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SUMMARY 

Geoslope stability analysis is an important area in geotechnical engineering.  Proper analysis of a 

slope geometry can lead to safer development as well as a better understanding of the site in 

question.  The main objective of slope stability analysis is to locate the critical failure surface—a 

surface along which the rock mass or soil is most likely to fail.  This "likelihood-to-fail" is quantified 

by the factor of safety (ratio of total shear strength go shear stress) associated with each unique 

surface.  For any generic failure surface described by a polyline of N points, the factor of safety can 

be described as a function     , where                                            
 ; a 

parametric value along the slope surface is used to denote the single freedom the entry and exit 

point has.  One can locate the critical failure surface by minimizing     .  Due to geometric and 

kinematic constraints and conditions needed to satisfy a valid failure surface,      is highly 

discontinuous as well as often multimodal, rendering standard optimization techniques highly 

unreliable as well as inefficient. 

Various global optimization techniques have been implemented over the years in locating the 

critical failure surface, including Simulated Annealing implemented in SLIDE—a 2D geoslope 

stability analysis software developed by Rocscience Inc.  A recent population-based stochastic 

algorithm—Cuckoo Search—shows great promise, outperforming some more traditional global 

optimization algorithms such as Particle Swarm and Harmony Search under standard test 

functions—taking less function evaluations to achieve the same level of solution accuracy.   

The current work implements an improved variant of Cuckoo Search, coupling with the Local 

Monte-Carlo (LMC) optimizer, in searching for the critical failure surface in SLIDE.  Cuckoo Search 

incorporates a random walk and random solution generations to escape local minima, while LMC is 

a local explorer optimizing an existing failure surface through constantly varying the position of 

each polyline vertex.  Various refinements were also made on top of the Improved Cuckoo Search 

specific to the problem at hand.  The algorithm was implemented in C++. 

The hybrid method proposed above—Improved Cuckoo Search with LMC—was found to be 

superior to Simulated Annealing in locating the true global minimum in slope geometries where 

more than one failure mode is present.  The quality of solutions found by Improved Cuckoo Search 

hybrid with LCM is comparable to those found by Simulated Annealing, with a much improved 

computation time of on average three times faster. 



iii 
 

TABLE OF CONTENTS 

Summary ..................................................................................................................................................................................... ii 

Table of Contents .................................................................................................................................................................... iii 

1 Introduction ..................................................................................................................................................................... 1 

2 Problem formulation and description ................................................................................................................... 2 

2.1 Dimensionality ...................................................................................................................................................... 2 

2.2 Constraints and domains .................................................................................................................................. 3 

2.2.1 Bounds for x-coordinates ........................................................................................................................ 3 

2.2.2 Bounds for y-coordinates ........................................................................................................................ 3 

3 Cuckoo Search ................................................................................................................................................................. 6 

3.1 Initialization ........................................................................................................................................................... 6 

3.2 Solution refinement............................................................................................................................................. 6 

3.3 Solution rejection and replacement ............................................................................................................. 6 

4 Improved Cuckoo Search ............................................................................................................................................ 9 

4.1 Variation of step-size .......................................................................................................................................... 9 

4.2 Variation of percentage of rejected solutions .......................................................................................... 9 

4.3 Variation of replacement of solutions ......................................................................................................... 9 

4.4 On the effectiveness of aspects of ICS in locating critical failure surface.................................... 10 

5 Refinement and adaptation of Cuckoo Search to current problem ......................................................... 11 

5.1 No free lunch ........................................................................................................................................................ 11 

5.2 Generation of random solution vectors .................................................................................................... 11 

5.3 Variations of solutions ..................................................................................................................................... 12 

6 Very Fast Simulated Annealing, Local Monte Carlos ..................................................................................... 13 

7 Results .............................................................................................................................................................................. 14 

7.1 On the effectiveness of the algorithm ........................................................................................................ 14 

7.1.1 User4 and User4-revised ....................................................................................................................... 15 



iv 
 

7.1.2 User6, User9, User13, User14 .............................................................................................................. 17 

7.2 On the efficiency of the algorithm ............................................................................................................... 22 

7.3 Accuracy ................................................................................................................................................................. 24 

7.4 The effect of dimensionality .......................................................................................................................... 28 

7.5 The robustness of the algorithm on thin layers..................................................................................... 29 

7.6 The role of hybridization ................................................................................................................................ 32 

8 Conclusion ....................................................................................................................................................................... 34 

9 Appendix I - Summary for averages of each model ....................................................................................... 35 

9.1 Customer files ...................................................................................................................................................... 35 

9.2 Verification files .................................................................................................................................................. 42 

 

  



1 
 

1 INTRODUCTION 

Slope stability analysis is an important and essential step in the planning and building of various 

structures such as dams, embankments, etc. along the sides of slopes.  Improper analysis can lead to 

damages to expensive structures and human life when soil masses fail and slides under load.   

A typical slope failure is shown in Figure 1.  Under load, 

the top soil mass will fail under shear, and dislocate 

from the rest of the slope.  In two-dimensional slope 

analysis, this line of shear stress failure characterizing 

the location of the failure is called a failure surface (in 

2D analysis the failure surface is considered to extend 

into the page).  The stability of the soil mass atop the 

failure surface is quantified by a numerical factor of 

safety, given as the ratio of shear strength to shear 

stress under the specific load (i.e. weight of soil); a 

factor of safety under 1 indicates instability.   

 

Prior to slope stability analysis, it is unclear as to whether or not a slope will fail, and if so, along 

which failure surface it will do so.    Therefore, at the core of slope stability analysis is the location of 

the weakest failure surface—the surface along which the soil mass will most likely fail. 

Given a failure surface, there are various different methods to calculate a numerical factor of safety.  

A well established class of methods is the Limit Equilibrium Methods (LEMs).  These methods 

divide the slope geometry into slices, and through satisfying forces and/or moments equilibrium, 

converges on a numerical factor of safety.  Some popular LEMs include the Ordinary Method of 

Slices, Bishop's Method, Janbu's Method, and Spencer's Method.  For a more thorough description of 

LEMs, please refer to "Slope Stability Analysis and Stabilization—New Methods and Insights, 

Chapter 2, slope stability analysis methods" by Y.M. Cheng and C.K. Lau.  

FIGURE 1 - TYPICAL FAILURE SURFACE 
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2 PROBLEM FORMULATION AND DESCRIPTION 

2.1 DIMENSIONALITY 

The problem of locating the critical two-dimensional failure surface is in essence a global 

optimization (minimization) problem.  The function to be minimized is the factor of safety function, 

a function consuming a positional vector of the polyline describing a failure surface, and outputting 

a scalar factor of safety value associated with such a failure surface—         , where  

  

 
 
 
 
 
 
 

                    

          
 

          
 

                

                             
 
 
 
 
 
 

                       

and           are 2D points defining a failure surface of n vertices. 

The dimensionality of the problem is thus dictated by the number or vertices of the failure surface 

polyline; each inner vertex contributes to two extra dimensions, while single parametric values 

               are needed describe the entry and exit vertices of the failure surface since both 

must lie on the slope surface.  Thus, a failure surface of   vertices (including entry and exit points) 

will translate to a      dimension problem.   
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2.2 CONSTRAINTS AND DOMAINS 

There are constraints which define the domains of each of the      control variables; these 

constraints are necessary in order to satisfy primary geometric and kinematic requirements of a 

potential failure surface.   

The slope surface is first parameterized from left to right between 0 and 1, and as such,  

                           

define the entry and exit point of the failure surface.  This generates points  

                      

                              

2.2.1 BOUNDS FOR X-COORDINATES 

In a failure surface of  -vertices including entry and exit points,     equal-width slices are 

generated between    and     ; these slices bounds the set of  -coordinates such that 

                                
         

   
    

The domain restrictions of the  -coordinates of the inner vertices are clear and logical; they arise by 

definition from meaning of the subscripts.  In laymen's term, each inner x-coordinate must situate 

within its respective slice. 

2.2.2 BOUNDS FOR Y-COORDINATES 

Dynamic bounds for y-coordinates are used as proposed by Cheng (2007) such that a convex, 

kinematically feasible surface can result.  The following section will first attempt to describe such 

bounds in words, followed by mathematical formulation. 

1. Firstly, the entry and exit points are assumed to be already defined and valid on the slope 

surface.  As well, the x-coordinates of the inner vertices must also be defined and validly 

bounded.   

2. The y-coordinate of the first point immediately after the entry point is bounded by the slope 

geometry, namely the slope surface and bedrock at its corresponding x-coordinate.   
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3. For each subsequent point, aside from the geometric bound which applies as described in 2., 

a kinematic bound is imposed.  A line is constructed from the 2 previous points.  Another 

line is constructed from the previous point and the exit point.  The y-values of these two 

lines at the point's respective x-value define this aforementioned kinematic bound. 

4. The final bounding criteria for each subsequent point is then taken to be the interval 

contained by the highest of the lower bounds, and the lowest of the upper bounds. 

Below is a more formal mathematical formulation. 

1. Assume                   present and valid as described in previous section.  Denote 

              the functions describing the slopeline and the bedrock respectively. 

2.                 . 

3.                                                            , where 

                 
         
         

             

                 
         
         

            

 

As can be seen, the domains for the various control variables are highly dynamic and dependent on 

other control variables.  Moreover, since a factor of safety for a failure surface is found iteratively, a 

numerical solution may not converge for some surfaces even though they are convex and appear to 

be kinematically feasible.  As such, the function          is extremely discontinuous, and valid 

only for small "hyper-regions" in the      dimensional hyperspace of the problem.   

An illustrative example of dynamic bounds can be seen is Figure 2.  X-domains can be generated at 

the same time, as depicted by the blue arrows, while y-domains must be generated from left to 

right, and the y-domain for the current vertex depends on the y-coordinate of the previous as well 

as right-most vertex.  
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FIGURE 2 - DYNAMIC BOUNDS OF VERTICES 
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3 CUCKOO SEARCH 

Cuckoo Search is a recent global optimization algorithm developed by Xin-She Yang and Suash Deb 

in 2009, inspired by the natural parasitic but successful behaviour of the Cuckoo species by laying 

their eggs in the nests of other host birds (of other species).    In the short amount of time since 

inception, Cuckoo Search has been used in spring and welded beam designing, nurse scheduling, 

data fusion in wireless network sensors, etc., and obtaining better solutions than those which exists 

in literature.   

3.1 INITIALIZATION  

The CS algorithm starts by initializing a fixed number of   valid solutions vectors 

                                              .  A fixed number of iteration      is also 

defined; generally, both   and      depends on the dimensionality of the problem.  The solution 

vectors are sorted from worst fitness (i.e. highest factor of safety), to best fitness. 

3.2 SOLUTION REFINEMENT 

In each iteration in the original Cuckoo Search, for each solution vector   , a temporary solution 

vector       is generated by performing a random walk in the following fashion, 

                 

where   is a problem related constant step-size,   denotes entry-wise multiplication, and    is a 

vector whose entries are taken from a probabilistic distribution.  A random solution (i.e.   ) is 

selected and compared with      ;    is replaced with       if       has better fitness.  The 

solution vectors are then sorted from worst to best fitness again. 

3.3 SOLUTION REJECTION AND REPLACEMENT 

The last step in the standard Cuckoo Search algorithm is the rejection and replacement of a      

percent of the worst solutions with new randomly generated valid solution vectors.  This ensures 

the global exploration ability of the algorithm never stops.   
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FIGURE 3 - FLOW CHART OF CUCKOO SEARCH 
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FIGURE 4 - PSEUDOCODE OF CUCKOO SEARCH 
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4 IMPROVED CUCKOO SEARCH 

Various refinements have been made to the original Cuckoo Search algorithm.  These modifications 

are mainly to increase convergence rate of the solution vectors.   

4.1 VARIATION OF STEP-SIZE 

For better global exploration abilities in earlier iterations and better local refinements in the latter 

stages, Improved Cuckoo Search proposed  

                      
    

    
    

          

    
   

                           

for which      and      are problem specific,                    denotes the current generation. 

4.2 VARIATION OF PERCENTAGE OF REJECTED SOLUTIONS 

Again, to improve convergence rate, the number of solution vectors replaced by randomly 

generated solutions decrease over the iterations.  In Improved Cuckoo Search, a formula for  

                         
        
    

                     

was proposed.  It was also suggested that instead of the worst solutions being replaced, that each 

solution would have a      percent chance of being replaced. 

4.3 VARIATION OF REPLACEMENT OF SOLUTIONS 

Instead of replacing rejected solutions with random solutions, it was proposed that the replacement 

solutions to be generated in the following way. 

First, solution vectors are randomly shuffled, and two of such random permutations are stored 

inside integer arrays       and      .  For example, for a set of 5 reject solution vectors 

         , a possible permutation contained in       might be            .  For each rejected 

solution, the replacement solution will be generated by  
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Where           is a column vector of length      (number of dimensions in the problem) filled 

with random numbers taken from a uniform distribution       .  To further speed up convergence, 

         can be replaced with           (by solution fitness) to put higher selection pressure on 

the solutions.   

4.4 ON THE EFFECTIVENESS OF ASPECTS OF ICS IN LOCATING CRITICAL 

FAILURE SURFACE 

It was found that all of the above techniques does allow a faster rate of convergence.  However, due 

to the high dimensionality of the problem in question as well as the extremely discontinuous nature 

of the function, some of the Improved Cuckoo Search improvements hindered the global 

exploration ability of the algorithm in escaping local minima (i.e. secondary/tertiary failure modes 

of the slope).  Hence only the variation of step-size modification was made to the original Cuckoo 

Search algorithm, as it was found that global exploration usually happens in the rejection-

replacement phase of the algorithm. 
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5 REFINEMENT AND ADAPTATION OF CUCKOO SEARCH TO 

CURRENT PROBLEM 

5.1 NO FREE LUNCH 

In search and optimization computation, it is stated that any and all of such algorithms' 

performances are the exact same when averaged over all search and optimization problems.  

Performance of an algorithm can be described by its success to find the correct answer, as well as 

the amount of function evaluations it takes to achieve such a result.  In many optimization 

problems, function evaluation is a computationally intensive process (i.e. iteratively converging a 

factor of safety given a failure surface), and the number of function calls dictate the speed of the 

algorithm.   

As such, each algorithm must be tailored towards the specific problem it was intended to solve; a 

series of refinements specific and applicable only to the problem of critical failure surface searching 

has been implemented, and are detailed below.   

5.2 GENERATION OF RANDOM SOLUTION VECTORS 

Random solution vectors must be generated in the initialization phase as well as the rejection-

replacement phase in each iteration.  Since only a small and specific subset of the      

dimensional space of the problem will return a valid factor of safety, it is important to ensure a high 

"success-rate" when generating such solution vectors.   

Aside from the procedure described in Section 2.2 on generating valid control variables within each 

of their own domain, a further angular restriction is imposed; by default, the inside angle of each 

vertices of the failure surface is to be greater than 120 degrees (this of course, can be changed by 

the user).   

Failure surfaces entering and exiting at the same elevation were also omitted.  This can also be 

changed by the user in the case of a possible failure due to vertical external loading on a horizontal 

surface. 
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Instead of a uniformly distributed probability                , each distinct segment of the slope 

surface (irrelevant of length) will have an equal probability of being selected as the segment for 

which the entry or exit point will lie.  After such a slope segment is selected, uniform random 

distribution dictates the location of the entry and exit point along that segment.  It was found that 

because different segments of the slope surface usually means a change in either slope geometry, or 

material properties, this modification allowed the algorithm to better survey the whole model. 

Lastly, again due to the highly discontinuous nature of the control variable domains associated with 

this problem, simple checks were made to ensure that the failure surfaces generated do not cross 

and exit the slope surface near (but not at) the entry and exit points. 

5.3 VARIATIONS OF SOLUTIONS 

In the original Cuckoo Search algorithm, the variation of solutions phase follows  

                 

However, due to the high valid-domain dependence of the control variables, certain refinements 

were made to ensure a high success rate of       being a valid solution vector. 

Firstly, the entry and exit points are varied parametrically along the slope surface.  Then, all points 

are first "re-scaled" according to the new entry and exit points in the following manner: 

1. Let                                                     be the pre-adjusted entry and exit 

points respective; and                                                     be the 

post-adjusted entry and exit points.   

2. For each points                                              
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Secondly, a non-constant  

                      
    

    
    

          

    
  

as was proposed by Improved Cuckoo Search was used, with          and          .   

 

Moreover, another step-size parameter   associated with each control variable is introduced—it is 

related to the domain of each control variable in association with what has been adjusted thus far. 

1.                         for entry and exit points, where the parameterized value is to 

be adjusted. 

2.              
 

 
 
               

   
 .  In other words, step-size for the middle vertices is a 

quarter of the width of each slice with regards to the already-adjusted entry and exit points.   

3. Finally, the solution vectors are adjusted by following  

                           

 

 

Lastly, every adjusted solution       is bound checked according to the geometric and kinematic 

requirement outlined in Section 2.2, and adjusted to the boundary extrema if out-of-bounds. 

 

6 VERY FAST SIMULATED ANNEALING, LOCAL MONTE CARLOS 

For a description and formulation of the very fast simulated annealing (VFSA) applied to this 

problem, as well as the Local Monte Carlos (LCM) optimizer already implemented in SLIDE, which 

compliments VFSA as well as Cuckoo Search, please see "Global Optimization of General Failure 

Surfaces in Slope Analysis by Hybrid Simulated Annealing, 2—Methods" by Su, Xiao. 
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7 RESULTS 

The final Cuckoo Search algorithm tailored towards critical failure surface searching was executed 

on a total of 48 verification models and 19 customer models.  These models include a variety of 

slope and embankment designs as well as multi-layered geometries, and will test the performance 

of the algorithm to find the global minimum in a wide variety of cases.  In all cases, Spencer's 

method was used due to it being a limit equilibrium method satisfying both force and moment 

equilibrium. 

The verification cases are published examples from engineering journals and conference 

proceedings, including a set of five slope cases as part of a survey sponsored by ACADS (Association 

for Computer Aided Design).  The user-submitted cases consists of challenging slope geometries 

and extreme layering examples, submitted by SLIDE users.  These often includes multiple modes of 

failure, and presents a true test to any global optimization algorithms. 

Extensive testing of 30 runs of each file was conducted for both Cuckoo Search and Simulated 

Annealing.  The Cuckoo Search with the necessary modifications and refinements described above 

along with the LCM performed very promisingly against Simulated Annealing.  For all test files, 

Cuckoo Search found similar surfaces or completely different surfaces giving a much lower factor of 

safety as Simulated Annealing—at a computational time of on average 3 times faster.  The results 

are summarized in Appendix I - Summary for averages of each model. 

Is it also possible to display selected (or all) surfaces explored by the algorithm.  This can result in a 

"gradient-like" coloring pinpointing on the critical failure surface, as well as display secondary or 

tertiary failure modes (local minima).   

7.1 ON THE EFFECTIVENESS OF THE ALGORITHM 

Both Cuckoo Search and Simulated Annealing are global optimization algorithms; thus, it is 

important to discuss their respective success in escaping from local minima to arrive at the global 

minimum. 

The ability of Cuckoo Search to find the true global minimum is better than that of Simulated 

Annealing.  This can be seen in a number of customer cases, where various local minima (secondary 

failure modes of a slope) exist.  These files include User4, User4-revised, User6, User9, User13, and 

User14. 
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7.1.1 USER4 AND USER4-REVISED 

These two are files with essentially the same slope geometry and material compositions, with 

User4-revised having a section of tension cracks along the top of the slope.  Both of these cases have 

a point-like surficial failure mode with a factor of safety of 0.287, a point-like ledge failure with a 

factor of safety of 0.168 (global minimum), and a more substantial into-the-slope failure surface 

with a factor of safety of approximately 0.99.  The two point-like failure modes can be seen clearly 

in Figure 5 by the patch of red dots indicating the center of the circle approximating the failure 

surface, while the failure mode with an FOS of 0.99 can be seen on the slope itself.  The results of 

the 30 computational runs on the two files is summarized in Table 1 below. 

 Surficial (FOS = 0.287) In-Slope (FOS = 0.99) Global Minimum (FOS = 0.168) 

User4 

Cuckoo Search 8 0 22 

Simulated Annealing 0 29 1 

User4-revised 

Cuckoo Search 4 0 26 

Simulated Annealing 2 27 3 

 
TABLE 1 - USER4 RESULTS 

 

As is evident, Simulated Annealing is not effective in escaping local minima in this situation.  It is 

also important to note that although Cuckoo Search failed to find the global minimum a small 

fraction of the time, when the surfaces are displayed, it is clear that minima exist in locations of 

interests (including the area where the true global minimum lies)—although local exploration 

around that area during those few runs were not sufficient to retain those solutions as a candidate 

for the global minimum.  Upon displaying the results in the SLIDE interpreter, users can easily 

further explore the area around which local minima were found. 

In the above 2 customer files, the ability of Cuckoo Search to locate a near point-wise global 

minimum in the search space should be noted. 
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FIGURE 5 - USER4, CUCKOO SEARCH RESULTS 
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7.1.2 USER6, USER9, USER13, USER14 

In all of the above files, there exist two failure modes which are geometrically far apart from each 

other (i.e. not in the same "valley" in the search space).  With the exception of User6, for which a 

tertiary failure mode exists (however, neither Cuckoo Search nor Simulated Annealing have once 

mistakenly identified it as the global minimum, and is therefore insignificant in the current 

discussion).  The results are summarized in Table 2 below. 

User files 6, 9, 13, 14, with multiple failure modes (8 vertices) 

User6 Local Minimum (FOS = 1.32) Global Minimum (FOS = 1.23) 

Cuckoo Search 0 30 

Simulated Annealing 22 8 

User9 Local Minimum (FOS = 1.23) Global Minimum (FOS = 0.88) 

Cuckoo Search 5 25 

Simulated Annealing 29 1 

User13 Local Minimum (FOS = 1.12) Global Minimum (FOS = 1.82) 

Cuckoo Search 2 28 

Simulated Annealing 3 27 

User14 Local Minimum (FOS = 0.93) Global Minimum (FOS = 0.87) 

Cuckoo Search 4 26 

Simulated Annealing 5* 24 

*a minima of FOS = 1.34 was found once 

TABLE 2 - MULTIPLE FAILURE MODES CUCKOO SEARCH, SIMULATED ANNEALING COMPARISON 

 

Again, in the more complicated customer cases with more elaborate soil layers and properties, 

Cuckoo Search was shown to be more—at times far more—superior to Simulated Annealing in 

escaping local minima and locating the true global minimum. 

The files in question are displayed in Figure 6, Figure 7, Figure 8, and Figure 9.  The different modes 

of failure can clearly be seen from the dense orange patches. 
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FIGURE 6 - MULTIPLE FAILURE MODES, USER6 
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FIGURE 7 - MULTIPLE FAILURE MODES, USER9 
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FIGURE 8 - MULTIPLE FAILURE MODES, USER13 
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FIGURE 9 - MULTIPLE FAILURE MODES, USER14 
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7.2 ON THE EFFICIENCY OF THE ALGORITHM 

For failure surfaces defined by 8 vertices (for a total dimensionality of 14), it was found that a 

solution bank size of 50 coupled with 500 iterations of the algorithm and a solution-rejection 

percentage of 40% is enough.  This translates to  

   
                 

         
         

                      

         
                                   

This of course is overly optimistic and assumes a 100% success rate during random surface 

generations.  As was mentioned, not all surfaces which satisfy the geometric and kinematic 

constraints will converge and evaluate to a valid factor of safety.  For surfaces which do not, the 

surface is discarded and a new one is generated.  This continues until a valid surface is generated.   

The success rate of random failure surface generation depends highly on the actual slope model and 

its various properties; a success rate of 50% to 100% can be expected with most models.  Assuming 

a success rate of 50%, 45000 function evaluations (factor of safety calculations) can be expected. 

Even at 50% success rate, the number of factor of safety calculations are still small compared to 

Simulated Annealing.  Because the bottleneck of the algorithm is the number of factor of safety 

calculations, Cuckoo Search sees a huge improvement in terms of computational speed over 

Simulated Annealing.   

When averaged over all test files computed, Cuckoo Search performed three times (3x) faster than 

Simulated Annealing.   

The percent difference of computational time between Cuckoo Search and Simulated Annealing is 

displayed in Figure 10, and is calculated by 

             
                                           

                        
  

One can then calculate the amount of times Cuckoo Search is faster with the following formula: 

             
                        

                  
 

 

              
  

for example, 50% faster equates to a computational time half that of simulated annealing; 75% 

being four times faster, etc.  
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FIGURE 10 - SPEED COMPARISION, CUCKOO SEARCH VS. SIMULATED ANNEALING 

 

Figure 10 shows each corresponding individual runs compared to Simulated Annealing.  However, 

when computation runs are averaged first across each different files (30 run each), Cuckoo Search 

was very slightly slower in only 2 of them (verification5 and verification6, 0.933 and 0.927 times 

slower respectively) out of the total 67 files computed, and still all-in-all averaged three times 

faster. 
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7.3 ACCURACY  

The accuracy of Cuckoo Search is also comparable to Simulated Annealing.  Of the total 2010 

different computational runs performed     
    

    
            , Cuckoo Search found a factor of 

safety within a 1.5% difference compared to Simulated Annealing in 1484 of the runs.  Out of the 

526 remaining runs, Cuckoo Search found a better-than-1.5%-difference result in 294 runs, and 

232 worse results.   

However, this 1.5% difference can be misleading, after all, a factor of safety of 0.02 versus 0.015 

would constitute a 25% difference.  Hence, the actual factor of safety difference was calculated and 

tabulated out of the 526 runs which did not result in a percent difference under 1.5%.  A reasonable 

measure is a difference of 0.02 in the factor of safety found.  In this case, out of the 294 runs which 

Cuckoo Search found a better-than-1.5%-difference result, Cuckoo Search only bettered Simulated 

Annealing by a factor of safety of 0.02 in 229 of them.  However, of the 232 runs which Simulated 

Annealing bettered Cuckoo Search, the number now falls to a mere 148. 

Similar comparisons were done after each 30 runs were averaged first for each individual file; the 

results are presented in Table 3. 
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Individual computation runs (Cuckoo Search vs. Simulated Annealing) 

Less-than-1.5%-difference  
Less-than-1.5%-difference and 

greater-than-0.02 actual difference 

Total Runs 2010  Total Runs 2010 

Same Results 1484  Same Results 1633 

Better Results 294  Better Results 229 

Worse Results 232  Worse Results 148 

Success Rate* 88.46%  Success Rate* 92.64% 

      

     
       1.27  

      

     
       1.55 

File averages (Cuckoo Search vs. Simulated Annealing) 

Less-than-1.5%-difference  
Less-than-1.5%-difference and 

greater-than-0.02 actual difference 

Total Files 67  Total Files 67 

Same Results 50  Same Results 55 

Better Results 11  Better Results 9 

Worse Results 6  Worse Results 3 

Success Rate* 91.04%  Success Rate* 95.52 

      

     
       1.83  

      

     
       3 

             
           

     
 

TABLE 3 - SUMMARY OF RESULTS, CUCKOO SEARCH VS. SIMULATED ANNEALING 
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Although it can be concluded that Cuckoo Search coupled with a local optimizer performed better 

than Simulated Annealing coupled with the same optimizer, it is important to note that aside from 

the test cases mentioned in Section 7.1, that in general, the surfaces found by both algorithms are 

extremely similar.  Variations in the factor of safety can be affected by small movements of the 

vertices.  The importance of this difference in the calculated factor of safety given two very similar 

surfaces should be considered alongside the massive amounts of approximations made when 

building the model.   

The low function-evaluation count is advantageous to Cuckoo Search in that it directly translates to 

a higher algorithmic efficiency.  However, there are a few types of situation where more function-

evaluations is perhaps the only solution—this happens for example, when the landscape of the 

search space is littered with many delta-like functions, with overall little or no information 

obtainable between each individual trough.   

One of such an example are slope models with a vertical drop-off face.  It was found that—perhaps 

due to the inherent shortcomings of the method of slices and limit equilibrium—that small, 

geometrically and kinematically acceptable variations in the positions of vertices of a failure surface 

with a valid calculated factor of safety, can result in a non-valid FOS calculation using the method of 

slices.  This worsens as the angle of the failure surface increases.   

This can be seen in Figure 11.  Cuckoo Search was able to find the general location of the failure 

surface, but with the low number of function evaluations, neither Cuckoo Search nor the post-

optimization done by LCM was able to reduce the factor of safety value; in such cases, if an accurate 

numerical factor of safety is necessary, it is recommended that Simulated Annealing to be used.  



 

FIGURE 11 - USER15, PROBLEMS WITH LIMIT EQUILIBRIUM METHODS 

  



7.4 THE EFFECT OF DIMENSIONALITY 

The dimensionality of the problem was increased from 8 vertices (14 dimensions) to 15 vertices 

(28 dimensions), and 10 computational runs of each file was performed for both Cuckoo Search as 

well as Simulated Annealing.   

The number of solutions in the solution bank for Cuckoo Search was increased from 50 to 100, 

while 500 iterations were kept constant.  An increase of 50% computational time was observed 

(1.5x longer). 

It was found that for cases where there is a single mode of failure (or where the global minimum 

was relatively easy to find), the higher number of vertices gave a finer and more detailed failure 

surface, allowing for a slightly lower critical factor of safety to be found.  However, it suffered more 

in cases with local minima, such as the files described in Section 7.1.   

User files 6, 9, 13, 14, with multiple failure modes (13 vertices) 

User6 Local Minimum (FOS = 1.32) Global Minimum (FOS = 1.23) 

Cuckoo Search 0 10 

Simulated Annealing 7 3 

User9 Local Minimum (FOS = 1.23) Global Minimum (FOS = 0.88) 

Cuckoo Search 4 6 

Simulated Annealing 6 4 

User13 Local Minimum (FOS = 1.12) Global Minimum (FOS = 1.82) 

Cuckoo Search 5 5 

Simulated Annealing 6 4 

User14 Local Minimum (FOS = 0.93) Global Minimum (FOS = 0.87) 

Cuckoo Search 1 9 

Simulated Annealing 4 6 

TABLE 4 - HIGH DIMENSION MULTIPLE FAILURE MODE COMPARISON 

Such a decrease in performance can be expected however, as doubling the dimensionality of the 

problem oftentimes increase the complexity by orders of magnitude. 

Although the success rate for finding the true global minimum is heavily reduced, Cuckoo Search 

still performed better than Simulated Annealing.  One should also note that on average, Cuckoo 

Search was faster than Simulated Annealing by over 5 times.   
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7.5 THE ROBUSTNESS OF THE ALGORITHM ON THIN LAYERS 

Thin soil layers in a slope geometry can dictate how the slope will fail—especially if the thin layers 

are weak.  Thin layers also present a challenge for any stochastic global optimization algorithms, as 

these layers are unlikely to be found given random chance.  A critical failure surface passing 

through such a weak layer can represent a delta function in the search space, as generally speaking, 

little information about the weak layer is available unless the weak layer is actually found by the 

algorithm. 

Two such weak layer files were available for testing the robustness and effectiveness of the 

algorithm—verification9, and user17.  User17 was modified such that the thickness of the thin, 

weak layer was shortened to approximately 0.5", a true needle-in-the-haystack when compared to 

the size of the model.   

Cuckoo Search was able to locate such a critical failure surface which passes through the weak layer 

successfully 100% of the time in both files.  Typical computation results are shown in Figure 12 and 

Figure 13. 
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FIGURE 12 - THIN LAYER EXAMPLE, VERIFICATION9 
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FIGURE 13 - EXTREME THIN LAYER EXAMPLE, USER17 MODIFIED 
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7.6 THE ROLE OF HYBRIDIZATION 

As described above, Cuckoo Search was hybridized with Local Carlo Monte, a local searching 

algorithm.  The necessity of which is described below. 

The LCM is a local searching algorithm, and is extremely efficient at what it was designed to do.  

Thus, given a good initial guess, by for example, an experienced engineer, LCM can modify the initial 

failure surface to minimize its associated factor of safety quickly.  Such an initial guess can be rather 

trivial, such as in verification1 (Figure 14), when the slope geometry is simple and soil property is 

non-layered and homogenous.  As the complexity of slope geometry increases, guesses are often 

harder to make, as is the case with all of the slope geometries with multiple failure modes as 

described in Section 7.1.  As LCM is by nature a local searching algorithm, it does not have the 

capability to escape local minima, and as such one will not expect LCM to find the correct failure 

surface given a non-optimal initial guess.  It is worth noting that although the files described in 

Section 7.1 only contains a few 

prominent failure modes, that 

many more local minima exists—

minima which LCM can easily be 

trapped by; the reason why those 

do not show up in the figures is 

due to the fact that Cuckoo 

Search can easily escape such 

minima, and thus do not dwell 

too long examining them.   

The role of Cuckoo Search then becomes to provide the best "initial guess" failure surface for LCM 

to optimize.  Of course this initial guess Cuckoo Search found will be extremely similar in shape and 

failure/entry/exit location to the refined surface LCM will return.  It can be said that with Cuckoo 

Search alone, the failure surface found is oftentimes more than acceptably similar to the surface 

after optimization by the LCM.  However, the factor of safety—the numerical measurement to the 

quality of the solution—at times leave more to be desired.  It is important to note however, that the 

Cuckoo Search algorithm implemented in SLIDE is optimized more towards the efficiency and 

effectiveness of global searching, narrowing down the region of failure given a complex slope 

geometry, than to pin-point the minute difference in the numerical factor of safety value when a 

vertex is slightly shifted from one position to another.   

FIGURE 14 - VERIFICATION1, SIMPLE HOMOGENOUS SLOPE 
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Is hybridization necessary?  Yes and no.  LCM optimize the surface to find the lowest factor of 

safety.  However, the accuracy of this "lowest factor of safety" depends on some other, more 

important aspects, such as how accurate the model representation of the actual physical slope is.  

Oftentimes a lot of assumptions are made when constructing a digital representation from in-situ 

surveys, such as homogeneity of the soil layers.  Hybridization should be used if the desired failure 

surface to be found is one with the lowest factor of safety given the digital representation of the 

physical slope; depending on the accuracy of the digital model however, this may or may not be the 

failure surface with the actual lowest factor of safety in the physical site. 
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8 CONCLUSION 

Cuckoo Search—a stochastic, nature-based global search algorithm—was successfully implemented 

in SLIDE in locating the critical failure surface of a slope geometry.  Cuckoo Search was able to 

locate the critical failure surface more effectively (higher success rate as well as accuracy) and 

efficiently (lower computation time) than Simulated Annealing originally implemented to solve the 

exact same problem.  When combined with LCM for further optimization of the critical failure 

surface, a refined surface with the lowest factor of safety given a slope geometry can be found.   

Modifications specific to the critical failure surface searching problem are essential in increasing 

the performance of the search.  These includes dynamic domain bounding during initialization and 

variation of the solutions, a suitable step-size for each control variable, as well as readjustment of 

surfaces after the variation of the entry and exit points but prior to the adjustments of the inner 

vertices.   

The Cuckoo Search formulation described here was shown to have a speed increase of over three 

times faster than Simulated Annealing for an 8-vertices failure surface, and having a noticeable 

improvement in accuracy of solutions found.  It triumph Simulated Annealing in locating the 

absolute global minimum in slope geometries with multiple failure modes; even point-wise failures.  

Cuckoo Search is also able to display the various failure modes found during the search, and can 

inform users of other possible failure modes—which the user can then explore further. 

Hybridization of Cuckoo Search with LCM was necessary in the refinement of the critical failure 

surface for the lowest factor of safety value; Cuckoo Search itself however, is in most cases enough 

in locating the shape and location of the critical failure surface in the model.   

Dimensionality (number of vertices in the failure surface) increase directly lead to a more 

complicated problem.  A linear increase in the number of solutions in the solution bank with the 

increase in dimensions is recommended, while the number of generations is kept constant.  One can 

see a decrease in effectiveness of locating the global minimum, and an increase in computation 

time, as well as precision (given that the failure surface found is truly the global minimum).  Of 

course, with a further increase in the number of solutions in the solution bank, robustness of the 

algorithm can further be ensured, at the expense of computation time.  Cuckoo Search under the 

increase in dimensionality was shown to be more effective and efficient (and more so than with 

lower dimensionalities) than Simulated Annealing. 
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9 APPENDIX I - SUMMARY FOR AVERAGES OF EACH MODEL 

9.1 CUSTOMER FILES 

 

 Cuckoo Search  Simulated Annealing  Difference   % diff btw avgs 

user1.sli average 0.75548  average 0.756019  -0.001  -0.07 

min 0.749694  min 0.749932  0.000   

max 0.757714  max 0.757578  0.000   

diff 0.00802  diff 0.007646  0.000   

Std. dev. 0.00232  Std. dev. 0.001537  0.001   

avg time 638.3667  avg time 841.5333  1.318   

----         

user3.sli average 1.229629  average 1.227354  0.002  0.19 

min 1.22438  min 1.22441  0.000   

max 1.27817  max 1.2759  0.002   

diff 0.05379  diff 0.05149  0.002   

Std. dev. 0.00999  Std. dev. 0.009326  0.001   

avg time 122.9333  avg time 274.7667  2.235   

----         

user4.sli average 0.200849  average 0.968373  -0.768  -79.26 

min 0.167441  min 0.166301  0.001   

max 0.299249  max 1.12013  -0.821   

diff 0.131808  diff 0.953829  -0.822   

Std. dev. 0.053972  Std. dev. 0.155937  -0.102   

avg time 105.6667  avg time 352.1333  3.332   

----         

user4 revised.sli average 0.18527  average 0.858347  -0.673  -78.42 

min 0.167446  min 0.166234  0.001   

max 0.288278  max 0.999888  -0.712   

diff 0.120832  diff 0.833654  -0.713   

Std. dev. 0.040981  Std. dev. 0.293828  -0.253   

avg time 102.2  avg time 371.2333  3.632   

----         

user6.sli average 1.234694  average 1.294115  -0.059  -4.59 

min 1.23177  min 1.23337  -0.002   

max 1.23663  max 1.32101  -0.084   

diff 0.00486  diff 0.08764  -0.083   

Std. dev. 0.000827  Std. dev. 0.036951  -0.036   

avg time 239.5333  avg time 607.6333  2.537   

----         
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 Cuckoo Search  Simulated Annealing  Difference   % diff btw avgs 

user7.sli average 1.135906  average 1.143577  -0.008  -0.67 

min 1.13405  min 1.13355  0.000   

max 1.13922  max 1.37987  -0.241   

diff 0.00517  diff 0.24632  -0.241   

Std. dev. 0.001566  Std. dev. 0.044644  -0.043   

avg time 194.8667  avg time 365.2  1.874   

----         

user8.sli average 1.724023  average 1.726036  -0.002  -0.12 

min 1.61299  min 1.71792  -0.105   

max 1.73662  max 1.78922  -0.053   

diff 0.12363  diff 0.0713  0.052   

Std. dev. 0.021396  Std. dev. 0.013986  0.007   

avg time 59.73333  avg time 190.8  3.194   

----         

user9.sli average 0.943403  average 1.20712  -0.264  -21.85 

min 0.871749  min 0.876407  -0.005   

max 1.23612  max 1.21985  0.016   

diff 0.364371  diff 0.343443  0.021   

Std. dev. 0.130693  Std. dev. 0.062465  0.068   

avg time 172.3  avg time 432.6  2.511   

----         

user10 - 15m 
embankment dry.sli 

average 1.406312  average 1.40631  0.000  0.00 

min 1.40631  min 1.40631  0.000   

max 1.40632  max 1.40631  0.000   

diff 1E-05  diff 0  0.000   

Std. dev. 4.07E-06  Std. dev. 0  0.000   

avg time 26.43333  avg time 62.43333  2.362   

----         

user11 - dallas 5555 
wall bent es9a.sli 

average 1.987891  average 1.99831  -0.010  -0.52 

min 1.93589  min 1.93891  -0.003   

max 2.03775  max 2.11349  -0.076   

diff 0.10186  diff 0.17458  -0.073   

Std. dev. 0.033839  Std. dev. 0.035079  -0.001   

avg time 65.76667  avg time 118.6333  1.804   

----         

user12 - 
2550_0225.sli 

average 1.077891  average 1.075794  0.002  0.19 

min 1.0674  min 1.06822  -0.001   

max 1.09382  max 1.09297  0.001   

diff 0.02642  diff 0.02475  0.002   

Std. dev. 0.007805  Std. dev. 0.006357  0.001   

avg time 40.36667  avg time 80.93333  2.005   

----         
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 Cuckoo Search  Simulated Annealing  Difference   % diff btw avgs 

user13 - GH-BUCK 
with berm.sli 

average 0.848094  average 0.856681  -0.009  -1.00 

min 0.800086  min 0.810089  -0.010   

max 1.12004  max 1.1144  0.006   

diff 0.319954  diff 0.304311  0.016   

Std. dev. 0.074997  Std. dev. 0.087727  -0.013   

avg time 102.2667  avg time 220.9333  2.160   

----         

user14 - LOWER 
FAILED Buttress.sli 

average 0.879649  average 0.897135  -0.017  -1.95 

min 0.866065  min 0.868994  -0.003   

max 0.942314  max 1.34156  -0.399   

diff 0.076249  diff 0.472566  -0.396   

Std. dev. 0.020568  Std. dev. 0.086788  -0.066   

avg time 107.1333  avg time 168.0667  1.569   

----         

user15 - block 
search.sli 

average 0.996065  average 0.903817  0.092  10.21 

min 0.939809  min 0.876841  0.063   

max 1.05565  max 1.49941  -0.444   

diff 0.115841  diff 0.622569  -0.507   

Std. dev. 0.029706  Std. dev. 0.112579  -0.083   

avg time 62.26667  avg time 669.9667  10.760   

----         

user17 - Leachate 
Tank.sli 

average 1.048932  average 1.115695  -0.067  -5.98 

min 1.03345  min 1.03331  0.000   

max 1.11273  max 2.7607  -1.648   

diff 0.07928  diff 1.72739  -1.648   

Std. dev. 0.020505  Std. dev. 0.312305  -0.292   

avg time 34.2  avg time 69.66667  2.037   

----         

user20 - tstab.sli average 3.916124  average 3.941215  -0.025  -0.64 

min 3.85142  min 3.85627  -0.005   

max 4.05278  max 4.03428  0.019   

diff 0.20136  diff 0.17801  0.023   

Std. dev. 0.065412  Std. dev. 0.077736  -0.012   

avg time 50.73333  avg time 154.7667  3.051   

----         

user21 - slopew.sli average 1.461281  average 1.460662  0.001  0.04 

min 1.45383  min 1.45267  0.001   

max 1.46337  max 1.46309  0.000   

diff 0.00954  diff 0.01042  -0.001   

Std. dev. 0.0027  Std. dev. 0.002739  0.000   

avg time 40.73333  avg time 68.66667  1.686   

----         
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 Cuckoo Search  Simulated Annealing  Difference   % diff btw avgs 

user28 - Verifica 1 
pali Rocscience 
moved pile.sli 

average 0.766862  average 0.764834  0.002  0.27 

min 0.735337  min 0.725585  0.010   

max 0.804414  max 0.77932  0.025   

diff 0.069077  diff 0.053735  0.015   

Std. dev. 0.01391  Std. dev. 0.009889  0.004   

avg time 48.86667  avg time 463.6  9.487   

----         

user32a - DSBarna-
HF2CBMD6SC01.sli 

average 0.618521  average 0.615087  0.003  0.56 

min 0.605509  min 0.607116  -0.002   

max 0.812035  max 0.647136  0.165   

diff 0.206526  diff 0.04002  0.167   

Std. dev. 0.039491  Std. dev. 0.010187  0.029   

avg time 31.43333  avg time 93.26667  2.967   

----         
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9.2 VERIFICATION FILES 

 
 

 Cuckoo Search  Simulated Annealing  Difference   % diff btw avgs 

verification#01.sli average 0.983004  average 0.982963  0.000  0.00 

min 0.980784  min 0.980946  0.000   

max 0.983885  max 0.98386  0.000   

diff 0.003101  diff 0.002914  0.000   

Std. dev. 0.001046  Std. dev. 0.001008  0.000   

avg time 37.56667  avg time 61.5  1.637   

----         

verification#02.sli average 1.578202  average 1.577368  0.001  0.05 

min 1.57051  min 1.56923  0.001   

max 1.58439  max 1.57979  0.005   

diff 0.01388  diff 0.01056  0.003   

Std. dev. 0.002612  Std. dev. 0.003106  0.000   

avg time 30.9  avg time 61.9  2.003   

----         

verification#03.sli average 1.362085  average 1.362168  0.000  -0.01 

min 1.35843  min 1.35897  -0.001   

max 1.36528  max 1.36381  0.001   

diff 0.00685  diff 0.00484  0.002   

Std. dev. 0.002178  Std. dev. 0.001716  0.000   

avg time 36.4  avg time 61.13333  1.679   

----         

verification#04.sli average 0.980081  average 0.981806  -0.002  -0.18 

min 0.977741  min 0.977647  0.000   

max 0.984042  max 0.994808  -0.011   

diff 0.006301  diff 0.017161  -0.011   

Std. dev. 0.001016  Std. dev. 0.005105  -0.004   

avg time 45.23333  avg time 79.33333  1.754   

----         

verification#05.sli average 1.94753  average 1.94753  0.000  0.00 

min 1.94753  min 1.94753  0.000   

max 1.94753  max 1.94753  0.000   

diff 0  diff 0  0.000   

Std. dev. 2.26E-16  Std. dev. 2.26E-16  0.000   

avg time 36.06667  avg time 33.66667  0.933   

----         
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 Cuckoo Search  Simulated Annealing  Difference   % diff btw avgs 

verification#06.sli average 1.94753  average 1.94753  0.000  0.00 

min 1.94753  min 1.94753  0.000   

max 1.94753  max 1.94753  0.000   

diff 0  diff 0  0.000   

Std. dev. 2.26E-16  Std. dev. 2.26E-16  0.000   

avg time 35.2  avg time 32.63333  0.927   

----         

verification#08.sli average 1.222076  average 1.22197  0.000  0.01 

min 1.22127  min 1.22093  0.000   

max 1.22302  max 1.22311  0.000   

diff 0.00175  diff 0.00218  0.000   

Std. dev. 0.000345  Std. dev. 0.00041  0.000   

avg time 40.76667  avg time 63.23333  1.551   

----         

verification#09.sli average 0.715238  average 0.709313  0.006  0.84 

min 0.708452  min 0.708073  0.000   

max 0.743109  max 0.717615  0.025   

diff 0.034657  diff 0.009542  0.025   

Std. dev. 0.008883  Std. dev. 0.00186  0.007   

avg time 41.7  avg time 75.4  1.808   

----         

verification#10.sli average 1.493178  average 1.492079  0.001  0.07 

min 1.48923  min 1.48557  0.004   

max 1.49729  max 1.49508  0.002   

diff 0.00806  diff 0.00951  -0.001   

Std. dev. 0.002305  Std. dev. 0.002623  0.000   

avg time 53  avg time 82.43333  1.555   

----         

verification#11.sli average 0.759737  average 0.79792  -0.038  -4.79 

min 0.712007  min 0.709475  0.003   

max 0.832136  max 0.894734  -0.063   

diff 0.120129  diff 0.185259  -0.065   

Std. dev. 0.045594  Std. dev. 0.043572  0.002   

avg time 51  avg time 116.1333  2.277   

----         

verification#12.sli average 1.050334  average 1.050532  0.000  -0.02 

min 1.0399  min 1.03899  0.001   

max 1.09914  max 1.07892  0.020   

diff 0.05924  diff 0.03993  0.019   

Std. dev. 0.013709  Std. dev. 0.011178  0.003   

avg time 82.16667  avg time 633.8333  7.714   

----         
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 Cuckoo Search  Simulated Annealing  Difference   % diff btw avgs 

verification#14-
noncircular.sli 

average 1.392185  average 1.391322  0.001  0.06 

min 1.38659  min 1.38676  0.000   

max 1.3942  max 1.39421  0.000   

diff 0.00761  diff 0.00745  0.000   

Std. dev. 0.002665  Std. dev. 0.002643  0.000   

avg time 65.16667  avg time 102.6333  1.575   

----         

verification#15-
circular.sli 

average 0.41489  average 0.414518  0.000  0.09 

min 0.412005  min 0.41215  0.000   

max 0.419129  max 0.418829  0.000   

diff 0.007124  diff 0.006679  0.000   

Std. dev. 0.001906  Std. dev. 0.00152  0.000   

avg time 66.86667  avg time 137.9333  2.063   

----         

verification#16-
noncircular.sli 

average 1.102323  average 1.101444  0.001  0.08 

min 1.09759  min 1.09633  0.001   

max 1.10532  max 1.10357  0.002   

diff 0.00773  diff 0.00724  0.000   

Std. dev. 0.001919  Std. dev. 0.002037  0.000   

avg time 59.96667  avg time 81.43333  1.358   

----         

verification#19.sli average 1.403668  average 1.403941  0.000  -0.02 

min 1.39889  min 1.39903  0.000   

max 1.40764  max 1.40892  -0.001   

diff 0.00875  diff 0.00989  -0.001   

Std. dev. 0.002101  Std. dev. 0.002319  0.000   

avg time 53.6  avg time 95.3  1.778   

----         

verification#20-
noncircular.sli 

average 1.073345  average 1.081213  -0.008  -0.73 

min 1.00539  min 1.00655  -0.001   

max 1.09364  max 1.09127  0.002   

diff 0.08825  diff 0.08472  0.004   

Std. dev. 0.033515  Std. dev. 0.025198  0.008   

avg time 51.66667  avg time 81.56667  1.579   

----         

verification#21-1.sli average 1.990598  average 1.99122  -0.001  -0.03 

min 1.98153  min 1.9839  -0.002   

max 1.99403  max 1.9948  -0.001   

diff 0.0125  diff 0.0109  0.002   

Std. dev. 0.003049  Std. dev. 0.002409  0.001   

avg time 57.1  avg time 91.4  1.601   

----         
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 Cuckoo Search  Simulated Annealing  Difference   % diff btw avgs 

verification#22-1.sli average 1.292499  average 1.292605  0.000  -0.01 

min 1.29135  min 1.29166  0.000   

max 1.29465  max 1.29502  0.000   

diff 0.0033  diff 0.00336  0.000   

Std. dev. 0.000747  Std. dev. 0.000874  0.000   

avg time 42.33333  avg time 64.56667  1.525   

----         

verification#24.sli average 1.3981  average 1.397633  0.000  0.03 

min 1.39241  min 1.39445  -0.002   

max 1.40047  max 1.39992  0.001   

diff 0.00806  diff 0.00547  0.003   

Std. dev. 0.001777  Std. dev. 0.001284  0.000   

avg time 38.1  avg time 65.66667  1.724   

----         

verification#25.sli average 0.943173  average 0.943175  0.000  0.00 

min 0.943126  min 0.943139  0.000   

max 0.943267  max 0.943821  -0.001   

diff 0.000141  diff 0.000682  -0.001   

Std. dev. 3.53E-05  Std. dev. 0.000123  0.000   

avg time 54.86667  avg time 154.7667  2.821   

----         

verification#27-1.sli average 0.114236  average 0.094876  0.019  20.41 

min 0.048896  min 0.029359  0.020   

max 0.134534  max 0.11771  0.017   

diff 0.085638  diff 0.088351  -0.003   

Std. dev. 0.017165  Std. dev. 0.02351  -0.006   

avg time 29.33333  avg time 72.23333  2.463   

----         

verification#28-
Example1_Layer2.sli 

average 0.014352  average 0.041039  -0.027  -65.03 

min 0.002043  min 0.001811  0.000   

max 0.098383  max 1.09947  -1.001   

diff 0.09634  diff 1.097659  -1.001   

Std. dev. 0.021364  Std. dev. 0.199911  -0.179   

avg time 53.36667  avg time 96.8  1.814   

----         

verification#29.sli average 2.96E-08  average 1.74E-08  0.000  70.26 

min 1.65E-10  min 3.23E-10  0.000   

max 1.47E-07  max 1.42E-07  0.000   

diff 1.47E-07  diff 1.42E-07  0.000   

Std. dev. 4.09E-08  Std. dev. 3.28E-08  0.000   

avg time 28.16667  avg time 116.5333  4.137   

----         
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 Cuckoo Search  Simulated Annealing  Difference   % diff btw avgs 

verification#30-1.sli average 1.05033  average 1.05033  0.000  0.00 

min 1.05033  min 1.05033  0.000   

max 1.05033  max 1.05033  0.000   

diff 0  diff 0  0.000   

Std. dev. 4.52E-16  Std. dev. 4.52E-16  0.000   

avg time 17.86667  avg time 61.2  3.425   

----         

verification#31-1.sli average 0.861257  average 0.852394  0.009  1.04 

min 0.861256  min 0.823301  0.038   

max 0.861258  max 0.861257  0.000   

diff 2E-06  diff 0.037956  -0.038   

Std. dev. 4.34E-07  Std. dev. 0.014628  -0.015   

avg time 20.86667  avg time 79.33333  3.802   

----         

verification#32-1.sli average 0.79942  average 0.799416  0.000  0.00 

min 0.79939  min 0.799375  0.000   

max 0.799455  max 0.799454  0.000   

diff 6.5E-05  diff 7.9E-05  0.000   

Std. dev. 1.95E-05  Std. dev. 1.8E-05  0.000   

avg time 60.86667  avg time 237.9333  3.909   

----         

verification#41.sli average 1.672012  average 1.671511  0.001  0.03 

min 1.66725  min 1.66691  0.000   

max 1.67369  max 1.67345  0.000   

diff 0.00644  diff 0.00654  0.000   

Std. dev. 0.001813  Std. dev. 0.00205  0.000   

avg time 268.5667  avg time 470.0333  1.750   

----         

verification#42-
noncircular.sli 

average 1.868258  average 1.867964  0.000  0.02 

min 1.86606  min 1.86692  -0.001   

max 1.87531  max 1.86951  0.006   

diff 0.00925  diff 0.00259  0.007   

Std. dev. 0.001845  Std. dev. 0.000835  0.001   

avg time 27.7  avg time 61.83333  2.232   

----         

verification#43-
circ.sli 

average 1.395128  average 1.363819  0.031  2.30 

min 1.31733  min 1.29494  0.022   

max 1.52797  max 1.4859  0.042   

diff 0.21064  diff 0.19096  0.020   

Std. dev. 0.079534  Std. dev. 0.061447  0.018   

avg time 45.8  avg time 700.2  15.288   

----         
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 Cuckoo Search  Simulated Annealing  Difference   % diff btw avgs 

verification#44-M-C 
with iteration 

results.sli 

average 0.976967  average 0.977094  0.000  -0.01 

min 0.97572  min 0.976174  0.000   

max 0.977245  max 0.977241  0.000   

diff 0.001525  diff 0.001067  0.000   

Std. dev. 0.000457  Std. dev. 0.000286  0.000   

avg time 60.23333  avg time 79.5  1.320   

----         

verification#45-m-
c.sli 

average 2.7859  average 2.785547  0.000  0.01 

min 2.77992  min 2.78106  -0.001   

max 2.78918  max 2.78918  0.000   

diff 0.00926  diff 0.00812  0.001   

Std. dev. 0.002331  Std. dev. 0.001694  0.001   

avg time 26.8  avg time 48.73333  1.818   

----         

verification#46-
stage1.sli 

average 2.49948  average 2.49948  0.000  0.00 

min 2.49948  min 2.49948  0.000   

max 2.49948  max 2.49948  0.000   

diff 0  diff 0  0.000   

Std. dev. 4.52E-16  Std. dev. 4.52E-16  0.000   

avg time 16.43333  avg time 61.53333  3.744   

----         

verification#48.sli average 0.935334  average 0.917333  0.018  1.96 

min 0.921412  min 0.911073  0.010   

max 0.951196  max 0.93152  0.020   

diff 0.029784  diff 0.020447  0.009   

Std. dev. 0.007118  Std. dev. 0.005118  0.002   

avg time 98.76667  avg time 371.3  3.759   

----         

verification#49.sli average 1.432501  average 1.414188  0.018  1.29 

min 1.41696  min 1.27415  0.143   

max 1.49392  max 1.47912  0.015   

diff 0.07696  diff 0.20497  -0.128   

Std. dev. 0.014202  Std. dev. 0.041095  -0.027   

avg time 46.36667  avg time 345.8  7.458   

----         

verification#50.sli average 0.360779  average 0.479018  -0.118  -24.68 

min 0.360778  min 0.360778  0.000   

max 0.360781  max 1.08367  -0.723   

diff 3E-06  diff 0.722892  -0.723   

Std. dev. 6.75E-07  Std. dev. 0.268941  -0.269   

avg time 23.3  avg time 140.8667  6.046   

----         
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 Cuckoo Search  Simulated Annealing  Difference   % diff btw avgs 

verification#51.sli average 0.986587  average 0.986949  0.000  -0.04 

min 0.981294  min 0.982209  -0.001   

max 0.989856  max 0.989955  0.000   

diff 0.008562  diff 0.007746  0.001   

Std. dev. 0.002748  Std. dev. 0.002649  0.000   

avg time 198.1  avg time 320.6667  1.619   

----         

verification#52-1-
dry.sli 

average 2.012802  average 2.012737  0.000  0.00 

min 2.00448  min 2.00462  0.000   

max 2.01641  max 2.01579  0.001   

diff 0.01193  diff 0.01117  0.001   

Std. dev. 0.00333  Std. dev. 0.003397  0.000   

avg time 64.46667  avg time 88.36667  1.371   

----         

verification#53.sli average 0.758947  average 0.758498  0.000  0.06 

min 0.755846  min 0.754807  0.001   

max 0.764887  max 0.763736  0.001   

diff 0.009041  diff 0.008929  0.000   

Std. dev. 0.002  Std. dev. 0.001988  0.000   

avg time 59.73333  avg time 238.6333  3.995   

----         

verification#54-with 
pile.sli 

average 1.154536  average 1.155752  -0.001  -0.11 

min 1.15312  min 1.15095  0.002   

max 1.15629  max 1.15818  -0.002   

diff 0.00317  diff 0.00723  -0.004   

Std. dev. 0.000817  Std. dev. 0.001792  -0.001   

avg time 186.2667  avg time 128.1  0.688   

----         

verification#55-
slope1.sli 

average 1.299496  average 1.299953  0.000  -0.04 

min 1.2925  min 1.29395  -0.001   

max 1.30493  max 1.3019  0.003   

diff 0.01243  diff 0.00795  0.004   

Std. dev. 0.003639  Std. dev. 0.002707  0.001   

avg time 54.56667  avg time 73  1.338   

----         

verification#56-
slope2.sli 

average 1.293355  average 1.29193  0.001  0.11 

min 1.28733  min 1.28673  0.001   

max 1.29869  max 1.29443  0.004   

diff 0.01136  diff 0.0077  0.004   

Std. dev. 0.002914  Std. dev. 0.002411  0.001   

avg time 32.7  avg time 60.5  1.850   

----         
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 Cuckoo Search  Simulated Annealing  Difference   % diff btw avgs 

verification#57-
slope3-no 

composite.sli 

average 1.37252  average 1.3726  0.000  -0.01 

min 1.36737  min 1.36886  -0.001   

max 1.37513  max 1.37564  -0.001   

diff 0.00776  diff 0.00678  0.001   

Std. dev. 0.001745  Std. dev. 0.001212  0.001   

avg time 36  avg time 59.73333  1.659   

----         

verification#58-
slope4.sli 

average 0.057415  average 0.246363  -0.189  -76.70 

min 0.026834  min 0.058  -0.031   

max 0.060343  max 0.890451  -0.830   

diff 0.033509  diff 0.832451  -0.799   

Std. dev. 0.005951  Std. dev. 0.333911  -0.328   

avg time 65.9  avg time 304.0667  4.614   

----         

verification#59-
slope5.sli 

average 0.025095  average 0.027417  -0.002  -8.47 

min 0.020224  min 0.01942  0.001   

max 0.043108  max 0.092807  -0.050   

diff 0.022884  diff 0.073387  -0.051   

Std. dev. 0.004263  Std. dev. 0.014868  -0.011   

avg time 49.33333  avg time 270.3667  5.480   

----         

verification#60-
slope7.sli 

average 1.058633  average 1.006084  0.053  5.22 

min 1.0157  min 1.00191  0.014   

max 1.1957  max 1.01386  0.182   

diff 0.18  diff 0.01195  0.168   

Std. dev. 0.067788  Std. dev. 0.003058  0.065   

avg time 68.53333  avg time 734.5  10.717   

----         

verification#61-m-
c.sli 

average 1.3645  average 1.364079  0.000  0.03 

min 1.36094  min 1.35994  0.001   

max 1.36586  max 1.36589  0.000   

diff 0.00492  diff 0.00595  -0.001   

Std. dev. 0.001567  Std. dev. 0.001722  0.000   

avg time 72.3  avg time 118.8333  1.644   

----         

verification#62-dry-
noncirc.sli 

average 1.001079  average 1.001719  -0.001  -0.06 

min 0.998879  min 0.99966  -0.001   

max 1.00253  max 1.00253  0.000   

diff 0.003651  diff 0.00287  0.001   

Std. dev. 0.001246  Std. dev. 0.001107  0.000   

avg time 62.93333  avg time 104.6818  1.663   

----         
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 Cuckoo Search  Simulated Annealing  Difference   % diff btw avgs 

verification#70_-
_duncan_page088_fig

ure_6-
27_case1_30ft.sli 

average 1.596729  average 1.595665  0.001  0.07 

min 1.59221  min 1.59193  0.000   

max 1.59955  max 1.59722  0.002   

diff 0.00734  diff 0.00529  0.002   

Std. dev. 0.002002  Std. dev. 0.001449  0.001   

avg time 23.26667  avg time 40.33333  1.734   

----         
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