.

In the above 2 customer files, the ability of Cuckoo Search to locate a near point-wise global

minimum in the search space should be noted.

16

FIGURE 5 - USER4, CUCKOO SEARCH RESULTS

17

7.1.2 USER6, USER9, USER13, USER14

In all of the above files, there exist two failure modes which are geometrically far apart from each

other (i.e. not in the same "valley" in the search space). With the exception of User6, for which a

tertiary failure mode exists (however, neither Cuckoo Search nor Simulated Annealing have once

mistakenly identified it as the global minimum, and is therefore insignificant in the current

discussion). The results are summarized in Table 2 below.

User files 6, 9, 13, 14, with multiple failure modes (8 vertices)

User6 Local Minimum (FOS = 1.32) Global Minimum (FOS = 1.23)

Cuckoo Search 0 30

Simulated Annealing 22 8

User9 Local Minimum (FOS = 1.23) Global Minimum (FOS = 0.88)

Cuckoo Search 5 25

Simulated Annealing 29 1

User13 Local Minimum (FOS = 1.12) Global Minimum (FOS = 1.82)

Cuckoo Search 2 28

Simulated Annealing 3 27

User14 Local Minimum (FOS = 0.93) Global Minimum (FOS = 0.87)

Cuckoo Search 4 26

Simulated Annealing 5* 24

*a minima of FOS = 1.34 was found once

TABLE 2 - MULTIPLE FAILURE MODES CUCKOO SEARCH, SIMULATED ANNEALING COMPARISON

Again, in the more complicated customer cases with more elaborate soil layers and properties,

Cuckoo Search was shown to be more—at times far more—superior to Simulated Annealing in

escaping local minima and locating the true global minimum.

The files in question are displayed in Figure 6, Figure 7, Figure 8, and Figure 9. The different modes

of failure can clearly be seen from the dense orange patches.

18

FIGURE 6 - MULTIPLE FAILURE MODES, USER6

19

FIGURE 7 - MULTIPLE FAILURE MODES, USER9

20

FIGURE 8 - MULTIPLE FAILURE MODES, USER13

21

FIGURE 9 - MULTIPLE FAILURE MODES, USER14

22

7.2 ON THE EFFICIENCY OF THE ALGORITHM

For failure surfaces defined by 8 vertices (for a total dimensionality of 14), it was found that a

solution bank size of 50 coupled with 500 iterations of the algorithm and a solution-rejection

percentage of 40% is enough. This translates to

This of course is overly optimistic and assumes a 100% success rate during random surface

generations. As was mentioned, not all surfaces which satisfy the geometric and kinematic

constraints will converge and evaluate to a valid factor of safety. For surfaces which do not, the

surface is discarded and a new one is generated. This continues until a valid surface is generated.

The success rate of random failure surface generation depends highly on the actual slope model and

its various properties; a success rate of 50% to 100% can be expected with most models. Assuming

a success rate of 50%, 45000 function evaluations (factor of safety calculations) can be expected.

Even at 50% success rate, the number of factor of safety calculations are still small compared to

Simulated Annealing. Because the bottleneck of the algorithm is the number of factor of safety

calculations, Cuckoo Search sees a huge improvement in terms of computational speed over

Simulated Annealing.

When averaged over all test files computed, Cuckoo Search performed three times (3x) faster than

Simulated Annealing.

The percent difference of computational time between Cuckoo Search and Simulated Annealing is

displayed in Figure 10, and is calculated by

One can then calculate the amount of times Cuckoo Search is faster with the following formula:

for example, 50% faster equates to a computational time half that of simulated annealing; 75%

being four times faster, etc.

23

FIGURE 10 - SPEED COMPARISION, CUCKOO SEARCH VS. SIMULATED ANNEALING

Figure 10 shows each corresponding individual runs compared to Simulated Annealing. However,

when computation runs are averaged first across each different files (30 run each), Cuckoo Search

was very slightly slower in only 2 of them (verification5 and verification6, 0.933 and 0.927 times

slower respectively) out of the total 67 files computed, and still all-in-all averaged three times

faster.

0

5

10

15

20

25
-1

2
9

.0
6

%

-1
2

1
.3

4
%

-1
1

3
.6

2
%

-1
0

5
.9

0
%

-9
8

.1
8

%

-9
0

.4
5

%

-8
2

.7
3

%

-7
5

.0
1

%

-6
7

.2
9

%

-5
9

.5
7

%

-5
1

.8
5

%

-4
4

.1
3

%

-3
6

.4
1

%

-2
8

.6
9

%

-2
0

.9
6

%

-1
3

.2
4

%

-5
.5

2
%

2
.2

0
%

9
.9

2
%

1
7

.6
4

%

2
5

.3
6

%

3
3

.0
8

%

4
0

.8
0

%

4
8

.5
3

%

5
6

.2
5

%

6
3

.9
7

%

7
1

.6
9

%

7
9

.4
1

%

8
7

.1
3

%

9
4

.8
5

%

Fr
e

q
u

e
n

cy

% Faster compared to Simulated Annealing (more positive is better)

Comparision of computation time between Cuckoo
Search and Simulated Annealing (% difference)

24

7.3 ACCURACY

The accuracy of Cuckoo Search is also comparable to Simulated Annealing. Of the total 2010

different computational runs performed

 , Cuckoo Search found a factor of

safety within a 1.5% difference compared to Simulated Annealing in 1484 of the runs. Out of the

526 remaining runs, Cuckoo Search found a better-than-1.5%-difference result in 294 runs, and

232 worse results.

However, this 1.5% difference can be misleading, after all, a factor of safety of 0.02 versus 0.015

would constitute a 25% difference. Hence, the actual factor of safety difference was calculated and

tabulated out of the 526 runs which did not result in a percent difference under 1.5%. A reasonable

measure is a difference of 0.02 in the factor of safety found. In this case, out of the 294 runs which

Cuckoo Search found a better-than-1.5%-difference result, Cuckoo Search only bettered Simulated

Annealing by a factor of safety of 0.02 in 229 of them. However, of the 232 runs which Simulated

Annealing bettered Cuckoo Search, the number now falls to a mere 148.

Similar comparisons were done after each 30 runs were averaged first for each individual file; the

results are presented in Table 3.

25

Individual computation runs (Cuckoo Search vs. Simulated Annealing)

Less-than-1.5%-difference
Less-than-1.5%-difference and

greater-than-0.02 actual difference

Total Runs 2010 Total Runs 2010

Same Results 1484 Same Results 1633

Better Results 294 Better Results 229

Worse Results 232 Worse Results 148

Success Rate* 88.46% Success Rate* 92.64%

 1.27

 1.55

File averages (Cuckoo Search vs. Simulated Annealing)

Less-than-1.5%-difference
Less-than-1.5%-difference and

greater-than-0.02 actual difference

Total Files 67 Total Files 67

Same Results 50 Same Results 55

Better Results 11 Better Results 9

Worse Results 6 Worse Results 3

Success Rate* 91.04% Success Rate* 95.52

 1.83

 3

TABLE 3 - SUMMARY OF RESULTS, CUCKOO SEARCH VS. SIMULATED ANNEALING

26

Although it can be concluded that Cuckoo Search coupled with a local optimizer performed better

than Simulated Annealing coupled with the same optimizer, it is important to note that aside from

the test cases mentioned in Section 7.1, that in general, the surfaces found by both algorithms are

extremely similar. Variations in the factor of safety can be affected by small movements of the

vertices. The importance of this difference in the calculated factor of safety given two very similar

surfaces should be considered alongside the massive amounts of approximations made when

building the model.

The low function-evaluation count is advantageous to Cuckoo Search in that it directly translates to

a higher algorithmic efficiency. However, there are a few types of situation where more function-

evaluations is perhaps the only solution—this happens for example, when the landscape of the

search space is littered with many delta-like functions, with overall little or no information

obtainable between each individual trough.

One of such an example are slope models with a vertical drop-off face. It was found that—perhaps

due to the inherent shortcomings of the method of slices and limit equilibrium—that small,

geometrically and kinematically acceptable variations in the positions of vertices of a failure surface

with a valid calculated factor of safety, can result in a non-valid FOS calculation using the method of

slices. This worsens as the angle of the failure surface increases.

This can be seen in Figure 11. Cuckoo Search was able to find the general location of the failure

surface, but with the low number of function evaluations, neither Cuckoo Search nor the post-

optimization done by LCM was able to reduce the factor of safety value; in such cases, if an accurate

numerical factor of safety is necessary, it is recommended that Simulated Annealing to be used.

FIGURE 11 - USER15, PROBLEMS WITH LIMIT EQUILIBRIUM METHODS

7.4 THE EFFECT OF DIMENSIONALITY

The dimensionality of the problem was increased from 8 vertices (14 dimensions) to 15 vertices

(28 dimensions), and 10 computational runs of each file was performed for both Cuckoo Search as

well as Simulated Annealing.

The number of solutions in the solution bank for Cuckoo Search was increased from 50 to 100,

while 500 iterations were kept constant. An increase of 50% computational time was observed

(1.5x longer).

It was found that for cases where there is a single mode of failure (or where the global minimum

was relatively easy to find), the higher number of vertices gave a finer and more detailed failure

surface, allowing for a slightly lower critical factor of safety to be found. However, it suffered more

in cases with local minima, such as the files described in Section 7.1.

User files 6, 9, 13, 14, with multiple failure modes (13 vertices)

User6 Local Minimum (FOS = 1.32) Global Minimum (FOS = 1.23)

Cuckoo Search 0 10

Simulated Annealing 7 3

User9 Local Minimum (FOS = 1.23) Global Minimum (FOS = 0.88)

Cuckoo Search 4 6

Simulated Annealing 6 4

User13 Local Minimum (FOS = 1.12) Global Minimum (FOS = 1.82)

Cuckoo Search 5 5

Simulated Annealing 6 4

User14 Local Minimum (FOS = 0.93) Global Minimum (FOS = 0.87)

Cuckoo Search 1 9

Simulated Annealing 4 6

TABLE 4 - HIGH DIMENSION MULTIPLE FAILURE MODE COMPARISON

Such a decrease in performance can be expected however, as doubling the dimensionality of the

problem oftentimes increase the complexity by orders of magnitude.

Although the success rate for finding the true global minimum is heavily reduced, Cuckoo Search

still performed better than Simulated Annealing. One should also note that on average, Cuckoo

Search was faster than Simulated Annealing by over 5 times.

29

7.5 THE ROBUSTNESS OF THE ALGORITHM ON THIN LAYERS

Thin soil layers in a slope geometry can dictate how the slope will fail—especially if the thin layers

are weak. Thin layers also present a challenge for any stochastic global optimization algorithms, as

these layers are unlikely to be found given random chance. A critical failure surface passing

through such a weak layer can represent a delta function in the search space, as generally speaking,

little information about the weak layer is available unless the weak layer is actually found by the

algorithm.

Two such weak layer files were available for testing the robustness and effectiveness of the

algorithm—verification9, and user17. User17 was modified such that the thickness of the thin,

weak layer was shortened to approximately 0.5", a true needle-in-the-haystack when compared to

the size of the model.

Cuckoo Search was able to locate such a critical failure surface which passes through the weak layer

successfully 100% of the time in both files. Typical computation results are shown in Figure 12 and

Figure 13.

30

FIGURE 12 - THIN LAYER EXAMPLE, VERIFICATION9

31

FIGURE 13 - EXTREME THIN LAYER EXAMPLE, USER17 MODIFIED

32

7.6 THE ROLE OF HYBRIDIZATION

As described above, Cuckoo Search was hybridized with Local Carlo Monte, a local searching

algorithm. The necessity of which is described below.

The LCM is a local searching algorithm, and is extremely efficient at what it was designed to do.

Thus, given a good initial guess, by for example, an experienced engineer, LCM can modify the initial

failure surface to minimize its associated factor of safety quickly. Such an initial guess can be rather

trivial, such as in verification1 (Figure 14), when the slope geometry is simple and soil property is

non-layered and homogenous. As the complexity of slope geometry increases, guesses are often

harder to make, as is the case with all of the slope geometries with multiple failure modes as

described in Section 7.1. As LCM is by nature a local searching algorithm, it does not have the

capability to escape local minima, and as such one will not expect LCM to find the correct failure

surface given a non-optimal initial guess. It is worth noting that although the files described in

Section 7.1 only contains a few

prominent failure modes, that

many more local minima exists—

minima which LCM can easily be

trapped by; the reason why those

do not show up in the figures is

due to the fact that Cuckoo

Search can easily escape such

minima, and thus do not dwell

too long examining them.

The role of Cuckoo Search then becomes to provide the best "initial guess" failure surface for LCM

to optimize. Of course this initial guess Cuckoo Search found will be extremely similar in shape and

failure/entry/exit location to the refined surface LCM will return. It can be said that with Cuckoo

Search alone, the failure surface found is oftentimes more than acceptably similar to the surface

after optimization by the LCM. However, the factor of safety—the numerical measurement to the

quality of the solution—at times leave more to be desired. It is important to note however, that the

Cuckoo Search algorithm implemented in SLIDE is optimized more towards the efficiency and

effectiveness of global searching, narrowing down the region of failure given a complex slope

geometry, than to pin-point the minute difference in the numerical factor of safety value when a

vertex is slightly shifted from one position to another.

FIGURE 14 - VERIFICATION1, SIMPLE HOMOGENOUS SLOPE

33

Is hybridization necessary? Yes and no. LCM optimize the surface to find the lowest factor of

safety. However, the accuracy of this "lowest factor of safety" depends on some other, more

important aspects, such as how accurate the model representation of the actual physical slope is.

Oftentimes a lot of assumptions are made when constructing a digital representation from in-situ

surveys, such as homogeneity of the soil layers. Hybridization should be used if the desired failure

surface to be found is one with the lowest factor of safety given the digital representation of the

physical slope; depending on the accuracy of the digital model however, this may or may not be the

failure surface with the actual lowest factor of safety in the physical site.

34

8 CONCLUSION

Cuckoo Search—a stochastic, nature-based global search algorithm—was successfully implemented

in SLIDE in locating the critical failure surface of a slope geometry. Cuckoo Search was able to

locate the critical failure surface more effectively (higher success rate as well as accuracy) and

efficiently (lower computation time) than Simulated Annealing originally implemented to solve the

exact same problem. When combined with LCM for further optimization of the critical failure

surface, a refined surface with the lowest factor of safety given a slope geometry can be found.

Modifications specific to the critical failure surface searching problem are essential in increasing

the performance of the search. These includes dynamic domain bounding during initialization and

variation of the solutions, a suitable step-size for each control variable, as well as readjustment of

surfaces after the variation of the entry and exit points but prior to the adjustments of the inner

vertices.

The Cuckoo Search formulation described here was shown to have a speed increase of over three

times faster than Simulated Annealing for an 8-vertices failure surface, and having a noticeable

improvement in accuracy of solutions found. It triumph Simulated Annealing in locating the

absolute global minimum in slope geometries with multiple failure modes; even point-wise failures.

Cuckoo Search is also able to display the various failure modes found during the search, and can

inform users of other possible failure modes—which the user can then explore further.

Hybridization of Cuckoo Search with LCM was necessary in the refinement of the critical failure

surface for the lowest factor of safety value; Cuckoo Search itself however, is in most cases enough

in locating the shape and location of the critical failure surface in the model.

Dimensionality (number of vertices in the failure surface) increase directly lead to a more

complicated problem. A linear increase in the number of solutions in the solution bank with the

increase in dimensions is recommended, while the number of generations is kept constant. One can

see a decrease in effectiveness of locating the global minimum, and an increase in computation

time, as well as precision (given that the failure surface found is truly the global minimum). Of

course, with a further increase in the number of solutions in the solution bank, robustness of the

algorithm can further be ensured, at the expense of computation time. Cuckoo Search under the

increase in dimensionality was shown to be more effective and efficient (and more so than with

lower dimensionalities) than Simulated Annealing.

35

9 APPENDIX I - SUMMARY FOR AVERAGES OF EACH MODEL

9.1 CUSTOMER FILES

 Cuckoo Search Simulated Annealing Difference % diff btw avgs

user1.sli average 0.75548 average 0.756019 -0.001 -0.07

min 0.749694 min 0.749932 0.000

max 0.757714 max 0.757578 0.000

diff 0.00802 diff 0.007646 0.000

Std. dev. 0.00232 Std. dev. 0.001537 0.001

avg time 638.3667 avg time 841.5333 1.318

user3.sli average 1.229629 average 1.227354 0.002 0.19

min 1.22438 min 1.22441 0.000

max 1.27817 max 1.2759 0.002

diff 0.05379 diff 0.05149 0.002

Std. dev. 0.00999 Std. dev. 0.009326 0.001

avg time 122.9333 avg time 274.7667 2.235

user4.sli average 0.200849 average 0.968373 -0.768 -79.26

min 0.167441 min 0.166301 0.001

max 0.299249 max 1.12013 -0.821

diff 0.131808 diff 0.953829 -0.822

Std. dev. 0.053972 Std. dev. 0.155937 -0.102

avg time 105.6667 avg time 352.1333 3.332

user4 revised.sli average 0.18527 average 0.858347 -0.673 -78.42

min 0.167446 min 0.166234 0.001

max 0.288278 max 0.999888 -0.712

diff 0.120832 diff 0.833654 -0.713

Std. dev. 0.040981 Std. dev. 0.293828 -0.253

avg time 102.2 avg time 371.2333 3.632

user6.sli average 1.234694 average 1.294115 -0.059 -4.59

min 1.23177 min 1.23337 -0.002

max 1.23663 max 1.32101 -0.084

diff 0.00486 diff 0.08764 -0.083

Std. dev. 0.000827 Std. dev. 0.036951 -0.036

avg time 239.5333 avg time 607.6333 2.537

36

 Cuckoo Search Simulated Annealing Difference % diff btw avgs

user7.sli average 1.135906 average 1.143577 -0.008 -0.67

min 1.13405 min 1.13355 0.000

max 1.13922 max 1.37987 -0.241

diff 0.00517 diff 0.24632 -0.241

Std. dev. 0.001566 Std. dev. 0.044644 -0.043

avg time 194.8667 avg time 365.2 1.874

user8.sli average 1.724023 average 1.726036 -0.002 -0.12

min 1.61299 min 1.71792 -0.105

max 1.73662 max 1.78922 -0.053

diff 0.12363 diff 0.0713 0.052

Std. dev. 0.021396 Std. dev. 0.013986 0.007

avg time 59.73333 avg time 190.8 3.194

user9.sli average 0.943403 average 1.20712 -0.264 -21.85

min 0.871749 min 0.876407 -0.005

max 1.23612 max 1.21985 0.016

diff 0.364371 diff 0.343443 0.021

Std. dev. 0.130693 Std. dev. 0.062465 0.068

avg time 172.3 avg time 432.6 2.511

user10 - 15m
embankment dry.sli

average 1.406312 average 1.40631 0.000 0.00

min 1.40631 min 1.40631 0.000

max 1.40632 max 1.40631 0.000

diff 1E-05 diff 0 0.000

Std. dev. 4.07E-06 Std. dev. 0 0.000

avg time 26.43333 avg time 62.43333 2.362

user11 - dallas 5555
wall bent es9a.sli

average 1.987891 average 1.99831 -0.010 -0.52

min 1.93589 min 1.93891 -0.003

max 2.03775 max 2.11349 -0.076

diff 0.10186 diff 0.17458 -0.073

Std. dev. 0.033839 Std. dev. 0.035079 -0.001

avg time 65.76667 avg time 118.6333 1.804

user12 -
2550_0225.sli

average 1.077891 average 1.075794 0.002 0.19

min 1.0674 min 1.06822 -0.001

max 1.09382 max 1.09297 0.001

diff 0.02642 diff 0.02475 0.002

Std. dev. 0.007805 Std. dev. 0.006357 0.001

avg time 40.36667 avg time 80.93333 2.005

37

 Cuckoo Search Simulated Annealing Difference % diff btw avgs

user13 - GH-BUCK
with berm.sli

average 0.848094 average 0.856681 -0.009 -1.00

min 0.800086 min 0.810089 -0.010

max 1.12004 max 1.1144 0.006

diff 0.319954 diff 0.304311 0.016

Std. dev. 0.074997 Std. dev. 0.087727 -0.013

avg time 102.2667 avg time 220.9333 2.160

user14 - LOWER
FAILED Buttress.sli

average 0.879649 average 0.897135 -0.017 -1.95

min 0.866065 min 0.868994 -0.003

max 0.942314 max 1.34156 -0.399

diff 0.076249 diff 0.472566 -0.396

Std. dev. 0.020568 Std. dev. 0.086788 -0.066

avg time 107.1333 avg time 168.0667 1.569

user15 - block
search.sli

average 0.996065 average 0.903817 0.092 10.21

min 0.939809 min 0.876841 0.063

max 1.05565 max 1.49941 -0.444

diff 0.115841 diff 0.622569 -0.507

Std. dev. 0.029706 Std. dev. 0.112579 -0.083

avg time 62.26667 avg time 669.9667 10.760

user17 - Leachate
Tank.sli

average 1.048932 average 1.115695 -0.067 -5.98

min 1.03345 min 1.03331 0.000

max 1.11273 max 2.7607 -1.648

diff 0.07928 diff 1.72739 -1.648

Std. dev. 0.020505 Std. dev. 0.312305 -0.292

avg time 34.2 avg time 69.66667 2.037

user20 - tstab.sli average 3.916124 average 3.941215 -0.025 -0.64

min 3.85142 min 3.85627 -0.005

max 4.05278 max 4.03428 0.019

diff 0.20136 diff 0.17801 0.023

Std. dev. 0.065412 Std. dev. 0.077736 -0.012

avg time 50.73333 avg time 154.7667 3.051

user21 - slopew.sli average 1.461281 average 1.460662 0.001 0.04

min 1.45383 min 1.45267 0.001

max 1.46337 max 1.46309 0.000

diff 0.00954 diff 0.01042 -0.001

Std. dev. 0.0027 Std. dev. 0.002739 0.000

avg time 40.73333 avg time 68.66667 1.686

38

 Cuckoo Search Simulated Annealing Difference % diff btw avgs

user28 - Verifica 1
pali Rocscience
moved pile.sli

average 0.766862 average 0.764834 0.002 0.27

min 0.735337 min 0.725585 0.010

max 0.804414 max 0.77932 0.025

diff 0.069077 diff 0.053735 0.015

Std. dev. 0.01391 Std. dev. 0.009889 0.004

avg time 48.86667 avg time 463.6 9.487

user32a - DSBarna-
HF2CBMD6SC01.sli

average 0.618521 average 0.615087 0.003 0.56

min 0.605509 min 0.607116 -0.002

max 0.812035 max 0.647136 0.165

diff 0.206526 diff 0.04002 0.167

Std. dev. 0.039491 Std. dev. 0.010187 0.029

avg time 31.43333 avg time 93.26667 2.967

39

9.2 VERIFICATION FILES

 Cuckoo Search Simulated Annealing Difference % diff btw avgs

verification#01.sli average 0.983004 average 0.982963 0.000 0.00

min 0.980784 min 0.980946 0.000

max 0.983885 max 0.98386 0.000

diff 0.003101 diff 0.002914 0.000

Std. dev. 0.001046 Std. dev. 0.001008 0.000

avg time 37.56667 avg time 61.5 1.637

verification#02.sli average 1.578202 average 1.577368 0.001 0.05

min 1.57051 min 1.56923 0.001

max 1.58439 max 1.57979 0.005

diff 0.01388 diff 0.01056 0.003

Std. dev. 0.002612 Std. dev. 0.003106 0.000

avg time 30.9 avg time 61.9 2.003

verification#03.sli average 1.362085 average 1.362168 0.000 -0.01

min 1.35843 min 1.35897 -0.001

max 1.36528 max 1.36381 0.001

diff 0.00685 diff 0.00484 0.002

Std. dev. 0.002178 Std. dev. 0.001716 0.000

avg time 36.4 avg time 61.13333 1.679

verification#04.sli average 0.980081 average 0.981806 -0.002 -0.18

min 0.977741 min 0.977647 0.000

max 0.984042 max 0.994808 -0.011

diff 0.006301 diff 0.017161 -0.011

Std. dev. 0.001016 Std. dev. 0.005105 -0.004

avg time 45.23333 avg time 79.33333 1.754

verification#05.sli average 1.94753 average 1.94753 0.000 0.00

min 1.94753 min 1.94753 0.000

max 1.94753 max 1.94753 0.000

diff 0 diff 0 0.000

Std. dev. 2.26E-16 Std. dev. 2.26E-16 0.000

avg time 36.06667 avg time 33.66667 0.933

40

 Cuckoo Search Simulated Annealing Difference % diff btw avgs

verification#06.sli average 1.94753 average 1.94753 0.000 0.00

min 1.94753 min 1.94753 0.000

max 1.94753 max 1.94753 0.000

diff 0 diff 0 0.000

Std. dev. 2.26E-16 Std. dev. 2.26E-16 0.000

avg time 35.2 avg time 32.63333 0.927

verification#08.sli average 1.222076 average 1.22197 0.000 0.01

min 1.22127 min 1.22093 0.000

max 1.22302 max 1.22311 0.000

diff 0.00175 diff 0.00218 0.000

Std. dev. 0.000345 Std. dev. 0.00041 0.000

avg time 40.76667 avg time 63.23333 1.551

verification#09.sli average 0.715238 average 0.709313 0.006 0.84

min 0.708452 min 0.708073 0.000

max 0.743109 max 0.717615 0.025

diff 0.034657 diff 0.009542 0.025

Std. dev. 0.008883 Std. dev. 0.00186 0.007

avg time 41.7 avg time 75.4 1.808

verification#10.sli average 1.493178 average 1.492079 0.001 0.07

min 1.48923 min 1.48557 0.004

max 1.49729 max 1.49508 0.002

diff 0.00806 diff 0.00951 -0.001

Std. dev. 0.002305 Std. dev. 0.002623 0.000

avg time 53 avg time 82.43333 1.555

verification#11.sli average 0.759737 average 0.79792 -0.038 -4.79

min 0.712007 min 0.709475 0.003

max 0.832136 max 0.894734 -0.063

diff 0.120129 diff 0.185259 -0.065

Std. dev. 0.045594 Std. dev. 0.043572 0.002

avg time 51 avg time 116.1333 2.277

verification#12.sli average 1.050334 average 1.050532 0.000 -0.02

min 1.0399 min 1.03899 0.001

max 1.09914 max 1.07892 0.020

diff 0.05924 diff 0.03993 0.019

Std. dev. 0.013709 Std. dev. 0.011178 0.003

avg time 82.16667 avg time 633.8333 7.714

41

 Cuckoo Search Simulated Annealing Difference % diff btw avgs

verification#14-
noncircular.sli

average 1.392185 average 1.391322 0.001 0.06

min 1.38659 min 1.38676 0.000

max 1.3942 max 1.39421 0.000

diff 0.00761 diff 0.00745 0.000

Std. dev. 0.002665 Std. dev. 0.002643 0.000

avg time 65.16667 avg time 102.6333 1.575

verification#15-
circular.sli

average 0.41489 average 0.414518 0.000 0.09

min 0.412005 min 0.41215 0.000

max 0.419129 max 0.418829 0.000

diff 0.007124 diff 0.006679 0.000

Std. dev. 0.001906 Std. dev. 0.00152 0.000

avg time 66.86667 avg time 137.9333 2.063

verification#16-
noncircular.sli

average 1.102323 average 1.101444 0.001 0.08

min 1.09759 min 1.09633 0.001

max 1.10532 max 1.10357 0.002

diff 0.00773 diff 0.00724 0.000

Std. dev. 0.001919 Std. dev. 0.002037 0.000

avg time 59.96667 avg time 81.43333 1.358

verification#19.sli average 1.403668 average 1.403941 0.000 -0.02

min 1.39889 min 1.39903 0.000

max 1.40764 max 1.40892 -0.001

diff 0.00875 diff 0.00989 -0.001

Std. dev. 0.002101 Std. dev. 0.002319 0.000

avg time 53.6 avg time 95.3 1.778

verification#20-
noncircular.sli

average 1.073345 average 1.081213 -0.008 -0.73

min 1.00539 min 1.00655 -0.001

max 1.09364 max 1.09127 0.002

diff 0.08825 diff 0.08472 0.004

Std. dev. 0.033515 Std. dev. 0.025198 0.008

avg time 51.66667 avg time 81.56667 1.579

verification#21-1.sli average 1.990598 average 1.99122 -0.001 -0.03

min 1.98153 min 1.9839 -0.002

max 1.99403 max 1.9948 -0.001

diff 0.0125 diff 0.0109 0.002

Std. dev. 0.003049 Std. dev. 0.002409 0.001

avg time 57.1 avg time 91.4 1.601

42

 Cuckoo Search Simulated Annealing Difference % diff btw avgs

verification#22-1.sli average 1.292499 average 1.292605 0.000 -0.01

min 1.29135 min 1.29166 0.000

max 1.29465 max 1.29502 0.000

diff 0.0033 diff 0.00336 0.000

Std. dev. 0.000747 Std. dev. 0.000874 0.000

avg time 42.33333 avg time 64.56667 1.525

verification#24.sli average 1.3981 average 1.397633 0.000 0.03

min 1.39241 min 1.39445 -0.002

max 1.40047 max 1.39992 0.001

diff 0.00806 diff 0.00547 0.003

Std. dev. 0.001777 Std. dev. 0.001284 0.000

avg time 38.1 avg time 65.66667 1.724

verification#25.sli average 0.943173 average 0.943175 0.000 0.00

min 0.943126 min 0.943139 0.000

max 0.943267 max 0.943821 -0.001

diff 0.000141 diff 0.000682 -0.001

Std. dev. 3.53E-05 Std. dev. 0.000123 0.000

avg time 54.86667 avg time 154.7667 2.821

verification#27-1.sli average 0.114236 average 0.094876 0.019 20.41

min 0.048896 min 0.029359 0.020

max 0.134534 max 0.11771 0.017

diff 0.085638 diff 0.088351 -0.003

Std. dev. 0.017165 Std. dev. 0.02351 -0.006

avg time 29.33333 avg time 72.23333 2.463

verification#28-
Example1_Layer2.sli

average 0.014352 average 0.041039 -0.027 -65.03

min 0.002043 min 0.001811 0.000

max 0.098383 max 1.09947 -1.001

diff 0.09634 diff 1.097659 -1.001

Std. dev. 0.021364 Std. dev. 0.199911 -0.179

avg time 53.36667 avg time 96.8 1.814

verification#29.sli average 2.96E-08 average 1.74E-08 0.000 70.26

min 1.65E-10 min 3.23E-10 0.000

max 1.47E-07 max 1.42E-07 0.000

diff 1.47E-07 diff 1.42E-07 0.000

Std. dev. 4.09E-08 Std. dev. 3.28E-08 0.000

avg time 28.16667 avg time 116.5333 4.137

43

 Cuckoo Search Simulated Annealing Difference % diff btw avgs

verification#30-1.sli average 1.05033 average 1.05033 0.000 0.00

min 1.05033 min 1.05033 0.000

max 1.05033 max 1.05033 0.000

diff 0 diff 0 0.000

Std. dev. 4.52E-16 Std. dev. 4.52E-16 0.000

avg time 17.86667 avg time 61.2 3.425

verification#31-1.sli average 0.861257 average 0.852394 0.009 1.04

min 0.861256 min 0.823301 0.038

max 0.861258 max 0.861257 0.000

diff 2E-06 diff 0.037956 -0.038

Std. dev. 4.34E-07 Std. dev. 0.014628 -0.015

avg time 20.86667 avg time 79.33333 3.802

verification#32-1.sli average 0.79942 average 0.799416 0.000 0.00

min 0.79939 min 0.799375 0.000

max 0.799455 max 0.799454 0.000

diff 6.5E-05 diff 7.9E-05 0.000

Std. dev. 1.95E-05 Std. dev. 1.8E-05 0.000

avg time 60.86667 avg time 237.9333 3.909

verification#41.sli average 1.672012 average 1.671511 0.001 0.03

min 1.66725 min 1.66691 0.000

max 1.67369 max 1.67345 0.000

diff 0.00644 diff 0.00654 0.000

Std. dev. 0.001813 Std. dev. 0.00205 0.000

avg time 268.5667 avg time 470.0333 1.750

verification#42-
noncircular.sli

average 1.868258 average 1.867964 0.000 0.02

min 1.86606 min 1.86692 -0.001

max 1.87531 max 1.86951 0.006

diff 0.00925 diff 0.00259 0.007

Std. dev. 0.001845 Std. dev. 0.000835 0.001

avg time 27.7 avg time 61.83333 2.232

verification#43-
circ.sli

average 1.395128 average 1.363819 0.031 2.30

min 1.31733 min 1.29494 0.022

max 1.52797 max 1.4859 0.042

diff 0.21064 diff 0.19096 0.020

Std. dev. 0.079534 Std. dev. 0.061447 0.018

avg time 45.8 avg time 700.2 15.288

44

 Cuckoo Search Simulated Annealing Difference % diff btw avgs

verification#44-M-C
with iteration

results.sli

average 0.976967 average 0.977094 0.000 -0.01

min 0.97572 min 0.976174 0.000

max 0.977245 max 0.977241 0.000

diff 0.001525 diff 0.001067 0.000

Std. dev. 0.000457 Std. dev. 0.000286 0.000

avg time 60.23333 avg time 79.5 1.320

verification#45-m-
c.sli

average 2.7859 average 2.785547 0.000 0.01

min 2.77992 min 2.78106 -0.001

max 2.78918 max 2.78918 0.000

diff 0.00926 diff 0.00812 0.001

Std. dev. 0.002331 Std. dev. 0.001694 0.001

avg time 26.8 avg time 48.73333 1.818

verification#46-
stage1.sli

average 2.49948 average 2.49948 0.000 0.00

min 2.49948 min 2.49948 0.000

max 2.49948 max 2.49948 0.000

diff 0 diff 0 0.000

Std. dev. 4.52E-16 Std. dev. 4.52E-16 0.000

avg time 16.43333 avg time 61.53333 3.744

verification#48.sli average 0.935334 average 0.917333 0.018 1.96

min 0.921412 min 0.911073 0.010

max 0.951196 max 0.93152 0.020

diff 0.029784 diff 0.020447 0.009

Std. dev. 0.007118 Std. dev. 0.005118 0.002

avg time 98.76667 avg time 371.3 3.759

verification#49.sli average 1.432501 average 1.414188 0.018 1.29

min 1.41696 min 1.27415 0.143

max 1.49392 max 1.47912 0.015

diff 0.07696 diff 0.20497 -0.128

Std. dev. 0.014202 Std. dev. 0.041095 -0.027

avg time 46.36667 avg time 345.8 7.458

verification#50.sli average 0.360779 average 0.479018 -0.118 -24.68

min 0.360778 min 0.360778 0.000

max 0.360781 max 1.08367 -0.723

diff 3E-06 diff 0.722892 -0.723

Std. dev. 6.75E-07 Std. dev. 0.268941 -0.269

avg time 23.3 avg time 140.8667 6.046

45

 Cuckoo Search Simulated Annealing Difference % diff btw avgs

verification#51.sli average 0.986587 average 0.986949 0.000 -0.04

min 0.981294 min 0.982209 -0.001

max 0.989856 max 0.989955 0.000

diff 0.008562 diff 0.007746 0.001

Std. dev. 0.002748 Std. dev. 0.002649 0.000

avg time 198.1 avg time 320.6667 1.619

verification#52-1-
dry.sli

average 2.012802 average 2.012737 0.000 0.00

min 2.00448 min 2.00462 0.000

max 2.01641 max 2.01579 0.001

diff 0.01193 diff 0.01117 0.001

Std. dev. 0.00333 Std. dev. 0.003397 0.000

avg time 64.46667 avg time 88.36667 1.371

verification#53.sli average 0.758947 average 0.758498 0.000 0.06

min 0.755846 min 0.754807 0.001

max 0.764887 max 0.763736 0.001

diff 0.009041 diff 0.008929 0.000

Std. dev. 0.002 Std. dev. 0.001988 0.000

avg time 59.73333 avg time 238.6333 3.995

verification#54-with
pile.sli

average 1.154536 average 1.155752 -0.001 -0.11

min 1.15312 min 1.15095 0.002

max 1.15629 max 1.15818 -0.002

diff 0.00317 diff 0.00723 -0.004

Std. dev. 0.000817 Std. dev. 0.001792 -0.001

avg time 186.2667 avg time 128.1 0.688

verification#55-
slope1.sli

average 1.299496 average 1.299953 0.000 -0.04

min 1.2925 min 1.29395 -0.001

max 1.30493 max 1.3019 0.003

diff 0.01243 diff 0.00795 0.004

Std. dev. 0.003639 Std. dev. 0.002707 0.001

avg time 54.56667 avg time 73 1.338

verification#56-
slope2.sli

average 1.293355 average 1.29193 0.001 0.11

min 1.28733 min 1.28673 0.001

max 1.29869 max 1.29443 0.004

diff 0.01136 diff 0.0077 0.004

Std. dev. 0.002914 Std. dev. 0.002411 0.001

avg time 32.7 avg time 60.5 1.850

46

 Cuckoo Search Simulated Annealing Difference % diff btw avgs

verification#57-
slope3-no

composite.sli

average 1.37252 average 1.3726 0.000 -0.01

min 1.36737 min 1.36886 -0.001

max 1.37513 max 1.37564 -0.001

diff 0.00776 diff 0.00678 0.001

Std. dev. 0.001745 Std. dev. 0.001212 0.001

avg time 36 avg time 59.73333 1.659

verification#58-
slope4.sli

average 0.057415 average 0.246363 -0.189 -76.70

min 0.026834 min 0.058 -0.031

max 0.060343 max 0.890451 -0.830

diff 0.033509 diff 0.832451 -0.799

Std. dev. 0.005951 Std. dev. 0.333911 -0.328

avg time 65.9 avg time 304.0667 4.614

verification#59-
slope5.sli

average 0.025095 average 0.027417 -0.002 -8.47

min 0.020224 min 0.01942 0.001

max 0.043108 max 0.092807 -0.050

diff 0.022884 diff 0.073387 -0.051

Std. dev. 0.004263 Std. dev. 0.014868 -0.011

avg time 49.33333 avg time 270.3667 5.480

verification#60-
slope7.sli

average 1.058633 average 1.006084 0.053 5.22

min 1.0157 min 1.00191 0.014

max 1.1957 max 1.01386 0.182

diff 0.18 diff 0.01195 0.168

Std. dev. 0.067788 Std. dev. 0.003058 0.065

avg time 68.53333 avg time 734.5 10.717

verification#61-m-
c.sli

average 1.3645 average 1.364079 0.000 0.03

min 1.36094 min 1.35994 0.001

max 1.36586 max 1.36589 0.000

diff 0.00492 diff 0.00595 -0.001

Std. dev. 0.001567 Std. dev. 0.001722 0.000

avg time 72.3 avg time 118.8333 1.644

verification#62-dry-
noncirc.sli

average 1.001079 average 1.001719 -0.001 -0.06

min 0.998879 min 0.99966 -0.001

max 1.00253 max 1.00253 0.000

diff 0.003651 diff 0.00287 0.001

Std. dev. 0.001246 Std. dev. 0.001107 0.000

avg time 62.93333 avg time 104.6818 1.663

47

 Cuckoo Search Simulated Annealing Difference % diff btw avgs

verification#70_-
_duncan_page088_fig

ure_6-
27_case1_30ft.sli

average 1.596729 average 1.595665 0.001 0.07

min 1.59221 min 1.59193 0.000

max 1.59955 max 1.59722 0.002

diff 0.00734 diff 0.00529 0.002

Std. dev. 0.002002 Std. dev. 0.001449 0.001

avg time 23.26667 avg time 40.33333 1.734

48

