ROCSCIENCE INC.

Locating General Failure Surfaces in
Slope Analysis via Cuckoo Search

Aleck Wu
May - Aug, 2012

SUMMARY

Geoslope stability analysis is an important area in geotechnical engineering. Proper analysis of a
slope geometry can lead to safer development as well as a better understanding of the site in
question. The main objective of slope stability analysis is to locate the critical failure surface—a
surface along which the rock mass or soil is most likely to fail. This "likelihood-to-fail" is quantified
by the factor of safety (ratio of total shear strength go shear stress) associated with each unique
surface. For any generic failure surface described by a polyline of N points, the factor of safety can
be described as a function F(P), where P = [tg, (X1, V1), or (X0, Vi)s oo (Kn—2, Yn-2), tan11”; a
parametric value along the slope surface is used to denote the single freedom the entry and exit
point has. One can locate the critical failure surface by minimizing F(P). Due to geometric and
kinematic constraints and conditions needed to satisfy a valid failure surface, F(P) is highly
discontinuous as well as often multimodal, rendering standard optimization techniques highly

unreliable as well as inefficient.

Various global optimization techniques have been implemented over the years in locating the
critical failure surface, including Simulated Annealing implemented in SLIDE—a 2D geoslope
stability analysis software developed by Rocscience Inc. A recent population-based stochastic
algorithm—Cuckoo Search—shows great promise, outperforming some more traditional global
optimization algorithms such as Particle Swarm and Harmony Search under standard test

functions—taking less function evaluations to achieve the same level of solution accuracy.

The current work implements an improved variant of Cuckoo Search, coupling with the Local
Monte-Carlo (LMC) optimizer, in searching for the critical failure surface in SLIDE. Cuckoo Search
incorporates a random walk and random solution generations to escape local minima, while LMC is
a local explorer optimizing an existing failure surface through constantly varying the position of
each polyline vertex. Various refinements were also made on top of the Improved Cuckoo Search

specific to the problem at hand. The algorithm was implemented in C++.

The hybrid method proposed above—Improved Cuckoo Search with LMC—was found to be
superior to Simulated Annealing in locating the true global minimum in slope geometries where
more than one failure mode is present. The quality of solutions found by Improved Cuckoo Search
hybrid with LCM is comparable to those found by Simulated Annealing, with a much improved

computation time of on average three times faster.

ii

TABLE OF CONTENTS

N 000000 PP ii
TADIE Of COMEEIES .oureurreesreseeseerneesesssess s e ess bbb sssaes e bR RS R R AR RS e e iii
T INETOAUCTION coteeteceeteeeet ettt ese et s bR AR bR R e b b et 1
2 Problem formulation and deSCIriPION. ...t eseesesase s ssss s bbb sssebssssss s ssasss s snes 2
7 W 110 1=5 0 13 10) 0= Do 2
2.2 ConsStraints and AOMAINSoeeereereireisseeees e sseessssets e s s ssse b s b s bsse et s bbb a st 3
2.2.1 BOUNAS fOr X-COOTAINALES ...cuveereerresreesseeeseeeseesseessessssesssesssesssess s ssse s sssass e s sssess s ssees 3
2.2.2 BoUNAS fOr Y-COOTAINALESuuieuerersreesreersereseemseesseesssesssessseesseesseessesssesssesssssssssssess s s sssssssesssssssees 3

3 CUCKOO SEATCH ...ttt e s s bbb 6
3.1 INIHAIZATION coeecerrercic ettt R 6
3.2 SOIULION FEFINEIMENT ...ttt s bbb bbbt 6
3.3 Solution rejection and rePlacemMENt ... ss e ssssssans 6

4 IMProved CUCKOO SEATCH ... e seessess e eessssses s sess s s s s sees s ess s seees 9
4.1 Variation Of STEP-SIZEccnrrrerreereetreeenseiseisse et sess s s s bbb s bbb bbb 9
4.2 Variation of percentage of rejected SOIULIONSoc.eeeecereereeeeseersersnee e ssessseesseeseeens 9
4.3 Variation of replacement Of SOIULIONScococriemeenieeneeeneese e esse bbb sssssssesssesens 9
4.4 On the effectiveness of aspects of ICS in locating critical failure surface........ccooreereeenrernneenne. 10

5 Refinement and adaptation of Cuckoo Search to current problem.........nonenecnneenneeneceneeens 11
5.1 NO FTEE TUNCH ettt et bbb 11
5.2 Generation of random SOIUtION VECTOT'S ...veereeeemeemeeseessserseessessseesseessessessssssseesssesssesssesssessssssssssssessnes 11
5.3 Variations Of SOIULIONS ...ttt eesesssessesse st s e s s s bbb 12

6 Very Fast Simulated Annealing, Local Monte Carlos......oeenenesmeesseesseessessssssessssesssesssesssessseeens 13
T RESUILS ettt b s R AR AR AR R AR ARt 14
7.1 On the effectiveness of the algorithm ... ————— 14
7.1.1 USerd and USETI4-TEVISEd......oouuueurienmeuerneereessessesssseeessesssessssssssssssssssssssessssssssssssssssssssssssssssssssssssssans 15

iii

7.1.2 USer6, USEr9, USEI13, USEITA.. s ssssssssssss s sssssssssssssssssssssssssssssssssssssssassans 17

7.2 On the efficiency of the alGOTTtRIM ... 22
0 T (o 0) o= TP 24
7.4 The effect of dIMeENSIONALILY c..vvvrerrrerirnrnie s s sas 28
7.5 The robustness of the algorithm on thin 1ayers.......eeeseeseseseeseeenes 29
7.6 The role of hyDridiZAtion ...ttt s s s bbb 32
S R 01) 4 Uo] 1D) 10 o PO 34
9 Appendix I - Summary for averages of each Model ... 35
LT 11Ty) 0 =) o 1 =T N 35
Lo - 4 U Uor= 10 () o1 1 =TT 42

iv

1 INTRODUCTION

Slope stability analysis is an important and essential step in the planning and building of various
structures such as dams, embankments, etc. along the sides of slopes. Improper analysis can lead to

damages to expensive structures and human life when soil masses fail and slides under load.

A typical slope failure is shown in Figure 1. Under load,
the top soil mass will fail under shear, and dislocate
from the rest of the slope. In two-dimensional slope
analysis, this line of shear stress failure characterizing
the location of the failure is called a failure surface (in
2D analysis the failure surface is considered to extend
into the page). The stability of the soil mass atop the
failure surface is quantified by a numerical factor of
safety, given as the ratio of shear strength to shear

stress under the specific load (i.e. weight of soil); a

factor of safety under 1 indicates instability.

FIGURE 1 - TYPICAL FAILURE SURFACE

Prior to slope stability analysis, it is unclear as to whether or not a slope will fail, and if so, along
which failure surface it will do so. Therefore, at the core of slope stability analysis is the location of

the weakest failure surface—the surface along which the soil mass will most likely fail.

Given a failure surface, there are various different methods to calculate a numerical factor of safety.
A well established class of methods is the Limit Equilibrium Methods (LEMs). These methods
divide the slope geometry into slices, and through satisfying forces and/or moments equilibrium,
converges on a numerical factor of safety. Some popular LEMs include the Ordinary Method of
Slices, Bishop's Method, Janbu's Method, and Spencer's Method. For a more thorough description of
LEMs, please refer to "Slope Stability Analysis and Stabilization—New Methods and Insights,
Chapter 2, slope stability analysis methods" by Y.M. Cheng and C.K. Lau.

2 PROBLEM FORMULATION AND DESCRIPTION

2.1 DIMENSIONALITY

The problem of locating the critical two-dimensional failure surface is in essence a global
optimization (minimization) problem. The function to be minimized is the factor of safety function,
a function consuming a positional vector of the polyline describing a failure surface, and outputting

a scalar factor of safety value associated with such a failure surface—F0S = F(P), where

po = slope(ty) = (x0,¥0)
P1 = (x1,¥1)

P = pi = (x;,y1) is a solution vector,

Pn-2 = (Xn_2,Yn-2)
[pn_1 = slope(t,—1) = (xp—1,Yn—1)

and pg ... Pp—1 are 2D points defining a failure surface of n vertices.

The dimensionality of the problem is thus dictated by the number or vertices of the failure surface
polyline; each inner vertex contributes to two extra dimensions, while single parametric values
to,tn—1 € [0,1] are needed describe the entry and exit vertices of the failure surface since both
must lie on the slope surface. Thus, a failure surface of n vertices (including entry and exit points)

will translate to a 2n — 2 dimension problem.

2.2 CONSTRAINTS AND DOMAINS

There are constraints which define the domains of each of the 2n — 2 control variables; these
constraints are necessary in order to satisfy primary geometric and kinematic requirements of a

potential failure surface.
The slope surface is first parameterized from left to right between 0 and 1, and as such,
{to, tn-11to < tnh-q €[0,1]}
define the entry and exit point of the failure surface. This generates points
Po = slope(to) = (xo,¥0),

Pn-1 = Slope(tn—l) = (xn—ern—l)-

2.2.1 BOUNDS FOR X-COORDINATES

In a failure surface of n-vertices including entry and exit points,n — 2 equal-width slices are

generated between x, and x,,_;; these slices bounds the set of x-coordinates such that

(Xn—1 — Xo)
{xl < Xy < .. < xn_z |xl' € (xi—l’xi—l +n‘n—20 .

The domain restrictions of the x-coordinates of the inner vertices are clear and logical; they arise by
definition from meaning of the subscripts. In laymen's term, each inner x-coordinate must situate

within its respective slice.

2.2.2 BOUNDS FOR Y-COORDINATES

Dynamic bounds for y-coordinates are used as proposed by Cheng (2007) such that a convex,
kinematically feasible surface can result. The following section will first attempt to describe such

bounds in words, followed by mathematical formulation.

1. Firstly, the entry and exit points are assumed to be already defined and valid on the slope
surface. As well, the x-coordinates of the inner vertices must also be defined and validly
bounded.

2. The y-coordinate of the first point immediately after the entry point is bounded by the slope

geometry, namely the slope surface and bedrock at its corresponding x-coordinate.

3

3. For each subsequent point, aside from the geometric bound which applies as described in 2.,
a kinematic bound is imposed. A line is constructed from the 2 previous points. Another
line is constructed from the previous point and the exit point. The y-values of these two
lines at the point's respective x-value define this aforementioned kinematic bound.

4. The final bounding criteria for each subsequent point is then taken to be the interval

contained by the highest of the lower bounds, and the lowest of the upper bounds.
Below is a more formal mathematical formulation.

1. Assume ty,t,_q1,%q, -, Xn—p present and valid as described in previous section. Denote
y = S(x),y = R(x) the functions describing the slopeline and the bedrock respectively.
2. y1 € (R(x1),S(x)).

3. yii€[2,n—1] € (max(R(x;), lower;), min(S(x;), upper;in)), where

YVi-1 — Vi-2

lower; kin = yi—1 + <—) (x; — xi-1),
Xi—1 — Xj—2
Yn-1 —Yi-1

Upper;yin = Yi-1 t (—> (x; — xj-1).
Xn—1 — Xj-1

As can be seen, the domains for the various control variables are highly dynamic and dependent on
other control variables. Moreover, since a factor of safety for a failure surface is found iteratively, a
numerical solution may not converge for some surfaces even though they are convex and appear to
be kinematically feasible. As such, the function FOS = F(P) is extremely discontinuous, and valid

only for small "hyper-regions” in the 2n — 2 dimensional hyperspace of the problem.

An illustrative example of dynamic bounds can be seen is Figure 2. X-domains can be generated at
the same time, as depicted by the blue arrows, while y-domains must be generated from left to
right, and the y-domain for the current vertex depends on the y-coordinate of the previous as well

as right-most vertex.

S(x)
¥ =R(x)

y=

s(xs, ¥s)

FIGURE 2 - DYNAMIC BOUNDS OF VERTICES

3 CUCKOO SEARCH

Cuckoo Search is a recent global optimization algorithm developed by Xin-She Yang and Suash Deb
in 2009, inspired by the natural parasitic but successful behaviour of the Cuckoo species by laying
their eggs in the nests of other host birds (of other species). In the short amount of time since
inception, Cuckoo Search has been used in spring and welded beam designing, nurse scheduling,
data fusion in wireless network sensors, etc., and obtaining better solutions than those which exists

in literature.

3.1 INITIALIZATION

The CS algorithm starts by initializing a fixed number of N valid solutions vectors
{Po,...,P;, .., Py_1 | F(P;) > OexistsVi € [0,N —1]}. A fixed number of iteration I,,,, is also
defined; generally, both N and I,,,,, depends on the dimensionality of the problem. The solution

vectors are sorted from worst fitness (i.e. highest factor of safety), to best fitness.

3.2 SOLUTION REFINEMENT

In each iteration in the original Cuckoo Search, for each solution vector P;, a temporary solution

vector P ey, is generated by performing a random walk in the following fashion,
Piemp = Pi+a®E,

where a is a problem related constant step-size, @ denotes entry-wise multiplication, and E; is a

vector whose entries are taken from a probabilistic distribution. A random solution (i.e. P;) is
selected and compared with Pyepp; Pjis replaced with Piepyy if Piemp has better fitness. The

solution vectors are then sorted from worst to best fitness again.

3.3 SOLUTION REJECTION AND REPLACEMENT

The last step in the standard Cuckoo Search algorithm is the rejection and replacement of a p,.;

percent of the worst solutions with new randomly generated valid solution vectors. This ensures

the global exploration ability of the algorithm never stops.

1. Define objective function FOS = f (points)
2. Generate a solution bank of M valid failure surfaces
3. Sort solutions by their FOS

(For each failure surface in solution bank

-

1. Modify the solution by performing a random walk on
each of its control-variables, call this S1.
2. Pick a random failure surface, call this 32.

Yes

Replace 32 with

51

Mo

1. Sont solutions by their FOS.
2. Replace worst Pa% ofthe solution bank with new
random solutions.
3. Re-zont solutions.

[While generation = MaxGeneration]
(Cutput end results]

FIGURE 3 - FLOW CHART OF CUCKOO SEARCH

begin
Objective function f(x), x = (z1,...,24)"
Generate initial population of
n host nests x; (1 =1,2,...,n)
while (¢t <MazGeneration) or (stop criterion)
Get a cuckoo randomly by Lévy flights
evaluate its quality/fitness F;
Choose a nest among n (say, j) randomly
if (Fi > F),
replace j by the new solution;
end
A fraction (pa.) of worse nests
are abandoned and new ones are built;
Keep the best solutions
(or nests with quality solutions);
Rank the solutions and find the current best
end while
Postprocess results and visualization
end

FIGURE 4 - PSEUDOCODE OF CUCKOO SEARCH

4 IMPROVED CUCKOO SEARCH

Various refinements have been made to the original Cuckoo Search algorithm. These modifications

are mainly to increase convergence rate of the solution vectors.

4.1 VARIATION OF STEP-SIZE

For better global exploration abilities in earlier iterations and better local refinements in the latter

stages, Improved Cuckoo Search proposed

Xmin
log (* Icurrent
max

Imax

a(lcurrent) = (amax) €xXp

)

P temp = P; + a(cyrrent) @ Ey,

for which a4, and a,,,;, are problem specific, I.yrrent € [0, nax] denotes the current generation.

4.2 VARIATION OF PERCENTAGE OF REJECTED SOLUTIONS

Again, to improve convergence rate, the number of solution vectors replaced by randomly

generated solutions decrease over the iterations. In Improved Cuckoo Search, a formula for

Icurrent

prej (Icurrent) = prej,max - () (prej,max - prej,min)

Imax

was proposed. It was also suggested that instead of the worst solutions being replaced, that each

solution would have a p,..; percent chance of being replaced.

4.3 VARIATION OF REPLACEMENT OF SOLUTIONS

Instead of replacing rejected solutions with random solutions, it was proposed that the replacement

solutions to be generated in the following way.

First, solution vectors are randomly shuffled, and two of such random permutations are stored
inside integer arrays perml and perm2. For example, for a set of 5 reject solution vectors
{Py, ..., P4}, a possible permutation contained in perm1 might be {3,2,4,0,1}. For each rejected

solution, the replacement solution will be generated by

9

Pi,repl =rand(0,1) ® (Pperml[i] - PpermZ[i])r

Where rand(0, 1) is a column vector of length 2n — 2 (number of dimensions in the problem) filled
with random numbers taken from a uniform distribution U[0,1]. To further speed up convergence,
perm?2[i] can be replaced with sorted[i] (by solution fitness) to put higher selection pressure on

the solutions.

4.4 ON THE EFFECTIVENESS OF ASPECTS OF ICS IN LOCATING CRITICAL
FAILURE SURFACE

It was found that all of the above techniques does allow a faster rate of convergence. However, due
to the high dimensionality of the problem in question as well as the extremely discontinuous nature
of the function, some of the Improved Cuckoo Search improvements hindered the global
exploration ability of the algorithm in escaping local minima (i.e. secondary/tertiary failure modes
of the slope). Hence only the variation of step-size modification was made to the original Cuckoo
Search algorithm, as it was found that global exploration usually happens in the rejection-

replacement phase of the algorithm.

10

5 REFINEMENT AND ADAPTATION OF CUCKOO SEARCH TO
CURRENT PROBLEM

5.1 NO FREE LUNCH

In search and optimization computation, it is stated that any and all of such algorithms'
performances are the exact same when averaged over all search and optimization problems.
Performance of an algorithm can be described by its success to find the correct answer, as well as
the amount of function evaluations it takes to achieve such a result. In many optimization
problems, function evaluation is a computationally intensive process (i.e. iteratively converging a
factor of safety given a failure surface), and the number of function calls dictate the speed of the

algorithm.

As such, each algorithm must be tailored towards the specific problem it was intended to solve; a
series of refinements specific and applicable only to the problem of critical failure surface searching

has been implemented, and are detailed below.

5.2 GENERATION OF RANDOM SOLUTION VECTORS

Random solution vectors must be generated in the initialization phase as well as the rejection-
replacement phase in each iteration. Since only a small and specific subset of the 2n — 2
dimensional space of the problem will return a valid factor of safety, it is important to ensure a high

"success-rate" when generating such solution vectors.

Aside from the procedure described in Section 2.2 on generating valid control variables within each
of their own domain, a further angular restriction is imposed; by default, the inside angle of each
vertices of the failure surface is to be greater than 120 degrees (this of course, can be changed by

the user).

Failure surfaces entering and exiting at the same elevation were also omitted. This can also be
changed by the user in the case of a possible failure due to vertical external loading on a horizontal

surface.

11

Instead of a uniformly distributed probability t,,t,_; = U[0,1], each distinct segment of the slope
surface (irrelevant of length) will have an equal probability of being selected as the segment for
which the entry or exit point will lie. After such a slope segment is selected, uniform random
distribution dictates the location of the entry and exit point along that segment. It was found that
because different segments of the slope surface usually means a change in either slope geometry, or

material properties, this modification allowed the algorithm to better survey the whole model.

Lastly, again due to the highly discontinuous nature of the control variable domains associated with
this problem, simple checks were made to ensure that the failure surfaces generated do not cross

and exit the slope surface near (but not at) the entry and exit points.

5.3 VARIATIONS OF SOLUTIONS

In the original Cuckoo Search algorithm, the variation of solutions phase follows
Ptemp: Pl+0($Et.

However, due to the high valid-domain dependence of the control variables, certain refinements

were made to ensure a high success rate of Pep,;, being a valid solution vector.

Firstly, the entry and exit points are varied parametrically along the slope surface. Then, all points

are first "re-scaled" according to the new entry and exit points in the following manner:

1. LetPgy1q = (xo,old'yo,old)v Py 101a = (xn—l,old'yn—l,old) be the pre-adjusted entry and exit
points respective; and Pgpey = (xO,new'yO,new)'Pn—l,new = (xn—l,new'yn—l,new) be the
post-adjusted entry and exit points.

2. Foreach points {P1 = (x1,¥1), -, Pi = (x;, ¥i), oo Pn—2 = (Xn_2,Yn—2)}

Xiold — Xo0,0ld

xi,new = xO,new + () (xn—l,new - xO,new)

Xn—1,0ld — X0,0ld

Yiotd — Yo,0ld

Yinew = Yonew + < > (}’n—l,new - yo,new)

Yn-1,01d — Yo,0ld

12

Secondly, a non-constant

Xmin
log (a * Icurrent
max

a(lcurrent) = (amax) €xp I
max

as was proposed by Improved Cuckoo Search was used, with a,,,,, = 0.5 and a,,;,, = 0.05.

Moreover, another step-size parameter § associated with each control variable is introduced—it is
related to the domain of each control variable in association with what has been adjusted thus far.
1. Sy =S8n-1 = tn-101a — to,01a for entry and exit points, where the parameterized value is to

be adjusted.

2. S,ie[lL,n-2]= i(W) In other words, step-size for the middle vertices is a
quarter of the width of each slice with regards to the already-adjusted entry and exit points.
3. Finally, the solution vectors are adjusted by following

Ptemp = P;+ a(lcyrrent)S @ E;

Lastly, every adjusted solution P e,y is bound checked according to the geometric and kinematic

requirement outlined in Section 2.2, and adjusted to the boundary extrema if out-of-bounds.

6 VERY FAST SIMULATED ANNEALING, LOCAL MONTE CARLOS

For a description and formulation of the very fast simulated annealing (VFSA) applied to this
problem, as well as the Local Monte Carlos (LCM) optimizer already implemented in SLIDE, which
compliments VFSA as well as Cuckoo Search, please see "Global Optimization of General Failure

Surfaces in Slope Analysis by Hybrid Simulated Annealing, 2—Methods" by Su, Xiao.

13

7 RESULTS

The final Cuckoo Search algorithm tailored towards critical failure surface searching was executed
on a total of 48 verification models and 19 customer models. These models include a variety of
slope and embankment designs as well as multi-layered geometries, and will test the performance
of the algorithm to find the global minimum in a wide variety of cases. In all cases, Spencer's
method was used due to it being a limit equilibrium method satisfying both force and moment

equilibrium.

The verification cases are published examples from engineering journals and conference
proceedings, including a set of five slope cases as part of a survey sponsored by ACADS (Association
for Computer Aided Design). The user-submitted cases consists of challenging slope geometries
and extreme layering examples, submitted by SLIDE users. These often includes multiple modes of

failure, and presents a true test to any global optimization algorithms.

Extensive testing of 30 runs of each file was conducted for both Cuckoo Search and Simulated
Annealing. The Cuckoo Search with the necessary modifications and refinements described above
along with the LCM performed very promisingly against Simulated Annealing. For all test files,
Cuckoo Search found similar surfaces or completely different surfaces giving a much lower factor of
safety as Simulated Annealing—at a computational time of on average 3 times faster. The results

are summarized in Appendix I - Summary for averages of each model.

[s it also possible to display selected (or all) surfaces explored by the algorithm. This can resultin a
"gradient-like" coloring pinpointing on the critical failure surface, as well as display secondary or

tertiary failure modes (local minima).

7.1 ON THE EFFECTIVENESS OF THE ALGORITHM

Both Cuckoo Search and Simulated Annealing are global optimization algorithms; thus, it is
important to discuss their respective success in escaping from local minima to arrive at the global

minimum.

The ability of Cuckoo Search to find the true global minimum is better than that of Simulated
Annealing. This can be seen in a number of customer cases, where various local minima (secondary
failure modes of a slope) exist. These files include User4, User4-revised, User6, User9, User13, and

User14.

14

7.1.1 USER4 AND USER4-REVISED

These two are files with essentially the same slope geometry and material compositions, with
User4-revised having a section of tension cracks along the top of the slope. Both of these cases have
a point-like surficial failure mode with a factor of safety of 0.287, a point-like ledge failure with a
factor of safety of 0.168 (global minimum), and a more substantial into-the-slope failure surface
with a factor of safety of approximately 0.99. The two point-like failure modes can be seen clearly
in Figure 5 by the patch of red dots indicating the center of the circle approximating the failure
surface, while the failure mode with an FOS of 0.99 can be seen on the slope itself. The results of

the 30 computational runs on the two files is summarized in Table 1 below.

Surficial (FOS =0.287) In-Slope (FOS = 0.99) Global Minimum (FOS = 0.168)
User4
Cuckoo Search 8 0 22
Simulated Annealing 0 29 1
User4-revised
Cuckoo Search 4 0 26
Simulated Annealing 2 27 3

TABLE 1 - USER4 RESULTS

As is evident, Simulated Annealing is not effective in escaping local minima in this situation. It is
also important to note that although Cuckoo Search failed to find the global minimum a small
fraction of the time, when the surfaces are displayed, it is clear that minima exist in locations of
interests (including the area where the true global minimum lies)—although local exploration
around that area during those few runs were not sufficient to retain those solutions as a candidate
for the global minimum. Upon displaying the results in the SLIDE interpreter, users can easily

further explore the area around which local minima were found.

In the above 2 customer files, the ability of Cuckoo Search to locate a near point-wise global

minimum in the search space should be noted.

15

FIGURE 5 - USER4, CUCKOO SEARCH RESULTS

16

®

7.1.2 USER6, USER9, USER13, USER14

In all of the above files, there exist two failure modes which are geometrically far apart from each
other (i.e. not in the same "valley" in the search space). With the exception of User6, for which a
tertiary failure mode exists (however, neither Cuckoo Search nor Simulated Annealing have once
mistakenly identified it as the global minimum, and is therefore insignificant in the current

discussion). The results are summarized in Table 2 below.

User files 6, 9, 13, 14, with multiple failure modes (8 vertices)

User6

Cuckoo Search
Simulated Annealing
User9

Cuckoo Search
Simulated Annealing
Userl3

Cuckoo Search
Simulated Annealing
User14

Cuckoo Search

Simulated Annealing

Local Minimum (FOS = 1.32)
0

22

Local Minimum (FOS = 1.23)
5

29

Local Minimum (FOS = 1.12)
2

3

Local Minimum (FOS = 0.93)
4

5%

*a minima of FOS = 1.34 was found once

Global Minimum (FOS = 1.23)
30

8

Global Minimum (FOS = 0.88)
25

1

Global Minimum (FOS = 1.82)
28

27

Global Minimum (FOS = 0.87)
26

24

TABLE 2 - MULTIPLE FAILURE MODES CUCKOO SEARCH, SIMULATED ANNEALING COMPARISON

Again, in the more complicated customer cases with more elaborate soil layers and properties,
Cuckoo Search was shown to be more—at times far more—superior to Simulated Annealing in

escaping local minima and locating the true global minimum.

The files in question are displayed in Figure 6, Figure 7, Figure 8, and Figure 9. The different modes

of failure can clearly be seen from the dense orange patches.

17

FIGURE 6 - MULTIPLE FAILURE MODES, USER6

18

‘e s
.
ot .
.. .
s P
.o,
ERER +
2%
B . v e
L
. . .
+ . ke
' . .e
. £
o e
. . 5 .
£
R P, .
-
. RN

FIGURE 7 - MULTIPLE FAILURE MODES, USER9

19

USER13

FIGURE 8 - MULTIPLE FAILURE MODES,

20

USER14

FIGURE 9 - MULTIPLE FAILURE MODES

21

7.2 ON THE EFFICIENCY OF THE ALGORITHM

For failure surfaces defined by 8 vertices (for a total dimensionality of 14), it was found that a
solution bank size of 50 coupled with 500 iterations of the algorithm and a solution-rejection

percentage of 40% is enough. This translates to

+ (50 *0.4)) (500 iterations) = 35000 func.eval.

iteration

sol'nmod. & eval. rand.sol'n gen.& eval.
iteration

This of course is overly optimistic and assumes a 100% success rate during random surface
generations. As was mentioned, not all surfaces which satisfy the geometric and kinematic
constraints will converge and evaluate to a valid factor of safety. For surfaces which do not, the

surface is discarded and a new one is generated. This continues until a valid surface is generated.

The success rate of random failure surface generation depends highly on the actual slope model and
its various properties; a success rate of 50% to 100% can be expected with most models. Assuming

a success rate of 50%, 45000 function evaluations (factor of safety calculations) can be expected.

Even at 50% success rate, the number of factor of safety calculations are still small compared to
Simulated Annealing. Because the bottleneck of the algorithm is the number of factor of safety
calculations, Cuckoo Search sees a huge improvement in terms of computational speed over

Simulated Annealing.

When averaged over all test files computed, Cuckoo Search performed three times (3x) faster than

Simulated Annealing.

The percent difference of computational time between Cuckoo Search and Simulated Annealing is

displayed in Figure 10, and is calculated by

Simulated Annealing Time — Cuckoo Search Time
Simulated Annealing Time '

% dif ference =

One can then calculate the amount of times Cuckoo Search is faster with the following formula:

Simulated Annealing Time 1
Cuckoo Search Time ~ 1-—9%difference’

Times Faster =

for example, 50% faster equates to a computational time half that of simulated annealing; 75%

being four times faster, etc.

22

Comparision of computation time between Cuckoo
Search and Simulated Annealing (% difference)
25
20
> 15 -
c
()
=]
o
()
& 10 -
5_
0
XXX RN RN
O T NO O WL M dAOANLD M-I O T ANO NS OO MWL INO oW
OMUOUAIIRNONNMRATOANNANELEMNORN NGO I X
D = N N 0O AN LINMNODODAEAd ST OO MWL ANONIOMOOWWLVM—OON I
NNTQOQQOR ©WmW! T DA HN®MFSNONN 0O
% Faster compared to Simulated Annealing (more positive is better)

FIGURE 10 - SPEED COMPARISION, CUCKOO SEARCH VS. SIMULATED ANNEALING

Figure 10 shows each corresponding individual runs compared to Simulated Annealing. However,
when computation runs are averaged first across each different files (30 run each), Cuckoo Search
was very slightly slower in only 2 of them (verification5 and verification6, 0.933 and 0.927 times
slower respectively) out of the total 67 files computed, and still all-in-all averaged three times

faster.

23

7.3 ACCURACY

The accuracy of Cuckoo Search is also comparable to Simulated Annealing. Of the total 2010

runs

different computational runs performed {(30 7 le) (67 files)}, Cuckoo Search found a factor of

safety within a 1.5% difference compared to Simulated Annealing in 1484 of the runs. Out of the
526 remaining runs, Cuckoo Search found a better-than-1.5%-difference result in 294 runs, and

232 worse results.

However, this 1.5% difference can be misleading, after all, a factor of safety of 0.02 versus 0.015
would constitute a 25% difference. Hence, the actual factor of safety difference was calculated and
tabulated out of the 526 runs which did not result in a percent difference under 1.5%. A reasonable
measure is a difference of 0.02 in the factor of safety found. In this case, out of the 294 runs which
Cuckoo Search found a better-than-1.5%-difference result, Cuckoo Search only bettered Simulated
Annealing by a factor of safety of 0.02 in 229 of them. However, of the 232 runs which Simulated

Annealing bettered Cuckoo Search, the number now falls to a mere 148.

Similar comparisons were done after each 30 runs were averaged first for each individual file; the

results are presented in Table 3.

24

Less-than-1.5%-difference

Total Runs
Same Results
Better Results
Worse Results

Success Rate*

2010
1484
294
232
88.46%

1.27

Less-than-1.5%-difference

Total Files
Same Results
Better Results
Worse Results

Success Rate*

67
50
11
6
91.04%

1.83

Less-than-1.5%-difference and

greater-than-0.02 actual difference

Total Runs 2010
Same Results 1633
Better Results 229
Worse Results 148
Success Rate* 92.64%

Less-than-1.5%-difference and

greater-than-0.02 actual difference

Total Files 67
Same Results 55
Better Results 9
Worse Results 3
Success Rate* 95.52
better .

ratio 3

worse

Same + Better

Success Rate =

Total

TABLE 3 - SUMMARY OF RESULTS, CUCKOO SEARCH VS. SIMULATED ANNEALING

25

Although it can be concluded that Cuckoo Search coupled with a local optimizer performed better
than Simulated Annealing coupled with the same optimizer, it is important to note that aside from
the test cases mentioned in Section 7.1, that in general, the surfaces found by both algorithms are
extremely similar. Variations in the factor of safety can be affected by small movements of the
vertices. The importance of this difference in the calculated factor of safety given two very similar
surfaces should be considered alongside the massive amounts of approximations made when

building the model.

The low function-evaluation count is advantageous to Cuckoo Search in that it directly translates to
a higher algorithmic efficiency. However, there are a few types of situation where more function-
evaluations is perhaps the only solution—this happens for example, when the landscape of the
search space is littered with many delta-like functions, with overall little or no information

obtainable between each individual trough.

One of such an example are slope models with a vertical drop-off face. It was found that—perhaps
due to the inherent shortcomings of the method of slices and limit equilibrium—that small,
geometrically and kinematically acceptable variations in the positions of vertices of a failure surface
with a valid calculated factor of safety, can result in a non-valid FOS calculation using the method of

slices. This worsens as the angle of the failure surface increases.

This can be seen in Figure 11. Cuckoo Search was able to find the general location of the failure
surface, but with the low number of function evaluations, neither Cuckoo Search nor the post-
optimization done by LCM was able to reduce the factor of safety value; in such cases, if an accurate

numerical factor of safety is necessary, it is recommended that Simulated Annealing to be used.

26

Safety Factor
1]

.000
0.500
1.000
1.500
2.000
2.500 FS = Invalid c=I81.500.2.000)

Error code -120 = Tensile effective normal stress on the base of a slice
3.000 . exceeds the tensile strength of the material. The stress state
FS = Invalid c={81.198,1.296) Ength oriterion.

3.500 or code -108 = Total driving moment

; or totsl driving force < 0.1. This isto
4.000 S, limit the calculstion of extremely high safety
‘ factors if the driving foroe is very small
(0.1 is an arbitrary number)

-
=)
=1
=1
7

FIGURE 11 - USER15, PROBLEMS WITH LIMIT EQUILIBRIUM METHODS

7.4 THE EFFECT OF DIMENSIONALITY

The dimensionality of the problem was increased from 8 vertices (14 dimensions) to 15 vertices
(28 dimensions), and 10 computational runs of each file was performed for both Cuckoo Search as

well as Simulated Annealing.

The number of solutions in the solution bank for Cuckoo Search was increased from 50 to 100,
while 500 iterations were kept constant. An increase of 50% computational time was observed

(1.5x longer).

It was found that for cases where there is a single mode of failure (or where the global minimum
was relatively easy to find), the higher number of vertices gave a finer and more detailed failure
surface, allowing for a slightly lower critical factor of safety to be found. However, it suffered more

in cases with local minima, such as the files described in Section 7.1.

User files 6, 9, 13, 14, with multiple failure modes (13 vertices)

User6

Cuckoo Search
Simulated Annealing
User9

Cuckoo Search
Simulated Annealing
User13

Cuckoo Search
Simulated Annealing
User14

Cuckoo Search

Simulated Annealing

Local Minimum (FOS = 1.32)
0
7
Local Minimum (FOS = 1.23)
4
6
Local Minimum (FOS = 1.12)
5
6
Local Minimum (FOS = 0.93)
1
4

Global Minimum (FOS = 1.23)
10

3

Global Minimum (FOS = 0.88)
6

4

Global Minimum (FOS = 1.82)
5

4

Global Minimum (FOS = 0.87)
9

6

TABLE 4 - HIGH DIMENSION MULTIPLE FAILURE MODE COMPARISON

Such a decrease in performance can be expected however, as doubling the dimensionality of the

problem oftentimes increase the complexity by orders of magnitude.

Although the success rate for finding the true global minimum is heavily reduced, Cuckoo Search
still performed better than Simulated Annealing. One should also note that on average, Cuckoo

Search was faster than Simulated Annealing by over 5 times.

7.5 THE ROBUSTNESS OF THE ALGORITHM ON THIN LAYERS

Thin soil layers in a slope geometry can dictate how the slope will fail—especially if the thin layers
are weak. Thin layers also present a challenge for any stochastic global optimization algorithms, as
these layers are unlikely to be found given random chance. A critical failure surface passing
through such a weak layer can represent a delta function in the search space, as generally speaking,
little information about the weak layer is available unless the weak layer is actually found by the

algorithm.

Two such weak layer files were available for testing the robustness and effectiveness of the
algorithm—verification9, and user17. User1l7 was modified such that the thickness of the thin,
weak layer was shortened to approximately 0.5", a true needle-in-the-haystack when compared to

the size of the model.

Cuckoo Search was able to locate such a critical failure surface which passes through the weak layer
successfully 100% of the time in both files. Typical computation results are shown in Figure 12 and

Figure 13.

29

t oy 24,

.h’

<k

.
L o
-~

&
%
200
i
3

"
35
‘.

ST i
Lr At

,
e -~
Ho

&

5

.

-
-

+

o”&

ORISR g

et
' o

+ LY.

ste ?
4

£ .
* ** .+ *
IR S P

+

»o.é..umx mn..M %
o ede
e 9K

n..n. KF 0 ' ».Q.unoo
SER
.

fR:

W, oomzo et
> ..%Wam&m&us i

,ooow oooV kDI

.

.

20000Kne

FIGURE 12 - THIN LAYER EXAMPLE, VERIFICATION9

30

FIGURE 13 - EXTREME THIN LAYER EXAMPLE, USER17 MODIFIED

31

7.6 THE ROLE OF HYBRIDIZATION

As described above, Cuckoo Search was hybridized with Local Carlo Monte, a local searching

algorithm. The necessity of which is described below.

The LCM is a local searching algorithm, and is extremely efficient at what it was designed to do.
Thus, given a good initial guess, by for example, an experienced engineer, LCM can modify the initial
failure surface to minimize its associated factor of safety quickly. Such an initial guess can be rather
trivial, such as in verification1 (Figure 14), when the slope geometry is simple and soil property is
non-layered and homogenous. As the complexity of slope geometry increases, guesses are often
harder to make, as is the case with all of the slope geometries with multiple failure modes as
described in Section 7.1. As LCM is by nature a local searching algorithm, it does not have the
capability to escape local minima, and as such one will not expect LCM to find the correct failure
surface given a non-optimal initial guess. It is worth noting that although the files described in
Section 7.1 only contains a few

prominent failure modes, that

many more local minima exists—
minima which LCM can easily be
trapped by; the reason why those

do not show up in the figures is

due to the fact that Cuckoo

Search can easily escape such
minima, and thus do not dwell FIGURE 14 - VERIFICATION1, SIMPLE HOMOGENOUS SLOPE

too long examining them.

The role of Cuckoo Search then becomes to provide the best "initial guess" failure surface for LCM
to optimize. Of course this initial guess Cuckoo Search found will be extremely similar in shape and
failure/entry/exit location to the refined surface LCM will return. It can be said that with Cuckoo
Search alone, the failure surface found is oftentimes more than acceptably similar to the surface
after optimization by the LCM. However, the factor of safety—the numerical measurement to the
quality of the solution—at times leave more to be desired. It is important to note however, that the
Cuckoo Search algorithm implemented in SLIDE is optimized more towards the efficiency and
effectiveness of global searching, narrowing down the region of failure given a complex slope
geometry, than to pin-point the minute difference in the numerical factor of safety value when a

vertex is slightly shifted from one position to another.

32

Is hybridization necessary? Yes and no. LCM optimize the surface to find the lowest factor of
safety. However, the accuracy of this "lowest factor of safety” depends on some other, more
important aspects, such as how accurate the model representation of the actual physical slope is.
Oftentimes a lot of assumptions are made when constructing a digital representation from in-situ
surveys, such as homogeneity of the soil layers. Hybridization should be used if the desired failure
surface to be found is one with the lowest factor of safety given the digital representation of the
physical slope; depending on the accuracy of the digital model however, this may or may not be the

failure surface with the actual lowest factor of safety in the physical site.

33

8 CONCLUSION

Cuckoo Search—a stochastic, nature-based global search algorithm—was successfully implemented
in SLIDE in locating the critical failure surface of a slope geometry. Cuckoo Search was able to
locate the critical failure surface more effectively (higher success rate as well as accuracy) and
efficiently (lower computation time) than Simulated Annealing originally implemented to solve the
exact same problem. When combined with LCM for further optimization of the critical failure

surface, a refined surface with the lowest factor of safety given a slope geometry can be found.

Modifications specific to the critical failure surface searching problem are essential in increasing
the performance of the search. These includes dynamic domain bounding during initialization and
variation of the solutions, a suitable step-size for each control variable, as well as readjustment of
surfaces after the variation of the entry and exit points but prior to the adjustments of the inner

vertices.

The Cuckoo Search formulation described here was shown to have a speed increase of over three
times faster than Simulated Annealing for an 8-vertices failure surface, and having a noticeable
improvement in accuracy of solutions found. It triumph Simulated Annealing in locating the
absolute global minimum in slope geometries with multiple failure modes; even point-wise failures.
Cuckoo Search is also able to display the various failure modes found during the search, and can

inform users of other possible failure modes—which the user can then explore further.

Hybridization of Cuckoo Search with LCM was necessary in the refinement of the critical failure
surface for the lowest factor of safety value; Cuckoo Search itself however, is in most cases enough

in locating the shape and location of the critical failure surface in the model.

Dimensionality (number of vertices in the failure surface) increase directly lead to a more
complicated problem. A linear increase in the number of solutions in the solution bank with the
increase in dimensions is recommended, while the number of generations is kept constant. One can
see a decrease in effectiveness of locating the global minimum, and an increase in computation
time, as well as precision (given that the failure surface found is truly the global minimum). Of
course, with a further increase in the number of solutions in the solution bank, robustness of the
algorithm can further be ensured, at the expense of computation time. Cuckoo Search under the
increase in dimensionality was shown to be more effective and efficient (and more so than with

lower dimensionalities) than Simulated Annealing.

34

9 APPENDIX T - SUMMARY FOR AVERAGES OF EACH MODEL

9.1 CUSTOMER FILES

userl.sli

user3.sli

user4.sli

user4 revised.sli

user6.sli

Cuckoo Search

average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time

0.75548
0.749694
0.757714

0.00802

0.00232
638.3667

1.229629
1.22438
1.27817
0.05379
0.00999

122.9333

0.200849
0.167441
0.299249
0.131808
0.053972
105.6667

0.18527
0.167446
0.288278
0.120832
0.040981

102.2

1.234694
1.23177
1.23663
0.00486

0.000827

239.5333

Simulated Annealing
average 0.756019
min 0.749932
max 0.757578
diff 0.007646
Std.dev. 0.001537
avgtime 841.5333
average 1.227354
min 1.22441
max 1.2759
diff 0.05149
Std. dev. 0.009326
avgtime 274.7667
average 0.968373
min 0.166301
max 1.12013
diff 0.953829
Std. dev. 0.155937
avgtime 352.1333
average 0.858347
min 0.166234
max 0.999888
diff 0.833654
Std. dev. 0.293828
avgtime 371.2333
average 1.294115
min 1.23337
max 1.32101
diff 0.08764
Std. dev. 0.036951
avgtime 607.6333

35

Difference
-0.001
0.000
0.000
0.000
0.001
1.318

0.002
0.000
0.002
0.002
0.001
2.235

-0.768
0.001
-0.821
-0.822
-0.102
3.332

-0.673
0.001
-0.712
-0.713
-0.253
3.632

-0.059
-0.002
-0.084
-0.083
-0.036

2.537

% diff btw avgs
-0.07

0.19

-79.26

-78.42

-4.59

user7.sli

user8.sli

user9.sli

user10 - 15m
embankment dry.sli

userl1 - dallas 5555
wall bent es9a.sli

user12 -
2550_0225.sli

Cuckoo Search

average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time

1.135906
1.13405
1.13922
0.00517

0.001566

194.8667

1.724023
1.61299
1.73662
0.12363

0.021396

59.73333

0.943403
0.871749
1.23612
0.364371
0.130693
172.3

1.406312
1.40631
1.40632

1E-05
4.07E-06

26.43333

1.987891
1.93589
2.03775
0.10186

0.033839

65.76667

1.077891
1.0674
1.09382
0.02642
0.007805
40.36667

Simulated Annealing
average 1.143577
min 1.13355
max 1.37987
diff 0.24632
Std. dev. 0.044644
avg time 365.2
average 1.726036
min 1.71792
max 1.78922
diff 0.0713
Std. dev. 0.013986
avg time 190.8
average 1.20712
min 0.876407
max 1.21985
diff 0.343443
Std. dev. 0.062465
avg time 432.6
average 1.40631
min 1.40631
max 1.40631
diff 0
Std. dev. 0
avgtime 62.43333
average 1.99831
min 1.93891
max 2.11349
diff 0.17458
Std. dev. 0.035079
avgtime 118.6333
average 1.075794
min 1.06822
max 1.09297
diff 0.02475
Std. dev. 0.006357
avgtime 80.93333

36

Difference
-0.008
0.000
-0.241
-0.241
-0.043
1.874

-0.002
-0.105
-0.053
0.052
0.007
3.194

-0.264
-0.005
0.016
0.021
0.068
2.511

0.000
0.000
0.000
0.000
0.000
2.362

-0.010
-0.003
-0.076
-0.073
-0.001

1.804

0.002
-0.001
0.001
0.002
0.001
2.005

% diff btw avgs
-0.67

-0.12

-21.85

0.00

-0.52

0.19

user13 - GH-BUCK
with berm.sli

userl4 - LOWER
FAILED Buttress.sli

userl5 - block
search.sli

userl7 - Leachate
Tank.sli

user20 - tstab.sli

user21 - slopew.sli

Cuckoo Search

average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time

0.848094
0.800086

1.12004
0.319954
0.074997
102.2667

0.879649
0.866065
0.942314
0.076249
0.020568
107.1333

0.996065
0.939809

1.05565
0.115841
0.029706
62.26667

1.048932
1.03345
1.11273
0.07928

0.020505

34.2

3.916124
3.85142
4.05278
0.20136

0.065412

50.73333

1.461281
1.45383
1.46337
0.00954

0.0027

40.73333

Simulated Annealing
average 0.856681
min 0.810089
max 1.1144
diff 0.304311
Std. dev. 0.087727
avgtime 220.9333
average 0.897135
min 0.868994
max 1.34156
diff 0.472566
Std. dev. 0.086788
avgtime 168.0667
average 0.903817
min 0.876841
max 1.49941
diff 0.622569
Std. dev. 0.112579
avgtime 669.9667
average 1.115695
min 1.03331
max 2.7607
diff 1.72739
Std. dev. 0.312305
avgtime 69.66667
average 3.941215
min 3.85627
max 4.03428
diff 0.17801
Std.dev. 0.077736
avgtime 154.7667
average 1.460662
min 1.45267
max 1.46309
diff 0.01042
Std. dev. 0.002739
avgtime 68.66667

37

Difference
-0.009
-0.010

0.006
0.016
-0.013
2.160

-0.017
-0.003
-0.399
-0.396
-0.066

1.569

0.092
0.063
-0.444
-0.507
-0.083
10.760

-0.067
0.000
-1.648
-1.648
-0.292
2.037

-0.025
-0.005
0.019
0.023
-0.012
3.051

0.001
0.001
0.000
-0.001
0.000
1.686

% diff btw avgs
-1.00

-1.95

10.21

-5.98

-0.64

0.04

user28 - Verifica 1
pali Rocscience
moved pile.sli

user32a - DSBarna-
HF2CBMD6SCO01.sli

Cuckoo Search

average
min
max
diff
Std. dev.
avg time
average
min
max
diff
Std. dev.
avg time

0.766862
0.735337
0.804414
0.069077

0.01391
48.86667

0.618521
0.605509
0.812035
0.206526
0.039491
31.43333

Simulated Annealing
average 0.764834
min 0.725585
max 0.77932
diff 0.053735
Std. dev. 0.009889
avg time 463.6
average 0.615087
min 0.607116
max 0.647136
diff 0.04002
Std. dev. 0.010187
avgtime 93.26667

38

Difference
0.002
0.010
0.025
0.015
0.004
9.487

0.003
-0.002
0.165
0.167
0.029
2.967

% diff btw avgs
0.27

0.56

9.2 VERIFICATION FILES

verification#01.sli

verification#02.sli

verification#03.sli

verification#04.sli

verification#05.sli

Cuckoo Search

average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time

0.983004
0.980784
0.983885
0.003101
0.001046
37.56667

1.578202
1.57051
1.58439
0.01388

0.002612

30.9

1.362085
1.35843
1.36528
0.00685

0.002178

36.4

0.980081
0.977741
0.984042
0.006301
0.001016
45.23333

1.94753
1.94753
1.94753
0
2.26E-16
36.06667

Simulated Annealing
average 0.982963
min 0.980946
max 0.98386
diff 0.002914
Std. dev. 0.001008
avg time 61.5
average 1.577368
min 1.56923
max 1.57979
diff 0.01056
Std. dev. 0.003106
avg time 61.9
average 1.362168
min 1.35897
max 1.36381
diff 0.00484
Std.dev. 0.001716
avgtime 61.13333
average 0.981806
min 0.977647
max 0.994808
diff 0.017161
Std. dev. 0.005105
avgtime 79.33333
average 1.94753
min 1.94753
max 1.94753
diff 0
Std. dev. 2.26E-16
avgtime 33.66667

39

Difference
0.000
0.000
0.000
0.000
0.000
1.637

0.001
0.001
0.005
0.003
0.000
2.003

0.000
-0.001
0.001
0.002
0.000
1.679

-0.002
0.000
-0.011
-0.011
-0.004
1.754

0.000
0.000
0.000
0.000
0.000
0.933

% diff btw avgs
0.00

0.05

-0.01

-0.18

0.00

verification#06.sli

verification#08.sli

verification#09.sli

verification#10.sli

verification#11.sli

verification#12.sli

Cuckoo Search

average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time

1.94753
1.94753
1.94753
0
2.26E-16
35.2

1.222076
1.22127
1.22302
0.00175

0.000345

40.76667

0.715238
0.708452
0.743109
0.034657
0.008883

41.7

1.493178
1.48923
1.49729
0.00806

0.002305

53

0.759737
0.712007
0.832136
0.120129
0.045594

51

1.050334
1.0399
1.09914
0.05924
0.013709
82.16667

Simulated Annealing
average 1.94753
min 1.94753
max 1.94753
diff 0
Std. dev. 2.26E-16
avgtime 32.63333
average 1.22197
min 1.22093
max 1.22311
diff 0.00218
Std. dev. 0.00041
avgtime 63.23333
average 0.709313
min 0.708073
max 0.717615
diff 0.009542
Std. dev. 0.00186
avg time 75.4
average 1.492079
min 1.48557
max 1.49508
diff 0.00951
Std. dev. 0.002623
avgtime 82.43333
average 0.79792
min 0.709475
max 0.894734
diff 0.185259
Std. dev. 0.043572
avgtime 116.1333
average 1.050532
min 1.03899
max 1.07892
diff 0.03993
Std. dev. 0.011178
avgtime 633.8333

40

Difference
0.000
0.000
0.000
0.000
0.000
0.927

0.000
0.000
0.000
0.000
0.000
1.551

0.006
0.000
0.025
0.025
0.007
1.808

0.001
0.004
0.002
-0.001
0.000
1.555

-0.038
0.003
-0.063
-0.065
0.002
2.277

0.000
0.001
0.020
0.019
0.003
7.714

% diff btw avgs
0.00

0.01

0.84

0.07

-4.79

-0.02

verification#14-
noncircular.sli

verification#15-
circular.sli

verification#16-
noncircular.sli

verification#19.sli

verification#20-
noncircular.sli

verification#21-1.sli

Cuckoo Search

average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time

1.392185
1.38659
1.3942
0.00761
0.002665
65.16667

0.41489
0.412005
0.419129
0.007124
0.001906
66.86667

1.102323
1.09759
1.10532
0.00773

0.001919

59.96667

1.403668
1.39889
1.40764
0.00875

0.002101

53.6

1.073345
1.00539
1.09364
0.08825

0.033515

51.66667

1.990598
1.98153
1.99403

0.0125

0.003049

57.1

Simulated Annealing
average 1.391322
min 1.38676
max 1.39421
diff 0.00745
Std. dev. 0.002643
avgtime 102.6333
average 0.414518
min 0.41215
max 0.418829
diff 0.006679
Std. dev. 0.00152
avgtime 137.9333
average 1.101444
min 1.09633
max 1.10357
diff 0.00724
Std. dev. 0.002037
avgtime 81.43333
average 1.403941
min 1.39903
max 1.40892
diff 0.00989
Std. dev. 0.002319
avg time 95.3
average 1.081213
min 1.00655
max 1.09127
diff 0.08472
Std. dev. 0.025198
avgtime 81.56667
average 1.99122
min 1.9839
max 1.9948
diff 0.0109
Std. dev. 0.002409
avg time 91.4

41

Difference
0.001
0.000
0.000
0.000
0.000
1.575

0.000
0.000
0.000
0.000
0.000
2.063

0.001
0.001
0.002
0.000
0.000
1.358

0.000
0.000
-0.001
-0.001
0.000
1.778

-0.008
-0.001
0.002
0.004
0.008
1.579

-0.001
-0.002
-0.001
0.002
0.001
1.601

% diff btw avgs
0.06

0.09

0.08

-0.02

-0.73

-0.03

verification#22-1.sli

verification#24.sli

verification#25.sli

verification#27-1.sli

verification#28-

Examplel_Layer2.sli

verification#29.sli

Cuckoo Search

average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time

1.292499
1.29135
1.29465

0.0033

0.000747

42.33333

1.3981
1.39241
1.40047
0.00806

0.001777
38.1

0.943173
0.943126
0.943267
0.000141
3.53E-05
54.86667

0.114236
0.048896
0.134534
0.085638
0.017165
29.33333

0.014352
0.002043
0.098383

0.09634
0.021364
53.36667

2.96E-08
1.65E-10
1.47E-07
1.47E-07
4.09E-08
28.16667

Simulated Annealing
average 1.292605
min 1.29166
max 1.29502
diff 0.00336
Std. dev. 0.000874
avgtime 64.56667
average 1.397633
min 1.39445
max 1.39992
diff 0.00547
Std. dev. 0.001284
avgtime 65.66667
average 0.943175
min 0.943139
max 0.943821
diff 0.000682
Std. dev. 0.000123
avgtime 154.7667
average 0.094876
min 0.029359
max 0.11771
diff 0.088351
Std. dev. 0.02351
avgtime 72.23333
average 0.041039
min 0.001811
max 1.09947
diff 1.097659
Std. dev. 0.199911
avg time 96.8
average 1.74E-08
min 3.23E-10
max 1.42E-07
diff 1.42E-07
Std. dev. 3.28E-08
avgtime 116.5333

42

Difference
0.000
0.000
0.000
0.000
0.000
1.525

0.000
-0.002
0.001
0.003
0.000
1.724

0.000
0.000
-0.001
-0.001
0.000
2.821

0.019
0.020
0.017
-0.003
-0.006
2.463

-0.027
0.000
-1.001
-1.001
-0.179
1.814

0.000
0.000
0.000
0.000
0.000
4.137

% diff btw avgs
-0.01

0.03

0.00

20.41

-65.03

70.26

verification#30-1.sli

verification#31-1.sli

verification#32-1.sli

verification#41.sli

verification#42-

noncircular.sli

verification#43-
circ.sli

Cuckoo Search

average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time

1.05033
1.05033
1.05033
0
4.52E-16
17.86667

0.861257
0.861256
0.861258

2E-06
4.34E-07
20.86667

0.79942
0.79939
0.799455
6.5E-05
1.95E-05
60.86667

1.672012
1.66725
1.67369
0.00644

0.001813

268.5667

1.868258
1.86606
1.87531
0.00925

0.001845

27.7

1.395128
1.31733
1.52797
0.21064

0.079534

45.8

Simulated Annealing
average 1.05033
min 1.05033
max 1.05033
diff 0
Std. dev. 4.52E-16
avg time 61.2
average 0.852394
min 0.823301
max 0.861257
diff 0.037956
Std. dev. 0.014628
avgtime 79.33333
average 0.799416
min 0.799375
max 0.799454
diff 7.9E-05
Std. dev. 1.8E-05
avgtime 237.9333
average 1.671511
min 1.66691
max 1.67345
diff 0.00654
Std. dev. 0.00205
avgtime 470.0333
average 1.867964
min 1.86692
max 1.86951
diff 0.00259
Std. dev. 0.000835
avgtime 61.83333
average 1.363819
min 1.29494
max 1.4859
diff 0.19096
Std. dev. 0.061447
avg time 700.2

43

Difference
0.000
0.000
0.000
0.000
0.000
3.425

0.009
0.038
0.000
-0.038
-0.015
3.802

0.000
0.000
0.000
0.000
0.000
3.909

0.001
0.000
0.000
0.000
0.000
1.750

0.000
-0.001
0.006
0.007
0.001
2.232

0.031
0.022
0.042
0.020
0.018
15.288

% diff btw avgs
0.00

1.04

0.00

0.03

0.02

2.30

verification#44-M-C
with iteration
results.sli

verification#45-m-

c.sli

verification#46-

stagel.sli

verification#48.sli

verification#49.sli

verification#50.sli

Cuckoo Search

average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time

0.976967

0.97572
0.977245
0.001525
0.000457
60.23333

2.7859
2.77992
2.78918
0.00926

0.002331
26.8

2.49948
2.49948
2.49948
0
4.52E-16
16.43333

0.935334
0.921412
0.951196
0.029784
0.007118
98.76667

1.432501
1.41696
1.49392
0.07696

0.014202

46.36667

0.360779
0.360778
0.360781
3E-06
6.75E-07
23.3

Simulated Annealing
average 0.977094
min 0.976174
max 0.977241
diff 0.001067
Std. dev. 0.000286
avg time 79.5
average 2.785547
min 2.78106
max 2.78918
diff 0.00812
Std. dev. 0.001694
avgtime 48.73333
average 2.49948
min 2.49948
max 2.49948
diff 0
Std. dev. 4.52E-16
avgtime 61.53333
average 0.917333
min 0.911073
max 0.93152
diff 0.020447
Std. dev. 0.005118
avg time 371.3
average 1.414188
min 1.27415
max 1.47912
diff 0.20497
Std. dev. 0.041095
avg time 345.8
average 0.479018
min 0.360778
max 1.08367
diff 0.722892
Std. dev. 0.268941
avgtime 140.8667

44

Difference
0.000
0.000
0.000
0.000
0.000
1.320

0.000
-0.001
0.000
0.001
0.001
1.818

0.000
0.000
0.000
0.000
0.000
3.744

0.018
0.010
0.020
0.009
0.002
3.759

0.018
0.143
0.015
-0.128
-0.027
7.458

-0.118
0.000
-0.723
-0.723
-0.269
6.046

% diff btw avgs
-0.01

0.01

0.00

1.96

1.29

-24.68

verification#51.sli

verification#52-1-
dry.sli

verification#53.sli

verification#54-with
pile.sli

verification#55-
slopel.sli

verification#56-
slope2.sli

Cuckoo Search

average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time

0.986587
0.981294
0.989856
0.008562
0.002748

198.1

2.012802
2.00448
2.01641
0.01193
0.00333

64.46667

0.758947
0.755846
0.764887
0.009041

0.002
59.73333

1.154536
1.15312
1.15629
0.00317

0.000817

186.2667

1.299496
1.2925
1.30493
0.01243
0.003639
54.56667

1.293355
1.28733
1.29869
0.01136

0.002914

32.7

Simulated Annealing
average 0.986949
min 0.982209
max 0.989955
diff 0.007746
Std. dev. 0.002649
avgtime 320.6667
average 2.012737
min 2.00462
max 2.01579
diff 0.01117
Std. dev. 0.003397
avgtime 88.36667
average 0.758498
min 0.754807
max 0.763736
diff 0.008929
Std. dev. 0.001988
avgtime 238.6333
average 1.155752
min 1.15095
max 1.15818
diff 0.00723
Std. dev. 0.001792
avg time 128.1
average 1.299953
min 1.29395
max 1.3019
diff 0.00795
Std. dev. 0.002707
avg time 73
average 1.29193
min 1.28673
max 1.29443
diff 0.0077
Std. dev. 0.002411
avg time 60.5

45

Difference
0.000
-0.001
0.000
0.001
0.000
1.619

0.000
0.000
0.001
0.001
0.000
1.371

0.000
0.001
0.001
0.000
0.000
3.995

-0.001
0.002
-0.002
-0.004
-0.001
0.688

0.000
-0.001
0.003
0.004
0.001
1.338

0.001
0.001
0.004
0.004
0.001
1.850

% diff btw avgs
-0.04

0.00

0.06

-0.11

-0.04

0.11

verification#57-
slope3-no
composite.sli

verification#58-
slope4.sli

verification#59-
slope5.sli

verification#60-
slope7.sli

verification#61-m-
c.sli

verification#62-dry-
noncirc.sli

Cuckoo Search

average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time
average
min
max

diff

Std. dev.
avg time

1.37252
1.36737
1.37513
0.00776
0.001745
36

0.057415
0.026834
0.060343
0.033509
0.005951

65.9

0.025095
0.020224
0.043108
0.022884
0.004263
49.33333

1.058633
1.0157
1.1957

0.18

0.067788

68.53333

1.3645
1.36094
1.36586
0.00492

0.001567
72.3

1.001079
0.998879

1.00253
0.003651
0.001246
62.93333

Simulated Annealing
average 1.3726
min 1.36886
max 1.37564
diff 0.00678
Std. dev. 0.001212
avgtime 59.73333
average 0.246363
min 0.058
max 0.890451
diff 0.832451
Std. dev. 0.333911
avgtime 304.0667
average 0.027417
min 0.01942
max 0.092807
diff 0.073387
Std. dev. 0.014868
avgtime 270.3667
average 1.006084
min 1.00191
max 1.01386
diff 0.01195
Std. dev. 0.003058
avg time 734.5
average 1.364079
min 1.35994
max 1.36589
diff 0.00595
Std. dev. 0.001722
avgtime 118.8333
average 1.001719
min 0.99966
max 1.00253
diff 0.00287
Std. dev. 0.001107
avgtime 104.6818

46

Difference
0.000
-0.001
-0.001
0.001
0.001
1.659

-0.189
-0.031
-0.830
-0.799
-0.328

4614

-0.002
0.001
-0.050
-0.051
-0.011
5.480

0.053
0.014
0.182
0.168
0.065
10.717

0.000
0.001
0.000
-0.001
0.000
1.644

-0.001
-0.001
0.000
0.001
0.000
1.663

% diff btw avgs
-0.01

-76.70

-8.47

5.22

0.03

-0.06

Cuckoo Search Simulated Annealing Difference % diff btw avgs

verification#70_- average 1.596729 average 1.595665 0.001 0.07
—duncan_page088_fig min 1.59221 min 1.59193 0.000
ure 6- gy 1.59955 max 1.59722 0.002
27 casel 30ftsli e 0.00734 diff 0.00529 0.002
Std.dev. 0.002002 Std.dev. 0.001449 0.001
avgtime 23.26667 avgtime 40.33333 1.734

47

48

