

Slide2

Slope Stability

Verification Manual

Table of Contents

Introd	uction	19
1. Slic	de Verification Problem #1	20
1.1.	Introduction	20
1.2.	Problem Description	20
1.3.	Geometry and Material Properties	20
1.4.	Results	21
2. Slic	de Verification Problem #2	24
2.1.	Introduction	24
2.2.	Problem Description	24
2.3.	Geometry and Material Properties	24
2.4.	Results	25
3. Slic	de Verification Problem #3	28
3.1.	Introduction	
3.2.	Problem Description	28
3.3.	Geometry and Material Properties	28
3.4.	Results	
4. Slic	de Verification Problem #4	
4. Slic 4.1.	de Verification Problem #4	32 32
4. Slic 4.1. 4.2.	de Verification Problem #4 Introduction Problem Description	32 32 32
4. Slic 4.1. 4.2. 4.3.	de Verification Problem #4 Introduction Problem Description Geometry and Material Properties	32 32 32 32 32
4. Slic 4.1. 4.2. 4.3. 4.4.	de Verification Problem #4 Introduction Problem Description Geometry and Material Properties Results	
 4. Slice 4.1. 4.2. 4.3. 4.4. 5. Slice 	de Verification Problem #4 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #5	
 Slice 4.1. 4.2. 4.3. 4.4. Slice 5.1. 	de Verification Problem #4 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #5 Introduction	
 Slice 4.1. 4.2. 4.3. 4.4. Slice 5.1. 5.2. 	de Verification Problem #4 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #5 Introduction Problem Description	
 4. Slice 4.1. 4.2. 4.3. 4.4. 5. Slice 5.1. 5.2. 5.3. 	de Verification Problem #4 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #5 Introduction Problem Description Geometry and Material Properties	
 4. Slice 4.1. 4.2. 4.3. 4.4. 5. Slice 5.1. 5.2. 5.3. 5.4. 	de Verification Problem #4 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #5 Introduction Problem Description Geometry and Material Properties Results	
 Slice 4.1. 4.2. 4.3. 4.4. Slice 5.1. 5.2. 5.3. 5.4. Slice 	de Verification Problem #4 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #5 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #6	
 Slice 4.1. 4.2. 4.3. 4.4. Slice 5.1. 5.2. 5.3. 5.4. Slice 6.1. 	de Verification Problem #4 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #5 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #6 Introduction	
 Slice 4.1. 4.2. 4.3. 4.4. Slice 5.1. 5.2. 5.3. 5.4. Slice 6.1. 6.2. 	de Verification Problem #4 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #5 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #6 Introduction Problem Description	
 4. Slice 4.1. 4.2. 4.3. 4.4. 5. Slice 5.1. 5.2. 5.3. 5.4. 6. Slice 6.1. 6.2. 6.3. 	de Verification Problem #4 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #5 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #6 Introduction Problem Description Geometry and Predefined Slip Surface	
 4. Slice 4.1. 4.2. 4.3. 4.4. 5. Slice 5.1. 5.2. 5.3. 5.4. 6. Slice 6.1. 6.2. 6.3. 6.4. 	de Verification Problem #4 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #5 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #6 Introduction Problem Description Geometry and Predefined Slip Surface Results	

7.1. Introduction	44
7.2. Problem Description	44
7.3. Geometry and Material Properties	44
7.4. Results	45
8. Slide Verification Problem #8	47
8.1. Introduction	47
8.2. Problem Description	47
8.3. Geometry and Material Properties	47
8.4. Results	
9. Slide Verification Problem #9	50
9.1. Introduction	50
9.2. Problem Description	50
9.3. Geometry and Material Properties	50
9.4. Results	52
10.Slide Verification Problem #10	55
10.1. Introduction	55
10.2. Problem Description	55
10.3. Geometry and Material Properties	55
10.4. Results	56
11.Slide Verification Problem #11	59
11.1. Introduction	59
11.2. Problem Description	59
11.3. Geometry and Material Properties	59
11.4. Results	60
12.Slide Verification Problem #12	63
12.1. Introduction	63
12.2. Problem Description	63
12.3. Geometry and Material Properties	63
12.4. Results	64
13.Slide Verification Problem #13	67
13.1. Introduction	67
13.2. Problem Description	67
13.3. Geometry and Material Properties	67
13.4. Results	68

14.Slide Verification Problem #14	71
14.1. Introduction	71
14.2. Problem Description	71
14.3. Geometry and Material Properties	71
14.4. Results	72
15.Slide Verification Problem #15	74
15.1. Introduction	74
15.2. Problem Description	74
15.3. Geometry and Material Properties	74
15.4. Results	75
16.Slide Verification Problem #16	77
16.1. Introduction	77
16.2. Problem Description	77
16.3. Geometry and Material Properties	77
16.4. Results	
17.Slide Verification Problem #17	80
17.1. Introduction	80
17.2. Problem Description	
17.3. Geometry and Material Properties	80
17.4. Results	81
18.Slide Verification Problem #18	83
18.1. Introduction	83
18.2. Problem Description	83
18.3. Geometry and Material Properties	83
18.4. Results	84
19.Slide Verification Problem #19	85
19.1. Introduction	85
19.2. Problem Description	85
19.3. Geometry and Material Properties	85
19.4. Results	86
20.Slide Verification Problem #20	87
20.1. Introduction	87
20.2. Problem Description	87
20.3. Geometry and Material Properties	87

20.4. Results	
21.Slide Verification Problem #21	91
21.1. Introduction	
21.2. Problem Description	
21.3. Geometry and Material Properties	91
21.4. Results	
22.Slide Verification Problem #22	93
22.1. Introduction	
22.2. Problem Description	
22.3. Geometry and Material Properties	
22.4. Results	
23.Slide Verification Problem #23	95
23.1. Introduction	95
23.2. Problem Description	95
23.3. Geometry and Material Properties	
23.4. Results	
24.Slide Verification Problem #24	
24.1. Introduction	
24.2. Problem Description	
24.3. Geometry and Material Properties	
24.4. Results	
25.Slide Verification Problem #25	
25.1. Introduction	
25.2. Problem Description	
25.3. Geometry and Material Properties	
25.4. Results	
26.Slide Verification Problem #26	
26.1. Introduction	
26.2. Problem Description	
26.3. Geometry and Material Properties	
26.4. Results	
27.Slide Verification Problem #27	
27.1. Introduction	
27.2. Problem Description	

27.3. Geometry and Material Properties	
27.4. Results	
28.Slide Verification Problem #28	
28.1. Introduction	
28.2. Problem Description	
28.3. Geometry	110
28.4. Results	111
29.Slide Verification Problem #29	
29.1. Introduction	
29.2. Problem Description	
29.3. Geometry and Material Properties	
29.4. Results	
30.Slide Verification Problem #30	
30.1. Introduction	
30.2. Problem Description	
30.3. Geometry and Material Properties	
30.4. Results	
31.Slide Verification Problem #31	125
31.1. Introduction	
31.2. Problem Description	
31.3. Geometry and Material Properties	
31.4. Results	
32.Slide Verification Problem #32	127
32.1. Introduction	
32.2. Problem Description	
32.3. Geometry and Material Properties	
32.4. Results	
33.Slide Verification Problem #33	130
33.1. Introduction	
33.2. Problem Description	
33.3. Geometry and Material Properties	
33.4. Results	
34.Slide Verification Problem #34	132
34.1 Introduction	

34.2. Problem Description	
34.3. Geometry and Material Properties	
34.4. Results	
35.Slide Verification Problem #35	
35.1. Introduction	
35.2. Problem Description	
35.3. Geometry and Material Properties	
35.4. Results	
36.Slide Verification Problem #36	
36.1. Introduction	
36.2. Problem Description	
36.3. Geometry and Material Properties	
36.4. Results	
37.Slide Verification Problem #37	
37.1. Introduction	
37.2. Problem Description	
37.3. Geometry	
37.4. Results	
38.Slide Verification Problem #38	
38.1. Introduction	
38.2. Problem Description	
38.3. Geometry and Material Properties	
38.4. Results	
39.Slide Verification Problem #39	
39.1. Introduction	
39.2. Problem Description	
39.3. Geometry and Material Properties	
39.4. Results	
40.Slide Verification Problem #40	
40.1. Introduction	
40.2. Problem Description	
40.3. Geometry and Material Properties	
40.4. Results	
41.Slide Verification Problem #41	

41.1. Introduction	154
41.2. Problem Description	154
41.3. Geometry and Material Properties	154
41.4. Results	155
42.Slide Verification Problem #42	157
42.1. Introduction	157
42.2. Problem Description	157
42.3. Geometry and Material Properties	157
42.4. Results	158
43.Slide Verification Problem #43	160
43.1. Introduction	160
43.2. Problem Description	160
43.3. Geometry and Material Properties	160
43.4. Results	161
44.Slide Verification Problem #44	164
44.1. Introduction	164
44.2. Problem Description	164
44.3. Geometry and Material Properties	164
44.4. Results	165
45.Slide Verification Problem #45	167
45.1. Introduction	167
45.2. Problem Description	167
45.3. Geometry and Material Properties	167
45.4. Results	168
46.Slide Verification Problem #3	170
46.1. Introduction	170
46.2. Problem Description	170
46.3. Geometry and Material Properties	171
46.4. Results	173
47.Slide Verification Problem #47	177
47.1. Introduction	177
47.2. Problem Description	177
47.3. Geometry and Material Properties	177
47.4. Results	178

48.Slide Verification Problem #48	179
48.1. Introduction	179
48.2. Problem Description	179
48.3. Geometry and Material Properties	179
48.4. Results	
49.Slide Verification Problem #49	
49.1. Introduction	
49.2. Problem Description	
49.3. Geometry and Material Properties	
49.4. Results	
50.Slide Verification Problem #50	
50.1. Introduction	183
50.2. Problem Description	
50.3. Geometry and Material Properties	
50.4. Results	
51.Slide Verification Problem #51	186
51.1. Introduction	
51.2. Problem Description	
51.3. Geometry and Material Properties	186
51.4. Results	187
52.Slide Verification Problem #52	
52.1. Introduction	
52.2. Problem Description	188
52.3. Geometry and Material Properties	
52.4. Results	
53.Slide Verification Problem #53	194
53.1. Introduction	
53.2. Problem Description	194
53.3. Geometry and Material Properties	194
53.4. Results	195
54.Slide Verification Problem #54	196
54.1. Introduction	196
54.2. Problem Description	196
54.3. Geometry and Material Properties	

54.4. Results	197
55.Slide Verification Problem #55	199
55.1. Introduction	199
55.2. Problem Description	199
55.3. Geometry and Material Properties	199
55.4. Results	200
56.Slide Verification Problem #56	201
56.1. Introduction	201
56.2. Problem Description	201
56.3. Geometry and Material Properties	201
56.4. Results	202
57.Slide Verification Problem #57	203
57.1. Introduction	203
57.2. Problem Description	203
57.3. Geometry and Material Properties	203
57.4. Results	204
58.Slide Verification Problem #58	206
58.1. Introduction	206
58.2. Problem Description	206
58.3. Geometry and Material Properties	207
58.4. Results	208
59.Slide Verification Problem #59	209
59.1. Introduction	209
59.2. Problem Description	209
59.3. Geometry and Material Properties	209
59.4. Results	210
60.Slide Verification Problem #60	211
60.1. Introduction	211
60.2. Problem Description	211
60.3. Geometry and Material Properties	211
60.4. Results	212
61.Slide Verification Problem #61	213
61.1. Introduction	213
61.2. Problem Description	213

61.3. Geometry and Material Properties	213
61.4. Results	214
62.Slide Verification Problem #62	216
62.1. Introduction	216
62.2. Problem Description	216
62.3. Geometry and Material Properties	216
62.4. Results	217
63.Slide Verification Problem #63	219
63.1. Introduction	219
63.2. Problem Description	219
63.3. Geometry and Material Properties	219
63.4. Results	
64.Slide Verification Problem #64	221
64.1. Introduction	221
64.2. Problem Description	221
64.3. Geometry and Material Properties	221
64.4. Results	222
65.Slide Verification Problem #65	
65.Slide Verification Problem #65	
65.Slide Verification Problem #6565.1. Introduction65.2. Problem Description	
 65.Slide Verification Problem #65 65.1. Introduction 65.2. Problem Description 65.3. Geometry and Material Properties 	
 65.Slide Verification Problem #65 65.1. Introduction 65.2. Problem Description 65.3. Geometry and Material Properties 65.4. Results 	223 223 223 223 223 224
 65.Slide Verification Problem #65 65.1. Introduction 65.2. Problem Description 65.3. Geometry and Material Properties 65.4. Results 66.Slide Verification Problem #66 	223 223 223 223 223 223 224 224 225
 65.Slide Verification Problem #65 65.1. Introduction 65.2. Problem Description 65.3. Geometry and Material Properties 65.4. Results 66.Slide Verification Problem #66 66.1. Introduction 	223 223 223 223 223 223 224 224 225
 65.Slide Verification Problem #65 65.1. Introduction 65.2. Problem Description 65.3. Geometry and Material Properties 65.4. Results 66.Slide Verification Problem #66 66.1. Introduction 66.2. Problem Description 	223 223 223 223 223 223 224 224 225 225
 65.Slide Verification Problem #65 65.1. Introduction 65.2. Problem Description 65.3. Geometry and Material Properties 65.4. Results 66.Slide Verification Problem #66 66.1. Introduction 66.2. Problem Description 66.3. Geometry and Material Properties 	223 223 223 223 223 223 224 224 225 225 225 225
 65.Slide Verification Problem #65 65.1. Introduction 65.2. Problem Description 65.3. Geometry and Material Properties 65.4. Results 66.Slide Verification Problem #66 66.1. Introduction 66.2. Problem Description 66.3. Geometry and Material Properties 66.4. Results 	223 223 223 223 223 223 224 224 225 225 225 225 225 225 225 225
 65. Slide Verification Problem #65 65.1. Introduction 65.2. Problem Description 65.3. Geometry and Material Properties 65.4. Results 66. Slide Verification Problem #66 66.1. Introduction 66.2. Problem Description 66.3. Geometry and Material Properties 66.4. Results 67. Slide Verification Problem #67 	223 223 223 223 223 224 224 225 225 225 225 225 225 225 225
 65.Slide Verification Problem #65 65.1. Introduction 65.2. Problem Description 65.3. Geometry and Material Properties 65.4. Results 66.Slide Verification Problem #66 66.1. Introduction 66.2. Problem Description 66.3. Geometry and Material Properties 66.4. Results 67.Slide Verification Problem #67 67.1. Introduction 	223 223 223 223 223 223 224 225 225 225 225 225 225 225 225 225
 65.Slide Verification Problem #65 65.1. Introduction 65.2. Problem Description 65.3. Geometry and Material Properties 65.4. Results 66.Slide Verification Problem #66 66.1. Introduction 66.2. Problem Description 66.3. Geometry and Material Properties 66.4. Results 67.Slide Verification Problem #67 67.1. Introduction 67.2. Problem Description 	223 223 223 223 223 223 224 224 225 225 225 225 225 225 225 225
 65.Slide Verification Problem #65 65.1. Introduction 65.2. Problem Description 65.3. Geometry and Material Properties 65.4. Results 66.Slide Verification Problem #66 66.1. Introduction 66.2. Problem Description 66.3. Geometry and Material Properties 66.4. Results 67.Slide Verification Problem #67 67.1. Introduction 67.2. Problem Description 67.3. Geometry and Material Properties 	223 223 223 223 223 223 224 225 225 225 225 225 225 225 225 227 227 227
65.Slide Verification Problem #65 65.1. Introduction 65.2. Problem Description 65.3. Geometry and Material Properties 65.4. Results 66.Slide Verification Problem #66 66.1. Introduction 66.2. Problem Description 66.3. Geometry and Material Properties 66.4. Results 67.Slide Verification Problem #67 67.Slide Verification Problem #67 67.1. Introduction 67.2. Problem Description 67.3. Geometry and Material Properties 67.4. Results	223 223 223 223 223 223 224 225 225 225 225 225 225 225 225 227 227 227
 65.Slide Verification Problem #65 65.1. Introduction 65.2. Problem Description 65.3. Geometry and Material Properties 65.4. Results 66.1. Introduction 66.2. Problem Description 66.3. Geometry and Material Properties 66.4. Results 67.Slide Verification Problem #67 67.1. Introduction 67.2. Problem Description 67.3. Geometry and Material Properties 67.4. Results 68.Slide Verification Problem #68 	223 223 223 223 223 224 224 225 225 225 225 225 225 225 225

68.2. Problem Description	229
68.3. Geometry and Material Properties	
68.4. Results	230
69.Slide Verification Problem #69	231
69.1. Introduction	231
69.2. Problem Description	231
69.3. Geometry and Material Properties	231
69.4. Results	232
70.Slide Verification Problem #70	
70.1. Introduction	233
70.2. Problem Description	
70.3. Geometry and Material Properties	
70.4. Results	
71.Slide Verification Problem #71	237
71.1. Introduction	
71.2. Problem Description	237
71.3. Geometry and Material Properties	
71.4. Results	
72.Slide Verification Problem #72	240
72.1. Introduction	
72.2. Problem Description	240
72.3. Geometry and Material Properties	240
72.4. Results	241
73.Slide Verification Problem #73	245
73.1. Introduction	245
73.2. Problem Description	245
73.3. Geometry and Material Properties	245
73.4. Results	247
74.Slide Verification Problem #74	249
74.1. Introduction	249
74.2. Problem Description	249
74.3. Geometry and Material Properties	249
74.4. Results	250
75.Slide Verification Problem #75	

75.1. Introduction	251
75.2. Problem Description	251
75.3. Geometry and Material Properties	251
75.4. Results	252
76.Slide Verification Problem #76	254
76.1. Introduction	254
76.2. Problem Description	254
76.3. Geometry and Material Properties	254
76.4. Results	255
77.Slide Verification Problem #77	257
77.1. Introduction	257
77.2. Problem Description	257
77.3. Geometry and Material Properties	257
77.4. Results	258
78.Slide Verification Problem #78	260
78.1. Introduction	
78.2. Problem Description	
78.3. Geometry and Material Properties	
78.4. Results	261
79.Slide Verification Problem #79	
79.1. Introduction	
79.2. Problem Description	
79.3. Geometry and Material Properties	
79.4. Results	
80.Slide Verification Problem #80	270
80.1. Introduction	270
80.2. Problem Description	270
80.3. Geometry and Material Properties	270
80.4. Results	271
81.Slide Verification Problem #81	273
81.1. Introduction	273
81.2. Problem Description	273
81.3. Geometry and Material Properties	273
81.4. Results	274

82.Slide Verification Problem #82	
82.1. Introduction	276
82.2. Problem Description	276
82.3. Geometry and Material Properties	
82.4. Results	
83.Slide Verification Problem #83	
83.1. Introduction	
83.2. Problem Description	278
83.3. Geometry and Material Properties	
83.4. Results	279
84.Slide Verification Problem #84	
84.1. Introduction	
84.2. Problem Description	
84.3. Geometry and Material Properties	
84.4. Results	
85.Slide Verification Problem #85	
85.1. Introduction	
85.2. Problem Description	
85.3. Geometry and Material Properties	
85.4. Results	
86.Slide Verification Problem #86	
86.1. Introduction	
86.2. Problem Description	
86.3. Geometry and Material Properties	
86.4. Results	
87.Slide Verification Problem #87	
87.1. Introduction	
87.2. Problem Description	
87.3. Geometry and Material Properties	
87.4. Results	
88.Slide Verification Problem #88	
88.1. Introduction	
88.2. Problem Description	
88.3. Geometry and Material Properties	

88.4. Results	
89.Slide Verification Problem #89	
89.1. Introduction	
89.2. Problem Description	
89.3. Geometry and Material Properties	295
89.4. Results	296
90.Slide Verification Problem #90	
90.1. Introduction	
90.2. Problem Description	
90.3. Geometry and Material Properties	
90.4. Results	
91.Slide Verification Problem #91	
91.1. Introduction	
91.2. Problem Description	
91.3. Geometry and Material Properties	
91.4. Results	
92.Slide Verification Problem #92	
92.1. Introduction	
92.2. Problem Description	
92.3. Geometry and Material Properties	
92.4. Results	
93.Slide Verification Problem #93	
93.1. Introduction	
93.2. Problem Description	
93.3. Geometry and Material Properties	
93.4. Results	
94.Slide Verification Problem #94	
94.1. Introduction	
94.2. Problem Description	
94.3. Geometry and Material Properties	
94.4. Results	
95.Slide Verification Problem #95	
95.1. Introduction	
95.2. Problem Description	

95.3. Ge	eometry and Material Properties	
95.4. Re	esults	
96.Slide V	erification Problem #96	
96.1. Int	roduction	
96.2. Pr	oblem Description	
96.3. Ge	eometry and Material Properties	
96.4. Re	esults	
97.Slide V	/erification Problem #97	
97.1. Int	roduction	
97.2. Pr	oblem Description	
97.3. Ge	eometry and Material Properties	
97.4. Re	esults	
98.Slide V	/erification Problem #98	
98.1. Int	roduction	
98.2. Pr	oblem Description	
98.3. Ge	eometry and Material Properties	
98.4. Re	esults	
99.Slide V	erification Problem #99	
99.Slide V 99.1. Int	r oduction	315 315
99.Slide V 99.1. Int 99.2. Pr	Verification Problem #99 roduction oblem Description	315 315 315
99.Slide V 99.1. Int 99.2. Pr 99.3. Ge	Verification Problem #99 roduction oblem Description eometry and Material Properties	315 315 315 315
99.Slide V 99.1. Int 99.2. Pr 99.3. Ge 99.4. Re	Verification Problem #99 roduction oblem Description cometry and Material Properties esults.	315 315 315 315 315 316
99.Slide V 99.1. Int 99.2. Pr 99.3. Ge 99.4. Re 100. Sli	Verification Problem #99 roduction oblem Description eometry and Material Properties esults de Verification Problem #100	
99.Slide V 99.1. Int 99.2. Pr 99.3. Ge 99.4. Re 100. Sli 100.1.	Verification Problem #99	
99.Slide V 99.1. Int 99.2. Pr 99.3. Ge 99.4. Re 100. Sli 100.1. 100.2.	Verification Problem #99 roduction oblem Description eometry and Material Properties esults de Verification Problem #100 Introduction Problem Description	315 315 315 315 316 316 317 317 317
99.Slide V 99.1. Int 99.2. Pr 99.3. Ge 99.4. Re 100. Sli 100.1. 100.2. 100.3.	Verification Problem #99 roduction	315 315 315 315 315 316 316 317 317 317 317
99.Slide V 99.1. Int 99.2. Pr 99.3. Ge 99.4. Re 100. Sli 100.1. 100.2. 100.3. 100.4.	Verification Problem #99 roduction oblem Description eometry and Material Properties esults. de Verification Problem #100 Introduction Problem Description Geometry and Material Properties Results	315 315 315 315 315 316 316 317 317 317 317 317
99.Slide V 99.1. Int 99.2. Pr 99.3. Ge 99.4. Re 100. Sli 100.1. 100.2. 100.3. 100.4. 101. Sli	Verification Problem #99 roduction oblem Description eometry and Material Properties esults. de Verification Problem #100 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #101	315 315 315 315 315 316 317 317 317 317 317 318 318 319
99.Slide V 99.1. Int 99.2. Pr 99.3. Ge 99.4. Re 100. Sli 100.1. 100.2. 100.3. 100.4. 101. Sli 101.1.	Verification Problem #99	
99.Slide V 99.1. Int 99.2. Pr 99.3. Ge 99.4. Re 100. Sli 100.1. 100.2. 100.3. 100.4. 101. Sli 101.1. 101.2.	Verification Problem #99 roduction oblem Description eometry and Material Properties esults de Verification Problem #100 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #100 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #101 Introduction Problem Description	315 315 315 315 315 316 317 317 317 317 317 318 318 319 319
99.Slide V 99.1. Int 99.2. Pr 99.3. Ge 99.4. Re 100. Sli 100.1. 100.2. 100.3. 100.4. 101. Sli 101.1. 101.2. 101.3.	Verification Problem #99 roduction oblem Description eometry and Material Properties esults de Verification Problem #100 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #100 Introduction Problem Description de Verification Problem #101 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #101 Introduction Problem Description Geometry and Material Properties	315 315 315 315 315 316 317 317 317 317 317 318 319 319 319
 99.Slide V 99.1. Int 99.2. Pr 99.3. Ge 99.4. Re 100. Sli 100.1. 100.2. 100.3. 100.4. 101.1. 101.2. 101.3. 101.4. 	Verification Problem #99 roduction oblem Description eometry and Material Properties essults de Verification Problem #100 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #101 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #101 Introduction Problem Description Geometry and Material Properties Results Results Results	315 315 315 315 315 316 317 317 317 317 317 318 319 319 319 319 319 319 319
 99.Slide V 99.1. Int 99.2. Pr 99.3. Ge 99.4. Re 100. Sli 100.1. 100.2. 100.3. 100.4. 101.1. 101.2. 101.3. 101.4. 102. Sli 	Verification Problem #99 roduction oblem Description eometry and Material Properties esults de Verification Problem #100 Introduction Problem Description Geometry and Material Properties Results de Verification Problem #101 Introduction Problem Description Geometry and Material Properties Results Geometry and Material Properties Results de Verification Problem #102	315 315 315 315 315 316 317 317 317 317 317 318 319 319 319 319 319 319 319 319 320 321

102	.2.	Geometry and Material Properties	321
102	.3.	Results	
103.	Slic	le Verification Problem #103	
103	.1.	Problem Description	
103	.2.	Results	
104.	Slic	le Verification Problem #104	
104	.1.	Introduction	
104	.2.	Problem Description	
105.	Slic	le Verification Problem #105	
105	.1.	Problem Description	
105	.2.	Results	
106.	Slic	le Verification Problem #106	334
106	.1.	Problem Description	
106	.2.	Results	
107.	Slic	le Verification Problem #107	
107	.1.	Introduction	
107	.2.	Problem Description	
107	.3.	Geometry and Material Properties	
107	.4.	Results	
108.	Slic	le Verification Problem #108	341
108	.1.	Introduction	341
108	.2.	Problem Description	341
108	.3.	Geometry and Material Properties	341
108	.4.	Results	
109.	Slic	le Verification Problem #109	
109	.1.	Introduction	
109	.2.	Problem Description	
109	.3.	Geometry and Material Properties	
109	.4.	Results	
110.	Slic	le Verification Problem #110	
110	.1.	Introduction	
110	.2.	Problem Description	
110	.3.	Geometry and Material Properties	
110	.4.	Results	350

111. S	lide Verification Problem #1113	51
111.1.	Introduction3	51
111.2.	Problem Description	51
111.3.	Geometry and Properties3	51
111.4.	Hand Calculation3	51
111.5.	Results3	57
112. R	eferences3	58

Introduction

This document contains a series of verification slope stability problems that have been analyzed using **Slide** version 7.0. These verification tests come from:

- A set of 5 basic slope stability problems, together with 5 variants, was distributed in the Australian Geomechanics profession and overseas as part of a survey sponsored by ACADS (Association for Computer Aided Design), in 1988. The **Slide** verification problems #1 to #10 are based on these ACADS example problems (Giam & Donald (1989)).
- Published examples found in reference material such as journal and conference proceedings.

For all examples, a short statement of the problem is given first, followed by a presentation of the analysis results, using various limit equilibrium analysis methods. Full references cited in the verification tests are found at the end of this document.

The **Slide** slope stability verification files can be accessed by selecting File tab \rightarrow Recent Folders \rightarrow Example Folder \rightarrow Slope Stability Verification. The file names are *slope stability* #001.*slim*, *slope stability* #002.*slim* and etc., corresponding to the verification problem numbers in this document.

All verification files run with the **Slide** Demo, so if you want details which are not presented in this document, then download the demo to view all the input parameters and results.

Slope, homogenous

1.1. Introduction

In 1988 a set of 5 basic slope stability problems, together with 5 variants, was distributed both in the Australian Geomechanics profession and overseas as part of a survey sponsored by ACADS (Giam & Donald (1989)). This is the ACADS 1(a) problem.

1.2. Problem Description

This problem as shown in Figure 1.1 is the simple case of a total stress analysis without considering pore water pressures. It represents a homogenous slope with soil properties given in Table 1.1. The factor of safety and its corresponding critical circular failure is calculated.

A slip center search grid of 20 x 20 intervals is used, with 11 circles per grid point, generating a total of 4851 circular slip surfaces. Grid is located at (22.8, 62.6), (22.8, 42.3), (43.7, 62.6), and (43.7, 42.3). Tolerance is 0.0001.

1.3. Geometry and Material Properties

c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
3.0	19.6	20.0

Table 1.2

Method	Factor of Safety
Bishop	0.987
Spencer	0.986
GLE	0.986
Janbu Corrected	0.990

Note: Reference factor of safety = 1.00 [Giam]

Mean Bishop FOS (18 samples) = 0.993

Mean FOS (33 samples) = 0.991

Figure 1.2: Solution, using the Bishop simplified method

Figure 1.4: Solution, using the GLE method

Figure 1.5: Solution, using the Janbu corrected method

Slope, homogenous, tension crack

2.1. Introduction

In 1988 a set of 5 basic slope stability problems, together with 5 variants, was distributed both in the Australian Geomechanics profession and overseas as part of a survey sponsored by ACADS (Giam & Donald (1989)). This is the ACADS 1(b) problem.

2.2. Problem Description

Problem #2 has the same slope geometry as verification problem #1, with the addition of a tension crack zone, as shown in Figure 2.1. For this problem, a suitable tension crack depth is required and water is assumed to have filled the tension crack. The tension crack depth can be estimated from the following equations [Craig (1997)].

$$Depth = \frac{2c}{\gamma\sqrt{k_a}} \qquad , k_a = \frac{1-\sin\phi}{1+\sin\phi}$$

In order to locate the critical slip surfaces, a slip center search grid of 20 x 20 intervals was used, with 11 circles per grid point, generating a total of 4851 slip surfaces. Grid located at (31, 49), (47, 49), (31, 34), and (47, 34). Tolerance is 0.0001.

2.3. Geometry and Material Properties

Figure 2.1: Geometry Setup in Slide

Table 2.1: Soil Properties

c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
32.0	10.0	20.0

Table 2.2

Method	Factor of Safety
Bishop	1.596
Spencer	1.592
GLE	1.592
Janbu Corrected	1.489

Note: Reference factor of safety = 1.65 [Giam]

Figure 2.2: Solution, using the Bishop simplified method

Figure 2.3: Solution, using the Spencer method

Figure 2.4: Solution, using the GLE method

Figure 2.5: Solution, using the Janbu corrected method

Slope, (3) materials

3.1. Introduction

In 1988 a set of 5 basic slope stability problems, together with 5 variants, was distributed both in the Australian Geomechanics profession and overseas as part of a survey sponsored by ACADS (Giam & Donald (1989)). This is the ACADS 1(c) problem.

3.2. Problem Description

Problem #3 is a non-homogeneous, three-layer slope with material properties given in Table 3.1. The factor of safety and its corresponding critical circular failure surface is calculated.

A slip center search grid of 20 x 20 intervals was used, with 11 circles per grid point, generating a total of 4851 slip surfaces.

3.3. Geometry and Material Properties

Figure 3.1: Geometry Setup in Slide

Table 3.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Soil #1	0.0	38.0	19.5
Soil #2	5.3	23.0	19.5
Soil #3	7.2	20.0	19.5

Geotechnical tools, inspired by you.

Table 3.2

Method	Factor of Safety
Bishop	1.405
Spencer	1.375
GLE	1.374
Janbu Corrected	1.357
Note: Reference	factor of safety = 1.65 [Giam

Mean Bishop FOS (16 samples) = 1.406

Mean FOS (31 samples) = 1.381

Figure 3.2: Solution, using the Bishop simplified method

Figure 3.3: Solution, using the Spencer method

Figure 3.4: Solution, using the GLE method

Figure 3.5: Solution, using the Janbu corrected method

Slope, (3) materials, seismic

4.1. Introduction

In 1988 a set of 5 basic slope stability problems, together with 5 variants, was distributed both in the Australian Geomechanics profession and overseas as part of a survey sponsored by ACADS (Giam & Donald (1989)). This is the ACADS 1(d) problem.

4.2. Problem Description

Problem #4 is a non-homogeneous, three-layer slope with material properties given in Table 4.1 and geometry as shown in Figure 4.1. This problem is identical to #3, but with a horizontal seismically induced acceleration of 0.15g included in the analysis. The factor of safety and its corresponding critical circular failure surface is calculated.

4.3. Geometry and Material Properties

Figure 4.1: Geometry Setup in **Slide**

Table 4.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Soil #1	0.0	38.0	19.5
Soil #2	5.3	23.0	19.5
Soil #3	7.2	20.0	19.5

Table 4.2

Method	Factor of Safety
Bishop	1.016
Spencer	0.991
GLE	0.989
Janbu Corrected	0.965
Noto: Deference	factor of actoby -1.00

Note: Reference factor of safety = 1.00 [Giam]

Mean FOS (15 samples) = 0.973

Figure 4.2: Solution, using the Bishop simplified method

Figure 4.3: Solution, using the Spencer method

Figure 4.4: Solution, using the GLE method

Figure 4.5: Solution, using the Janbu corrected method

Dam, (4) materials

5.1. Introduction

In 1988 a set of 5 basic slope stability problems, together with 5 variants, was distributed both in the Australian Geomechanics profession and overseas as part of a survey sponsored by ACADS (Giam & Donald (1989)). This is the ACADS 2(a) problem.

5.2. Problem Description

Problem #5 is Talbingo Dam as shown in Figure 5.2. The material properties at the end of construction stage are given in Table 5.1, while the geometrical data are given in Table 5.2. The factor of safety and its corresponding critical circular failure surface is calculated.

5.3. Geometry and Material Properties

Figure 5.1: Point Identification

Figure 5.2: Geometry Setup in Slide

Table 5.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Rockfill	0	45	20.4
Transitions	0	45	20.4
Filter	0	45	20.4
Core	85	23	18.1

Pt.#	Xc (m)	Yc (m)	Pt.#	Xc (m)	Yc (m)	Pt.#	Xc (m)	Yc (m)
1	0	0	10	515	65.3	19	307.1	0
2	315.5	162	11	521.1	65.3	20	331.3	130.6
3	319.5	162	12	577.9	31.4	21	328.8	146.1
4	321.6	162	13	585.1	31.4	22	310.7	0
5	327.6	162	14	648	0	23	333.7	130.6
6	386.9	130.6	15	168.1	0	24	331.3	146.1
7	394.1	130.6	16	302.2	130.6	25	372.4	0
8	453.4	97.9	17	200.7	0	26	347	130.6
9	460.6	97.9	18	311.9	130.6			

Table 5.3

Method	Factor of Safety
Bishop	1.948
Spencer	1.948
GLE	1.948
Janbu Corrected	1.949
Note: Reference	factor of safety = 1.95 [Giam

Mean FOS (24 samples) = 2.0

Figure 5.3: Solution, using the Bishop simplified method

Note: the minimum safety factor surfaces in this case, correspond to shallow, translational slides parallel to the slope surface.

Figure 5.4: Solution, using the Spencer method

Figure 5.5: Solution, using the GLE method

Figure 5.6: Solution, using the Janbu corrected method

Dam, (4) materials, predefined slip surface

6.1. Introduction

In 1988, a set of 5 basic slope stability problems, together with 5 variants, was distributed both in the Australian Geomechanics profession and overseas as part of a survey sponsored by ACADS (Giam & Donald (1989)). This is the ACADS 2(b) problem.

6.2. Problem Description

Problem #6 is identical to verification problem #5, except a single circular slip surface of known center and radius, is analyzed. See problem #5 for material properties and boundary coordinates.

6.3. Geometry and Predefined Slip Surface

Figure 6.1: Point Identification

Figure 6.2: Geometry Setup in Slide

Table 6.1: Data for slip circle

Xc (m)	Yc (m)	Radius (m)	
100.3	291.0	278.8	
Note: Soil prop	perties in Proble	m #6 are the sar	ne as Problem #5

6.4. Results

Meth	od	Factor of Safety	
Bisho	р	2.208	
Spen	cer	2.292	
GLE		2.301	
Janbu	u Corrected	2.073	
Note:	Reference factor of safety = 2.29 [Giam]		
	Mean Bishop FOS (11 samples) = 2.204		
	Mean FOS (24 samples) = 2.239		

Table 6.2

Geotechnical tools, inspired by you.

Figure 6.3: Solution, using the Bishop simplified method

Figure 6.4: Solution, using the Spencer method

Figure 6.6: Solution, using the Janbu corrected method

Slope, (2) materials, weak layer

7.1. Introduction

In 1988 a set of 5 basic slope stability problems, together with 5 variants, was distributed both in the Australian Geomechanics profession and overseas as part of a survey sponsored by ACADS (Giam & Donald (1989)). This is the ACADS 3(a) problem.

7.2. Problem Description

This problem has material properties given in Table 7.1, and the geometry is shown in Figure 7.1. The water table is assumed to coincide with the base of the weak layer. The effect of negative pore water pressure above the water table is to be ignored (i.e. u=0 above water table). The effect of the tension crack is also to be ignored in this problem. The factor of safety and its corresponding critical non-circular failure surface is calculated.

Note: Values of 45, 65 and 135,155 degrees are used for the block search line projection angles. Line should be in the middle of the seam.

7.3. Geometry and Material Properties

Figure 7.1: Geometry Setup in Slide

Table 7.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Soil #1	28.5	20.0	18.84
Soil #2	0	10.0	18.84

Table 7.2

Method	Factor of Safety
Bishop	1.258
Spencer	1.246
GLE	1.275
Janbu Corrected	1.258

Note: Reference factor of safety = 1.24 – 1.27 [Giam]

Mean Non-circular FOS (19 samples) = 1.293

Figure 7.2: Solution, using the Spencer method

Figure 7.4: Solution, using the Janbu corrected method

Slope, (2) materials, weak layer, predefined slip surface

8.1. Introduction

In 1988 a set of 5 basic slope stability problems, together with 5 variants, was distributed both in the Australian Geomechanics profession and overseas as part of a survey sponsored by ACADS (Giam & Donald (1989)). This is the ACADS 3(b) problem.

8.2. Problem Description

Problem #8 is identical to verification problem #7, except that a single non-circular slip surface of known coordinates is analyzed.

8.3. Geometry and Material Properties

Figure 8.1: Geometry Setup in Slide

Table 8.1: Material Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Soil #1	28.5	20.0	18.84
Soil #2	0	10.0	18.84

Table 8.2: Failure Surface Coordinates

X (m)	Y (m)
41.85	27.75
44.00	26.50
63.50	27.00
73.31	40.00

8.4. Results

Method	Factor of Safety
Spencer	1.277
GLE	1.262
Janbu Corrected	1.294
Note: Reference	factor of safety = 1.34

Mean FOS (30 samples) = 1.29

Slope, (2) materials, weak layer, water table, distributed load

9.1. Introduction

In 1988 a set of 5 basic slope stability problems, together with 5 variants, was distributed both in the Australian Geomechanics profession and overseas as part of a survey sponsored by ACADS (Giam & Donald (1989)). This is the ACADS 4 problem.

9.2. Problem Description

Problem #9 is shown in Figure 9.1. The soil properties, external loadings and piezometric surface are shown in Table 9.1, Table 9.2 and Table 9.3 respectively. The effect of a tension crack is to be ignored. The noncircular critical slip surface and corresponding factor of safety is calculated.

A block search for the critical non-circular failure surface was carried out by defining a block search polyline object within the weak layer, and variable projection angles from the weak layer to the slope surface. A total of 5000 random surfaces were generated by the search. The results are compared with optimization results.

9.3. Geometry and Material Properties

Table 9.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Soil #1	28.5	20.0	18.84
Soil #2	0	10.0	18.84

Table 9.2: External Loadings

Xc (m)	Yc (m)	Normal Stress (kN/m ²)
23.00	27.75	20.00
43.00	27.75	20.00
70.00	40.00	20.00
80.00	40.00	40.00

Table 9.3: Data for Piezometric surface

Pt.#	Xc (m)	Yc (m)
1	20.0	27.75
2	43.0	27.75
3	49.0	29.8
4	60.0	34.0
5	66.0	35.8
6	74.0	37.6
7	80.0	38.4
8	84.0	38.4

No optimization

Table 9.4

Method	Factor of Safety
Spencer	0.760
GLE	0.720
Janbu Corrected	0.734

Note: Reference factor of safety = 0.78 [Giam]

Mean Non-circular FOS (20 samples) = 0.808

Reference GLE Factor of Safety = 0.6878 [Slope 2000]

Figure 9.2: Solution, using the Spencer method

Meth	od	Factor of Safety			
Spen	cer	0.707			
GLE		0.683			
Janbu	u Corrected	0.699			
Note:	Reference factor of safety = 0.78 [Giam]				
	Mean Non-circular FOS (20 samples) = 0.808				
	Reference	GLE Factor of Safety	= 0.6878 [Slope 2000]		

Table 9.5: Block search with optimization

Slope, homogenous, pore pressure grid, ponded water

10.1. Introduction

In 1988 a set of 5 basic slope stability problems, together with 5 variants, was distributed both in the Australian Geomechanics profession and overseas as part of a survey sponsored by ACADS (Giam & Donald (1989)). This is the ACADS 5 problem.

10.2. Problem Description

Problem #10 is shown in Figure 10.1. The soil properties are given in Table 10.1. This slope has been excavated at a slope of 1:2 (β =26.56°) below an initially horizontal ground surface. The position of the critical slip surface and the corresponding factor of safety are required for the long-term condition, i.e. after the ground water conditions have stabilized. Pore water pressure may be derived from the given boundary conditions or from the approximate flow net provided in Figure 10.2. If information is required beyond the geometrical limits of Figure 10.2, the flow net may be extended by the user. Grid interpolation is done with TIN triangulation. The critical slip surface (circular) and the corresponding factor of safety is calculated.

10.3. Geometry and Material Properties

Note: Grid used to draw waterline (which comes from Figure 10.2) is identical to the data used in tutorial 5 (tutorial5.sli). The data can be imported from *tutorial5.sli* or *verification#10.sli*.

Figure 10.2: Approximate Flow Net

Table 10.1: Soil Properties

c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
11.0	28.0	20.00

10.4. Results

Table 10.2

Meth	od	Factor of Safety	
Bishc	р	1.498	
Spen	cer	1.500	
GLE		1.500	
Janbi	u Corrected	1.457	
Note:	ote: Reference factor of safety = 1.53 [G		
	Mean FOS	(23 samples) = 1.464	ł

Figure 10.3: Solution, using the Bishop simplified method

Embankment, (2) materials, pore pressure grid

11.1. Introduction

This problem is an analysis of the Saint-Alban embankment (in Quebec) which was built and induced to failure for testing and research purposes in 1972 (Pilot et.al, 1982).

11.2. Problem Description

Problem #11 is shown in Figure 11.1. The material properties are given in Table 11.1. The position of the critical slip surface and the corresponding factor of safety are required. Pore water pressures were derived from the given equal pore pressure lines on Figure 11.1., using the Thin-Plate Spline interpolation method.

11.3. Geometry and Material Properties

Table 11.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Embankment	0	44.0	18.8
Clay Foundation	2	28.0	16.68

Table 11.2

Method	Factor of Safety
Bishop	1.037
Spencer	1.065
GLE	1.059
Janbu Corrected	1.077

Note: Reference factor of safety = 1.04 [Pilot]

Figure 11.2: Solution, using the Bishop simplified method

Figure 11.3: Solution, using the Spencer method

Figure 11.5: Solution, using the Janbu corrected method

Embankment, (4) materials, tension crack, pore pressure grid

12.1. Introduction

This problem is an analysis of the Lanester embankment (in France) which was built and induced to failure for testing and research purposes in 1969 (Pilot et.al, 1982).

12.2. Problem Description

Problem #12 is shown in Figure 12.1. The material properties are given in Table 12.1. The entire embankment is assumed to represent a dry tension crack zone. The position of the critical slip surface and the corresponding factor of safety is calculated. Pore water pressures were derived from the data in Table 12.2 using the Thin-Plate Spline interpolation method.

Note: 30 slices used.

12.3. Geometry and Material Properties

Note: Tension crack depth (hatched region in the diagram) is 4 m

Table	12.1:	Soil	Properties
-------	-------	------	------------

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Embankment	30	31	18.2
Soft Clay	4	37	14
Silty Clay	7.5	33	13.2
Sandy Clay	8.5	35	13.7

Table 12.2: Water Pressure Points

Pt.#	Xc (m)	Yc (m)	u (kPa)	Pt.#	Xc (m)	Yc (m)	u (kPa)	Pt.#	Xc (m)	Yc (m)	u (kPa)
1	26.5	9	20	9	16	8.5	60	17	31.5	3	80
2	31.5	8.5	20	10	21	8.2	60	18	10.5	6	100
3	10.5	9.3	40	11	26.5	6	60	19	16	5	100
4	16	9.3	40	12	31.5	5	60	20	21	4.5	100
5	21	9.3	40	13	10.5	7.5	80	21	26	2.5	100
6	26.5	7.5	40	14	16	7.5	80	22	31.5	1.3	100
7	31.5	6.8	40	15	21	5.6	80	23			
8	10.5	8.5	60	16	26	4.2	80	24			

Table 12.3

Method	Factor of Safety
Bishop	1.069
Spencer	1.079
GLE	1.077
Janbu Corrected	1.138

Note: Author's factor of safety (by Bishop method) = 1.13 [Pilot]

Figure 12.2: Solution, using the Bishop simplified method

Embankment, (3) materials, pore pressure grid

13.1. Introduction

This problem is an analysis of the Cubzac-les-Ponts embankment (in France) which was built and induced to failure for testing and research purposes in 1974 (Pilot et.al, 1982).

13.2. Problem Description

Problem #13 is shown in Figure 13.1. The material properties are given in Table 13.1. The position of the critical slip surface and the corresponding factor of safety is required. Pore water pressures were derived from the data in Table 13.2 using the Thin Plate Spline interpolation method.

13.3. Geometry and Material Properties

Figure 13.1: Geometry Setup in Slide

Table 13.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Embankment	0	35	21.2
Upper Clay	10	24	15.5
Lower Clay	10	28.4	15.5

Pt.#	Xc (m)	Yc (m)	u (kPa)	Pt.#	Xc (m)	Yc (m)	u (kPa)	Pt.#	Xc (m)	Yc (m)	u (kPa)
1	11.5	4.5	125	16	16	7.2	25	31	24.5	7.2	25
2	11.5	5.3	100	17	18	2.3	125	32	27	3.1	100
3	11.5	6.8	50	18	18	5.3	100	33	27	6.1	50
4	11.5	7.2	25	19	18	6.8	50	34	27	7.2	25
5	12.75	3.35	125	20	18	7.2	25	35	29.75	1.55	100
6	12.75	5.2	100	21	20	1.15	125	36	29.75	5.55	50
7	12.75	6.8	50	22	20	4.85	100	37	29.75	7.2	25
8	12.75	7.2	25	23	20	6.8	50	38	32.5	0	100
9	14	2.3	125	24	20	7.2	25	39	32.5	5	50
10	14	5.1	100	25	22	0	125	40	32.5	7.2	25
11	14	6.8	50	26	22	4.4	100	41	37.25	4.7	50
12	14	7.2	25	27	22	6.8	50	42	37.25	6.85	25
13	16	2.3	125	28	22	7.2	25	43	42	4.4	50
14	16	5.2	100	29	24.5	3.75	100	44	42	6.5	25
15	16	6.8	50	30	24.5	6.45	50	45			

Table 13.2: Water Pressure Points

13.4. Results

Table 13.3

Method	Factor of Safety
Bishop	1.314
Spencer	1.334
GLE	1.336
Janbu Corrected	1.306

Note: Author's factor of safety (by Bishop method) = 1.24 [Pilot]

Figure 13.4: Solution, using the GLE method

Slope, homogenous

14.1. Introduction

This model is taken from Arai and Tagyo (1985) example#1 and consists of a simple slope of homogeneous soil with zero pore pressure.

14.2. Problem Description

Verification problem #14 is shown in Figure 14.1. The soil properties are given in Table 14.1. The position of the critical slip surface and the corresponding factor of safety is calculated for both a circular and noncircular slip surface. There are no pore pressures in this problem.

14.3. Geometry and Material Properties

Method	Factor of Safety
Bishop	1.409
Spencer	1.319
GLE	1.414
Janbu Corrected	1.407

Table 14.2: Circular – using auto-refine search

Note: Arai and Tagyo (1985) Bishops Simplified Factor of Safety = 1.451

Figure 14.2: Solution, using the Bishop simplified method
Method	Factor of Safety
Janbu Simplified	1.253
Janbu Corrected	1.346
Spencer	1.386

Table 14.3: Noncircular – using Path search with Optimization

Note: Arai and Tagyo (1985) Janbu Simplified Factor of Safety = 1.265

Arai and Tagyo (1985) Janbu Corrected Factor of Safety = 1.357

Figure 14.3: Noncircular failure surface, using the janbu simplified method

Slope, (3) materials, weak layer

15.1. Introduction

This model is taken from Arai and Tagyo (1985) example#2 and consists of a layered slope where a layer of low resistance is interposed between two layers of higher strength. A number of other authors have also analyzed this problem, notably Kim et al. (2002), Malkawi et al. (2001), and Greco (1996).

15.2. Problem Description

Verification problem #15 is shown in Figure 15.1. The soil properties are given in Table 15.1. The position of the critical slip surface and the corresponding factor of safety are calculated for both a circular and noncircular slip surface. There are no pore pressures in this problem.

15.3. Geometry and Material Properties

Figure 15.1: Geometry Setup in Slide

Table 15.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Upper Layer	29.4	12	18.82
Middle Layer	9.8	5	18.82
Lower Layer	294	40	18.82

Geotechnical tools, inspired by you.

Method	Factor of Safety
Bishop	0.420
Spencer	0.409
GLE	0.437
Janbu Corrected	0.423

Table 15.2: Circular – using auto refine search

Note: Arai and Tagyo (1985) Bishops Simplified factor of safety = 0.417

Kim et al. (2002) Bishops Simplified factor of safety = 0.43

Table 15.3: Noncircula	ar – using Random	search with O	ptimization ((1000 surfaces)
	0			\ /

Method	Factor of Safety
Janbu Simplified	0.396
Janbu Corrected	0.418
Spencer	0.414

Note: Greco (1996) Spencer method using monte carlo searching = 0.39 Kim et al. (2002) Spencer method using random search = 0.44 Kim et al. (2002) Spencersmethod using pattern search = 0.39 Arai and Tagyo (1985) Janbu Simplified Factor of Safety = 0.405 Arai and Tagyo (1985) Janbu Corrected Factor of Safety = 0.430

Slope, homogenous, water table

16.1. Introduction

This model is taken from Arai and Tagyo (1985) example #3, and it consists of a simple slope of homogeneous soil with pore pressure.

16.2. Problem Description

Verification problem #16 is shown in Figure 16.1. The material properties are given in Table 16.1. The location for the water table is shown in Figure 16.1. The position of the critical slip surface and the corresponding factor of safety is calculated for both a circular and noncircular slip surface. Pore pressures are calculated assuming hydrostatic conditions. The pore pressure at any point below the water table is calculated by measuring the vertical distance to the water table and multiplying by the unit weight of water. There is zero pore pressure above the water table.

16.3. Geometry and Material Properties

Soil

15

18.82

41.65

Method	Factor of Safety
Bishop	1.118
Janbu Simplified	1.046
Janbu Corrected	1.131
Spencer	1.118

Table 16.2: Circular – using auto refine search

Note: Arai and Tagyo (1985) Bishops Simplified factor of safety = 1.138

Table 16.3: Noncir	cular – using Random	search with Mo	onte-Carlo optimization

Method	Factor of Safety
Janbu Simplified	0.968
Janbu Corrected	1.050
Spencer	1.094

Note: Arai and Tagyo (1985) Janbu Simplified Factor of Safety = 0.995

Arai and Tagyo (1985) Janbu Corrected Factor of Safety = 1.071

Slope, homogenous

17.1. Introduction

This model is taken from Yamagami and Ueta (1988), and it consists of a simple slope of homogeneous soil with zero pore pressure. Greco (1996) has also analyzed this slope.

17.2. Problem Description

Verification problem #17 is shown in Figure 17.1. The material properties are given in Table 17.1. The position of the critical slip surface and the corresponding factor of safety is calculated for both a circular and noncircular slip surface. There are no pore pressures in this problem.

17.3. Geometry and Material Properties

Table 17.2: Circular – using auto refine search

Figure 17.2: Circular failure surface, using the Bishop simplified method

Table 16.3: Noncircular – using Random search with Monte-Carlo optimization

Method	Factor of Safety
Janbu Simplified	1.178
Spencer	1.325

Note: Yamagami and Ueta (1988) Janbu Simplified Factor of Safety = 1.185

Yamagami and Ueta (1988) Spencer Factor of Safety = 1.339

Greco (1996) Spencer Factor of Safety = 1.33

Slope, homogenous slope, ru pore pressure

18.1. Introduction

This model is taken from Baker (1980) and was originally published by Spencer (1969). It consists of a simple slope of homogeneous soil with pore pressure.

18.2. Problem Description

Verification problem #18 is shown in Figure 18.1. The material properties are given in Table 18.1. The position of the critical slip surface and the corresponding factor of safety is calculated for a noncircular slip surface. The pore pressure within the slope is modeled using a Ru value of 0.5.

18.3. Geometry and Material Properties

Table 18.2: Noncircular - using Random search with Monte-Carlo optimization

Figure 18.2: Noncircular failure surface, using the Spencer method

Slope, (4) materials

19.1. Introduction

This model is taken from Greco (1996) example #4, and it was originally published by Yamagami and Ueta (1988). It consists of a layered slope without pore pressure.

19.2. Problem Description

Verification problem #19 is shown in Figure 19.1. The material properties are given in Table 19.1. The position of the critical slip surface and the corresponding factor of safety are calculated for a noncircular slip surface.

19.3. Geometry and Material Properties

Figure 19.1: Geometry Setup in Slide

Table 19.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Upper Layer	49	29	20.38
Layer 2	0	30	17.64
Layer 3	7.84	20	20.38
Bottom Layer	0	30	17.64

Table 18.2: Noncircular - using Random search with Monte-Carlo optimization, convex surfaces only

Figure 19.2: Noncircular failure surface, using the Spencer method

Slope, (4) materials, weak layer, water table

20.1. Introduction

This model is taken from Greco (1996) example #5, and it was originally published by Chen and Shao (1988). It consists of a layered slope with pore pressure and a weak seam.

20.2. Problem Description

Verification problem #20 is shown in Figure 20.1. The material properties are given in Table 20.1. The position of the critical slip surface and the corresponding factor of safety is calculated for a circular and noncircular slip surface. The weak seam is modeled as a 0.5m thick material layer at the base of the model.

20.3. Geometry and Material Properties

Figure 20.1: Geometry Setup in Slide

Table	20.1:	Soil	Properties
-------	-------	------	------------

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Layer 1	9.8	35	20
Layer 2	58.8	25	19
Layer 3	19.8	30	21.5
Layer 4	9.8	16	21.5

Geotechnical tools, inspired by you.

Method	Factor of Safety
Bishop	1.087
Spencer	1.093

Table 20.2: Circular – using grid search and a focus object at the toe (40x40 grid)

Note: Greco (1996) Spencer factor of safety for nearly circular local critical surface = 1.08

Figure 20.2: Circular failure surface, using the Bishop simplified method

Figure 20.3: Circular failure surface using the Spencer method

Met	hod	Factor of Safety
Spe	ncer	1.010

Note: Chen and Shao (1988) Spencer Factor of Safety = 1.01 - 1.03

Greco (1996) Spencer Factor of Safety = 0.973 - 1.1

Figure 20.4: Noncircular failure surface using the Spencer method and block search

Slope, homogenous, ru pore pressure

21.1. Introduction

This model is taken from Fredlund and Krahn (1977). It consists of a homogeneous slope with three separate water conditions, 1) dry, 2) Ru defined pore pressures, 3) pore pressures defined using a water table. The model is done in imperial units to be consistent with the original paper. Quite a few other authors, such as Baker (1980), Greco (1996), and Malkawi (2001) have also analyzed this slope.

21.2. Problem Description

Verification problem #21 is shown in Figure 21.1. The material properties are given in Table 21.1. The position of the circular slip surface is given in Fredlund and Krahn as being xc=120, yc=90, radius=80. The GLE/Discrete Morgenstern and Price method was run with the half sine interslice force function.

21.3. Geometry and Material Properties

	c´ (psf)	φ´ (deg.)	γ (pcf)	Ru (case2)
Soil	600	20	120	0.25

Casa	Ordinary	Ordinary	Bishop	Bishop	Spencer	Spencer	M-P	M-P
Case	(F&K)	(Slide)	(F&K)	(Slide)	(F&K)	(Slide)	(F&K)	(Slide)
1-Dry	1.928	1.931	2.080	2.079	2.073	2.075	2.076	2.075
2-Ru	1.607	1.687	1.766	1.763	1.761	1.760	1.764	1.760
3-WT	1.693	1.716	1.834	1.833	1.830	1.831	1.832	1.831

Table 21.2

Slope, (2) materials, weak layer, ru pore pressure

22.1. Introduction

This model is taken from Fredlund and Krahn (1977). It consists of a slope with a weak layer and three separate water conditions, 1) dry, 2) Ru defined pore pressures, 3) pore pressures defined using a water table. The model is done in imperial units to be consistent with the original paper. Quite a few other authors, such as Kim and Salgado (2002), Baker (1980), and Zhu, Lee, and Jiang (2003) have also analyzed this slope. Unfortunately, the location of the weak layer is slightly different in all the above references. Since the results are quite sensitive to this location, results routinely vary in the second decimal place.

22.2. Problem Description

Verification problem #22 is shown in Figure 22.1. The material properties are given in Table 22.1. The position of the composite circular slip surface is given in Fredlund and Krahn as being xc=120, yc=90, radius=80. The GLE/Discrete Morgenstern and Price method was run with the half sine interslice force function.

22.3. Geometry and Material Properties

Table 22.1: Soil Properties

	c´ (psf)	φ´ (deg.)	γ (pcf)	Ru (case2)
Upper soil	600	20	120	0.25
Weak layer	0	10	120	0.25

22.4. Results

Table 22.2: Composite Circular - Slide

Method	Case 1: Dry	Case 2: Ru	Case 3: WT
Ordinary	1.300	1.121	1.188
Bishop Simplified	1.382	1.124	1.243
Spencer	1.382	1.124	1.244
GLE/Morgenstern-Price	1.372	1.114	1.237

Table 22.3: Composite Circular – Fredlund & Krahn

Method	Case 1: Dry	Case 2: Ru	Case 3: WT
Ordinary	1.288	1.029	1.171
Bishop Simplified	1.377	1.124	1.248
Spencer	1.373	1.118	1.245
GLE/Morgenstern-Price	1.370	1.118	1.245

Table 22.4: Composite Circular – Zhu, Lee, and Jiang

Method	Case 1: Dry	Case 2: Ru	Case 3: WT
Ordinary	1.300	1.038	1.192
Bishop Simplified	1.380	1.118	1.260
Spencer	1.381	1.119	1.261
GLE/Morgenstern-Price	1.371	1.109	1.254

Slope, (3) materials

23.1. Introduction

This model is taken from Low (1989). It consists of a slope overlaying two soil layers.

23.2. Problem Description

Verification problem #23 is shown in Figure 23.1. The material properties are given in Table 23.1. The middle and lower soils have constant and linearly varying undrained shear strength. The position of the critical slip surface and the corresponding factor of safety is calculated for a circular slip surface using both the bishop and ordinary/fellenius methods.

23.3. Geometry and Material Properties

Figure 23.1: Geometry Setup in Slide

Table 23.1: Soil Properties

	Cu _{top} (kN/m ²)	Cu _{bottom} (kN/m ²)	φ (deg.)	γ (kN/m³)
Upper Soil	95	95	15	20
Middle Soil	15	15	0	20
Lower Soil	15	30	0	20

Geotechnical tools, inspired by you.

Table 23.2

Method	Factor of Safety	
Ordinary	1.370	
Bishop	1.192	
Note: Low (1	989) Ordinary factor of safety=1.3	6

Low (1989) Bishop factor of safety=1.14

Kim (2002) factor of safety=1.17

Figure 23.2: Circular failure surface using the Ordinary/Fellenius method

Figure 23.3: Circular failure surface using the Bishop simplified method

Slope, (3) materials

24.1. Introduction

This model is taken from Low (1989). It consists of a slope with three layers with different undrained shear strengths.

24.2. Problem Description

Verification problem #24 is shown in Figure 24.1. The soil properties are given in Table 24.1. The position of the critical slip surface and the corresponding factor of safety is calculated for a circular slip surface, using both the bishop and ordinary/fellenius methods.

24.3. Geometry and Material Properties

Figure 24.1: Geometry Setup in Slide

Table 24.1: Soil Properties

		γ (KIWIII)
Upper Layer	30	18
Middle Layer	20	18
Bottom Layer	150	18

 $c' (kN/m^2) \sim (kN/m^3)$

Table 24.2

Method	Factor of Safety
Ordinary	1.439
Bishop	1.439

Note: Low (1989) Ordinary factor of safety = 1.44

Low (1989) Bishop factor of safety = 1.44

Figure 24.2: Circular failure surface, using the Bishop simplified method

Bearing capacity test slope, homogenous, distributed load, predefined slip surface

25.1. Introduction

This model is taken from Chen and Shao (1988). It analyses the classical problem in the theory of plasticity of a weightless, frictionless slope subjected to a vertical load. This problem was first solved by Prandtl (1921)

25.2. Problem Description

Verification problem #25 is shown in Figure 25.2. The slope geometry, equation for the critical load, and position of the critical slip surface is defined by Prandtl and they are shown in Figure 25.1. The critical failure surface has a theoretical factor of safety of 1.0. The analysis uses the input data of Chen and Shao and is shown in Table 25.1. The geometry, shown in Figure 25.2, is generated assuming a 10m high slope with a slope angle of 60 degrees. The critical uniformly distributed load for failure is calculated to be 149.31 kN/m, with a length equal to the slope height, 10m.

Note: The GLE/discrete Morgenstern-Price results used the following custom inter-slice force function. This function was chosen to approximate the theoretical force distribution shown in Chen and Shao.

x	F(x)
0	1
0.3	1
0.6	0
1.0	0

Table 25.1: Inter-slice force function

25.3. Geometry and Material Properties

Figure 25.1: Closed-form solution (from Chen and Shao (1988))

Table 25.2

Method	Factor of Safety	
Spencer	1.051	
GLE/M-P	1.009	

Note: Chen and Shao (1988) Spencer factor of safety = 1.05

Figure 25.3: Non-Circular failure surface, by using the Spencer method

Bearing capacity test prism, homogenous, distributed load, predefined slip surface

26.1. Introduction

This verification test models the well-known Prandtl solution of bearing capacity: $q_c = 2C(1+\pi/2)$

26.2. Problem Description

Verification problem #26 is shown in Figure 26.1. The soil properties are given in Table 26.1. With cohesion of 20kPa, q_c is calculated to be 102.83 kN/m. A uniformly distributed load of 102.83kN/m was applied over a width of 10m as shown in the figure below. The theoretical noncircular critical failure surface was used.

26.3. Geometry and Material Properties

Table 25.2

Method	Factor of Safety	
Spencer	0.940	

Note: Theoretical factor of safety = 1.0

Figure 26.2: Non-Circular failure surface, by using the Spencer method

Slope, (2) materials, tension crack, water table (auto Hu)

27.1. Introduction

This model was taken from Malkawi, Hassan and Sarma (2001) who took it from the XSTABL version 5 reference manual (Sharma 1996). It consists of a 2 material slope overlaying undulating bedrock. There is a water table. Soil 1 has different moist and saturated unit weight. Soil 2 has zero strength. The model is done with imperial units (feet, psf, pcf) to be consistent with the original XSTABL analysis.

27.2. Problem Description

Verification problem #27 is shown in Figure 27.1. The material properties are given in Table 27.1. One of the interesting features of this model is the different unit weights of soil 1 below and above the water table. Another factor is the method of pore-pressure calculation. The pore pressures are calculated using a correction for the inclination of the phreatic surface and steady state seepage. Both *Slide* and XSTABL allow you to apply this correction. The pore pressures tend to be smaller than if a static head of water is assumed (measured straight up to the phreatic surface from the center of the base of a slice). The first analysis uses a single slip surface with $x_c = 59.52$, $y_c = 219.21$, and radius=157.68. The second analysis does a search with the restriction that the circular surface must exit the slope between 38 <= x <= 70 at the toe and 120 <= x <= 180 at the crest of the slope. The third analysis uses the same single slip surface as the first analysis but replaces soil 2 with an 11 foot deep tension crack zone instead of a zero strength material. The fourth analysis takes the third analysis and adds 6 feet of water in the tension crack.

27.3. Geometry and Material Properties

Table 27.1: Soil Properties

	c (psf)	φ (deg.)	γ moist (pcf)	γ saturated (pcf)
Soil 1	500	14	116.4	124.2
Soil 2	0	0	116.4	116.4

27.4. Results

Table 27.2: Circular – single center @ xc = 59.52, yc = 219.21, radius =157.68

Method	SLIDE	XSTABL
Bishop	1.396	1.397
Janbu Corrected	1.391	1.392
Corp. Engineers 1	1.411	1.413
Corp. Engineers 2	1.414	1.416
Lowe & Karafiath	1.411	1.413
Spencer	1.402	1.403
GLE/M-P (half-sine)	1.398	1.399

Table 27.3: Circular – auto search

Method	SLIDE
Bishop	1.376
Janbu Corrected	1.345
Corp. Engineers 1	1.394
Corp. Engineers 2	1.396
Lowe & Karafiath	1.392
Spencer	1.382
GLE/M-P (half-sine)	1.378

Note: Malkawi, Hassan and Sarma (2001), in comparing with XSTABL, quote a minimum Janbu factor of safety of 1.255 with the center and radius equal to x,y,r=62.63,160.96,101.02. However it is questionable whether this is the corrected Janbu or the uncorrected. It is also questionable whether they used the correct pore pressure distribution. If in *Slide*, you use a static pore pressure distribution and uncorrected simplified Janbu, you get a factor of safety of 1.254 (x,y,r=62.53,161.79,101.78) which is almost exactly what Malkawi, Hassan and Sarma calculated.

Table 27.4: Circular – single center @ xc = 59.52, yc = 219.21, radius = 157.68

An 11-foot tension crack is added to the analysis, replacing soil 2. The tension crack is dry. The Spencer results are shown in Figure 27.2

Method	SLIDE	XSTABL
Bishop	1.532	1.536
Janbu Corrected	1.544	1.569
Corp. Engineers 1	1.555	1.559
Corp. Engineers 2	1.562	1.566
Lowe & Karafiath	1.545	1.549
Spencer	1.532	1.535
GLE/M-P (half-sine)	1.532	1.535

Figure 27.2: Results for the Spencer method

Table 27.4: Circular – single center @ xc = 59.52, yc = 219.21, radius = 157.68

Method	SLIDE	XSTABL
Bishop	1.511	1.509
Janbu Corrected	1.520	1.543
Corp. Engineers 1	1.532	1.536
Corp. Engineers 2	1.538	1.542
Lowe & Karafiath	1.522	1.526
Spencer	1.510	1.513
GLE/M-P (half-sine)	1.510	1.513

The 11-foot tension crack added in analysis 3 is now partially filled with 6 feet of water
Excavated slope and embankment, (3) materials and (5) materials, probabilistic analysis

28.1. Introduction

The set of models in this verification problem was taken from Chowdhury and Xu (1995). The geometry for the first four examples comes from the well-known Congress St. Cut model, first analyzed by Ireland (1954). All the examples in this verification evaluate the probability of failure of slopes given the means and standard deviations of some specified input parameters.

28.2. Problem Description

The geometry of Example 1 to 4 in Verification #28 is shown in Figure 28.1, and the geometry of Example 5 is shown in Figure 28.2. In each example two sets of circular slip surfaces are considered. The first set consists of potential failure surfaces tangential to the lower boundary of the Clay 2 layer, while the second considers slip surfaces tangential to the lower boundary of Clay 3. Both clays have constant undrained shear strength.

Chowdury and Xu do not consider the strength of the upper sand layer in Examples 1 to 4. They use the Bishop simplified method for all their analyses.

In their paper, Chowdury and Xu do not state the unit weight of the slope materials in Example 1 to 4. They also do not provide information on the geometry (radii and coordinates of the centers) of the critical surfaces. As a result, for each of these examples, we use material unit weights that enable us to obtain deterministic factor of safety values similar to those indicated in the paper. We then compare probability of failure values determined from *Slide* with the Chowdhury and Xu values.

In Example 5, Chowdhury and Xu examine the stability of an embankment on a soft clay foundation. Again they consider two sets of circular slip surfaces; one set is tangent to the interface of the embankment and the foundation, while the other is tangent to the lower boundary of the soft clay foundation.

The Chowdhury and Xu's probabilities of failure quoted in this verification problem are calculated using a commonly used definition of reliability index, and an assumption that factors of safety are normally distributed. **Slide** uses Monte Carlo analysis, with a minimum of five thousand samples to estimate probabilities of failure. The random variables in all *Slide* analyses were assumed to come from normal distributions.

28.3. Geometry

Figure 28.2: Geometry for Example 5 (an embankment on a soft clay foundation)

28.4. Results

Table 28.1: Example 1

Soil Layer

	Clay 1	Clay 2	Clay 3
	C1	C ₂	C ₃
Mean (kPa)	55	43	56
Stdv. (kPa)	20.4	8.2	13.2
γ^* (kN/m³)	21	22	22

Note: *The unit weight γ was not stated in the paper so we selected values that give us deterministic factors of safety close to those in the paper.

*The three clay layers are assumed frictionless.

Table 28.2: Results for Example 1

Chowdhury & Xu

Slide

Failure Mode (Layer)	Factor of Safety (Bishop simplified)	Probability of Failure	Factor of Safety (Bishop simplified)	Probability of Failure
Layer 2 (Clay 1)	1.128	0.26592	1.128	0.2461
Layer 3 (Clay 2)	1.109	0.27389	1.109	0.2789

Figure 28.3: Critical slip circle tangential to lower boundary of clay layer 2

Figure 28.4: Critical slip circle tangential to lower boundary of clay layer 3

Table 28.3: Example 2

Soil	Laver
501	Layer

	Clay 1	Clay 2	Clay 3
	C1	C 2	C 3
Mean (kPa)	68.1	39.3	50.8
Stdv. (kPa)	6.6	1.4	1.5
γ^* (kN/m ³)	21	22	22

Note: *The unit weight γ was not stated in the paper so we selected values that give us deterministic factors of safety close to those in the paper.

*The three clay layers are assumed frictionless.

Table 28.4: Results for Example 2

	Chowdhury & Xu		Slide		
Failure Mode (Layer)	Factor of Safety (Bishop simplified)	Probability of Failure	Factor of Safety (Bishop simplified)	Probability of Failure	
Layer 2 (Clay 1)	1.1096	0.0048	1.108	0.0037	
Layer 3 (Clay 2)	1.0639	0.01305	1.058	0.0175	

Figure 28.5: Critical slip circle tangential to lower boundary of clay layer

Figure 28.6: Critical slip circle tangential to lower boundary of clay layer 3

Table 28.5: Example 3

Soil	Laver
501	Layer

	Clay 1	Clay 2	Clay 3
	C1	C2	C 3
Mean (kPa)	136	80	102
Stdv. (kPa)	50	15	24
γ^* (kN/m ³)	21	22	22

Note: *The unit weight γ was not stated in the paper so we selected values that give us deterministic factors of safety close to those in the paper.

*The three clay layers are assumed frictionless.

Table 28.6: Results for Example 3

	Chowdhury & Xu		Slide		
Failure Mode (Layer)	Factor of Safety (Bishop simplified)	Probability of Failure	Factor of Safety (Bishop simplified)	Probability of Failure	
Layer 2 (Clay 1)	2.2343	0.01151	2.245	0.00044	
Layer 3 (Clay 2)	2.1396	0.00242	2.128	0.0007	

Figure 28.7: Critical slip circle tangential to lower boundary of clay layer 2

Figure 28.8: Critical slip circle tangential to lower boundary of clay layer 3

Table 28.7: Example 4

	Clay 1		Clay 2		Clay 3	
	C1		C2		C 3	
Mean	55	5	43	7	56	8
Stdv.	20.4	1	8.7	1.5	13.2	1.7
γ^* (kN/m ³)	17		22		22	

Note: *The unit weight γ was not stated in the paper so we selected values that give us deterministic factors of safety close to those in the paper.

*The three clay layers are assumed frictionless.

Table 28.8: Results for Example 4

	Chowdhury & Xu		Slide		
Failure Mode (Layer)	Factor of Safety (Bishop simplified)	Probability of Failure	Factor of Safety (Bishop simplified)	Probability of Failure	
Layer 2 (Clay 1)	1.4239	0.01559	1.422	0.0211	
Layer 3 (Clay 2)	1.5075	0.00468	1.503	0.0035	

Figure 28.9: Critical slip circle tangential to lower boundary of clay layer 2

Figure 28.10: Critical slip circle tangential to lower boundary of clay layer 3

Table 28.7: Example 5

	Layer 1		Layer 2	
	c₁ (kPa)	φ1 (°)	c ₂ (kPa)	φ2 (°)
Mean	10	12	40	0
Stdv.	2	3	8	0
γ^* (kN/m ³)	20		18	

Table 28.8: Results for Example 5

	Chowdhury & Xu		Slide		
Failure Mode (Layer)	Factor of Safety (Bishop simplified)	Probability of Failure	Factor of Safety (Bishop simplified)	Probability of Failure	
Layer 2 (Clay 1)	1.1625	0.20225	1.16	0.2117	
Layer 3 (Clay 2)	1.1479	0.19733	1.185	0.1992	

Figure 28.11: Critical slip circle tangential to interface of embankment and foundation

Figure 28.12: Critical slip circle tangential to lower boundary of soft foundation layer

Submerged slope, homogenous, probabilistic analysis, water table

29.1. Introduction

This model is taken from Duncan (2000). It looks at the failure of the 100 ft high underwater slope at the Lighter Aboard Ship (LASH) terminal at the Port of San Francisco.

29.2. Problem Description

Verification problem #29 is shown in Figure 29.1. All geometry and property values are determined using the figures and published data in Duncan (2000). The cohesion is taken to be 100 psf at an elevation of - 20 ft and increase linearly with depth at a rate of 9.8 psf/ft. A probabilistic analysis using the latin-hypercube simulation technique is performed using 10000 samples to compute the probability of failure and reliability index of the estimated failure surface defined in Duncan (2000). These values are determined using the Janbu, Spencer, and GLE methods.

29.3. Geometry and Material Properties

Figure 29.1: Geometry Setup in **Slide**

Table 29.1: Deterministic Soil Properties

	cohesion	Datum	Rate of change	Unit Weight
	(datum) (psf)	(ft)	(psf/ft)	(pcf)
San Francisco Bay Mud	100	-20	9.8	100

Table 29.2: Probabilistic Soil Properties

San Francisco Bay Mud	Standard deviation	Absolute Minimum	Absolute Maximum
Unit Weight	3.3	99.1	109.9
Rate of change	1.2	5.8	13.8

29.4. Results

Table 29.3

Method	Deterministic Factor of Safety	Probability of Failure (%)	Reliability Index (lognormal)
Janbu Simplified	1.127	18	1.086
Janbu Corrected	1.168	15	1.0
Spencer	1.157	14	1.1
GLE	1.160	13	1.2

Note: Duncan (2000) quotes a deterministic factor of safety of 1.17 and a probability of failure of 18%. The probability of failure is calculated using the Taylor series technique.

Figure 29.2: Noncircular failure surface, using the Spencer method

Reinforced embankment, (4) materials, tension crack, geosynthetic

30.1. Introduction

This model is taken from Borges and Cardoso (2002), their case 1 example. It looks at the stability of a geosynthetic-reinforced embankment on soft soil.

30.2. Problem Description

Verification problem #30 is shown in Figure 30.1. The sand embankment is modeled as a Mohr-Coulomb material while the foundation material is a soft clay with varying undrained shear strength. The geosynthetic is not anchored, has no adhesion, has a tensile strength of 200 kN/m, and frictional resistance against slip of 33.7 degrees. The reinforcement force is assumed to be parallel with the reinforcement. The Bishop simplified analysis method is used since this best simulates the moment based limit-equilibrium method the authors use. The reinforcement is modelled as a passive force since this corresponds to how the authors implement the reinforcement force in their limit-equilibrium implementation.

30.3. Geometry and Material Properties

Table 30.2

	Cu top (kN/m ²)	Cu bottom (kN/m ²)	γ (kN/m³)
Upper Clay	8.49	8.49	17
Middle Clay	8.49	4.725	17
Lower Clay	4.725	13.125	17

30.4. Results

Circle B (Borges)

1.74

	Table	30.3	
	Factor of Safety	Overturning Moment (kN/m/m)	Resisting Moment (kN/m/m)
Circle A (Slide)	1.69	633	1071
Circle A (Borges)	1.77	631	1115
Circle B (Slide)	1.66	523	868

Note: Both circle A and B have reverse curvature. Since **Slide** automatically creates a tension crack in the portion of the circle with reverse curvature, the shear strength contribution in this region is removed. This is most likely the reason for the smaller factors of safety in **Slide**.

521

907

Reinforced embankment, (5) materials, geosynthetic

31.1. Introduction

This model is taken from Borges and Cardoso (2002), their case 2 example. It looks at the stability of a geosynthetic-reinforced embankment on soft soil.

31.2. Problem Description

Verification problem #31 is shown in Figure 31.1. The sand embankment is modeled as a Mohr-Coulomb material while the foundation material is a soft clay with varying undrained shear strength. The geosynthetic is not anchored, and it has no adhesion but a tensile strength of 200 KN/m and a frictional resistance against slip of 33.7 degrees. The reinforcement force is assumed to be parallel with the reinforcement. The Bishop simplified analysis method is used since this best simulates the moment based limit-equilibrium method the authors use. The reinforcement is modeled as a passive force since this corresponds to how the authors implement the reinforcement force in their limit-equilibrium implementation.

31.3. Geometry and Material Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Embankment	0	35	20

Table 31.2

	Cu top (kN/m²)	Cu bottom (kN/m²)	γ (kN/m³)
Clay1	33	33	17
Clay2	16	16	17
Clay3	16	18.375	17
Clay4	18.375	55.125	17

31.4. Results

Table 31.3

	Factor of Safety (Bishop Simplified)
Circle A (Slide)	1.18
Circle A (Borges)	1.19
Circle B (Slide)	1.16
Circle B (Borges)	1.15

Geotechnical tools, inspired by you.

Reinforced embankment, (7) materials, geosynthetic

32.1. Introduction

This model is taken from Borges and Cardoso (2002), their case 3 example. It looks at the stability of a geosynthetic-reinforced embankment on soft soil.

32.2. Problem Description

Verification problem #32 is shown in Figure 32.1 and Figure 32.2 The sand embankment is modeled as a Mohr-Coulomb material while the foundation material is a soft clay with varying undrained shear strength. The geosynthetic has a tensile strength of 200 kN/m, and frictional resistance against slip of 30.96 degrees. The reinforcement force is assumed to be parallel with the reinforcement. The Bishop simplified analysis method is used since this best simulates the moment based limit-equilibrium method the authors use. The reinforcement is modeled as a passive force since this corresponds to how the authors implement the reinforcement force in their limit-equilibrium implementation. There are two embankment materials, the lower embankment material is from elevation 0 to 1 while the upper embankment material is from elevation 1 to either 7 (Case 1) or 8.75m (Case 2). The geosynthetic is at elevation 0.9, just inside the lower embankment material.

32.3. Geometry and Material Properties

Figure 32.2: Case 2 – Embankment Height = 8.75 m

Table 32.1: Embankment Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Upper Embankment	0	35	21.9
Lower Embankment	0	33	17.2

Table 32.2:	Soil	Properties
-------------	------	------------

	Cu (kN/m²)	γ (kN/m³)
Clay1	43	18
Clay2	31	16.6
Clay3	30	13.5
Clay4	32	17
Clay5	32	17.5

Geotechnical tools, inspired by you.

32.4. Results

	Factor of Safety	Overturning Moment (kN/m/m)	Resisting Moment (kN/m/m)
Circle A (Slide)	1.23	32,832	40,231
Circle A (Borges)	1.25	34,166	42,695
Circle B (Slide)	1.22	61,765	75,300
Circle B (Borges)	1.19	63,870	75,754

Table 32.3: Case 1 – Embankment Height = 7 m

Table 32.4: Case 2 – Embankment Height = 8.75 m

	Factor of Safety	Overturning Moment (kN/m/m)	Resisting Moment (kN/m/m)
Circle C (Slide)	0.98	64,873	63,846
Circle C (Borges)	0.99	65,116	64,784

Dike, (5) materials, probabilistic analysis, water table

33.1. Introduction

Verification #33 comes from EI-Ramly et al (2003). It looks at the assessment of the probability of unsatisfactory performance (probability of failure) of a Syncrude tailings dyke in Canada. This example does not consider the spatial variation of soil properties and it is described in the paper as the simplified probabilistic analysis.

33.2. Problem Description

The original model from the EI-Ramly et al paper is shown in Figure 33.1. The input parameters for the **Slide** model are provided in Table 33.1. EI-Ramly et al considered five probabilistic parameters: the friction angle of the Kca clay-shale, the pore pressure ratio in the same layer, the friction angle of the Pgs sandy till layer, and the pore pressure ratios in this layer at the middle and at the toe of the dyke.

In our model we only consider the friction angles of the Kca clay-shale and Pgs sandy till as probabilistic parameters, and we use the phreatic surfaces indicated on Figure 33.2 in place of pore pressure ratios. We tested the influence of the phreatic surfaces (included them as piezometric lines with levels that are normal variables of unit standard deviation) and established that they had minimal impact on the probability of failure for this model. The **Slide** model is shown on Figure 33.2.

As in the El-Ramly et al paper, the Bishop simplified analysis method is used. **Slide** uses Monte Carlo analysis to calculate the probability of failure. It is assumed in the Slide model that all the probabilistic input variables are normally distributed.

33.3. Geometry and Material Properties

Figure 33.2: Geometry Setup in Slide

Material	c´ (kN/m²)	φ´ (deg.)	Standard deviation of ϕ ´ (deg.)	γ (kN/m³)
Tailing sand (TS)	0	34	-	20
Glacio-fluvial sand (Pf4)	0	34	-	17
Sandy till (Pgs)	0	34	2	17
Disturbed clay- shale (Kca)	0	7.5	2.1	17

33.4. Results

Table 33.2

	Factor of Safety	Probability of Failure
Slide	1.305	1.54 x 10 ⁻³
El-Ramly et al	1.31	1.6 x 10 ⁻³

Geotechnical tools, inspired by you.

Dam, (3) materials, probabilistic analysis, water table

34.1. Introduction

This model is taken from Wolff and Harr (1987). It is a model of the Clarence Cannon Dam in northeastern Missouri, USA. This verification compares probabilistic results from *Slide* to those determined by Wolff and Harr for a non-circular critical surface.

34.2. Problem Description

Wolff and Harr used the point estimate method to evaluate the probability of failure of the Cannon Dam along the specified non-circular critical surface shown on Figure 34.1 (taken from their paper). From the probability concentrations provided in the paper, we calculated the probabilistic input parameters (cohesion, friction angle, and coefficient of correlation for the Phase I and Phase II fills) shown in Table 34.1. In the table we also provide the unit weights of the fills we had to use to match the factor of safety obtained by Wollf and Harr.

Since Wolff and Harr use an analysis method that satisfies force equilibrium only, we compare their results to those obtained from the GLE. We also show results for non-circular Spencer analysis. The *Slide* model is shown on Figure 34.2.

As in the El-Ramly et al paper, the Bishop simplified analysis method is used. *Slide* uses Monte Carlo analysis to calculate the probability of failure. It is assumed in the *Slide* model that all the probabilistic input variables are normally distributed.

Figure 34.1: Original Model

34.3. Geometry and Material Properties

Figure 34.2: Geometry Setup in Slide

Table 34.1: Soil Properties*

Material	c´ (lb/ft²)	Standard deviation of c´ (lb/ft ²)	φ´ (deg.)	Standard deviation of ∳´ (deg.)	Correlation coefficient for c´ and ∳´	γ (Ib/ft³)
Phase I fill	2,230	1,150	6.34	7.87	0.11	150
Phase II fill	2,901.6	1,079.8	14.8	9.44	-0.51	150
Sand drain	0		30			120

Note: *Information on the non-labeled soil layers in the model shown on Figure 34.2 is omitted because it has no influence on the factor of safety of the given critical surface.

34.4. Results

Table 34.2

	Deterministic Factor of Safety	Probability of Failure
Slide (GLE method)	2.333	3.55x 10⁻³
Slide (Spencer method)	2.383	3.55x 10 ⁻³
Wolff and Harr	2.36	4.55 x 10 ⁻²

Dam, (5) materials, probabilistic analysis, reliability index

35.1. Introduction

This model is taken from Hassan and Wolff (1999). It is a model of the Clarence Cannon Dam in Missouri, USA. This verification problem looks at duplicating reliability index results for several circular failure surfaces specified in the Hassan and Wolff paper.

35.2. Problem Description

Hassan and Wolff applied a new reliability-based approach they had formulated to calculate reliability indices for slopes. The cross-section of the Cannon Dam they used is shown on Figure 35.1.

The Bishop simplified method of slices is used in all the cases discussed in this verification problem. We analyze two sets of slip surfaces, those shown on Figure 7 of the Hassan and Wolff paper and those on Figure 8. (Figures 7 and 8 from the paper are shown on Figure 35.2(a) and Figure 35.2(b) below.) Input parameters for the model are given in Table 35.1. Since the paper does not provide all the required input parameters, we selected values for the missing parameters that allowed us to match factors of safety for a few of the circles in Figure 7.

We assume all the probabilistic input variables to be normally distributed in performing Monte Carlo simulations. **Slide** calculates reliability indices based on the mean and standard deviation of the factor of safety values calculated in the simulations. The reliability indices shown in the results section are calculated with the assumption that factors of safety values are lognormally distributed (Hassan and Wolff (1999). Results obtained from Slide are compared to those from the Hassan and Wolff paper in Table 35.2.

Figure 35.1: Original Model

Figure 35.2. (a)

Figure 35.2. (b)

Figures 7 from the Hassan and Wolff (1999) paper Figures 8 from the Hassan and Wolff (1999) paper

35.3. Geometry and Material Properties

Figure 35.4 Slide Setup for the original Figure 8

	Table	35.1:	Material	I Properties*
--	-------	-------	----------	---------------

Material	c´ (kN/m²)	Standard deviation of c´ (kN/m²)	φ´ (deg.)	Standard deviation of ∳´ (deg.)	Correlation coefficient for c´ and ∳´	γ (kN/m³)
Phase I clay fill	117.79	58.89	8.5	8.5	0.1	22
Phase II clay fill	143.64	79	15	9	-0.55	22
Sand filter	0		35			22
Foundation sand	5		18			20
Spoil fill	5		35			25

Note: *Properties of the limestone layer in the models shown on Figure 35.3 and 35.4 are omitted because they do not influence calculated factors of safety.

35.4. Results

Table 35.2

	Slide Results		Hassan and Wolff Results		
Surface	Deterministic Factor of Safety	Reliability Index (lognormal)	Deterministic Factor of Safety	Reliability Index (lognormal)	
Fig. 7 Surface A	2.551	10.953	2.753	10.356	
Fig. 7 Surface B	2.820	4.351	2.352	3.987	
Fig. 7 Surface C	2.777	4.263	2.523	4.606	
Fig. 7 Surface D	2.583	11.092	2.457	8.468	
Fig. 7 Surface E	2.692	10.281	2.602	10.037	
Fig. 8 Surface B	2.672	4.858	2.995	3.987	
Fig. 8 Surface F	3.598	5.485	3.916	4.950	
Fig. 8 Surface G	6.074	5.563	10.576	5.544	
Fig. 8 Surface H	11.230	6.394	6.293	4.838	

Geotechnical tools, inspired by you.

Slope, homogenous, probabilistic analysis, ru pore pressure, reliability index

36.1. Introduction

This model is taken from Li and Lumb (1987) and Hassan and Wolff (1999). It analyzes reliability indices of a simple homogeneous slope. This verification looks at comparing the reliability index of the deterministic global circular failure surface and the minimum reliability index value obtained from analysis of several failure surfaces.

36.2. Problem Description

The geometry of the homogeneous slope is shown in Figure 36.1 and soil parameters are provided in Table 36.1. The Bishop simplified method of analysis is used. Using Monte Carlo analysis that assumes all probabilistic variables to be normally distributed, reliability indices are calculated on the assumption that factors of safety values are distributed lognormally. This is consistent with the reliability index measures used by Hassan and Wolff (1999).

The reliability index calculated for the deterministic minimum factor of safety surface (critical deterministic surface), the minimum reliability index (critical probabilistic surface), and the overall reliability index of the slope are compared with reliability indices calculated by Hassan and Wolff in Table 36.2. Figure 36.2 and Figure 36.3 show the locations of the critical deterministic and probabilistic surfaces calculated by **Slide**.

36.3. Geometry and Material Properties

Table	36.1:	Soil	Properties
-------	-------	------	------------

Property	Mean value	Standard deviation
c´ (kN/m²)	18	3.6
φ´ (deg.)	30	3
γ (kN/m³)	18	0.9
r _u	0.2	0.02

36.4. Results

Table 36.2

Slide Results by the Bishop Simplified method			Hasssan and Wolf Results	
Surface	Factor of Safety	Reliability Index (lognormal)	Factor of Safety	Reliability Index (lognormal)
Deterministic minimum factor of safety surface	1.340	2.482	1.334	2.336
Minimum reliability index surface	1.369	2.407	1.190	2.293
Overall slope (no particular surface)	1.350	2.393		

Figure 36.3: Critical probabilistic surface

Slope, homogenous, distributed load, back analysis of required support force and length

37.1. Introduction

Verification #37 models a slope reinforcement example described in the Reference Manual of the slope stability program XSTABL (1999). It illustrates the use of back analysis to determine the amount of reinforcement required to stabilize a slope to a specified factor of safety level.

37.2. Problem Description

The solution for this example of a simple slope, consisting solely of non-cohesive soil material, involved two steps:

- a) Determining the reinforcement force needed to stabilize a slope to a factor of safety value of 1.5, and
- b) Establishing the minimum required length of reinforced zone.

Figure 37.1 and Figure 37.2 describe the slope model. The solution in XSTABL examines failure surfaces that pass through the toe of the slope. To duplicate that in **Slide**, we placed a search focus point at the toe. In addition, to eliminate very small shallow failure surfaces of the slope face (slip circles that do not intersect the crest), only failure surfaces with a minimum depth of 2m were considered. Since the XSTABL solution considers a triangularly distributed reinforcement load along the slope height, the Slide model applies a concentrated force at a point above the toe that is a third of the slope height.

Next, we remodelled the slope, but this time we included a reinforced zone with a higher friction angle calculated from the formula (XSTABL Reference Manual (1999)).

$$\phi_{re\,\text{inf}} = \tan^{-1}[F_r\,\tan(\phi)]$$

 $F_r = \frac{F_{min}}{F_{crit}}$ where

We varied the length of the reinforced zone manually until we obtain a factor of safety value very close to 1.5. Again, we required all failure surfaces analyzed to pass through the toe and included a minimum slope depth to eliminate shallow, face failures.

37.3. Geometry

Figure 37.1: Geometry Setup in Slide (back analysis)

37.4. Results

Table 37.1

	Slide	XSTABL
Required reinforcement force (kN)	351	345
F _r	1.96	2.044
f _{reinf} (°)	54.93	56.04
Length of reinforcement zone (m)	7.6	7.5

Figure 37.3: Critical Surface (back analysis)

Figure 37.4: Critical Surface (with reinforced zone)

Excavated slope, homogenous, finite element groundwater seepage analysis, matric suction

38.1. Introduction

Verification #38 models a typical steep cut slope in Hong Kong. The example is taken from Ng and Shi (1998). It illustrates the use of finite element groundwater analysis and conventional limit equilibrium slope stability in the assessment of the stability of the cut.

38.2. Problem Description

The cut has a slope face angle of 28° and it consists of a 24m thick soil layer, underlain by a 6m thick bedrock layer. Figure 38.1 describes the slope model in *Slide*.

Steady-state groundwater analysis is conducted using the finite element module in *Slide*. Initial conditions of constant total head are applied to both sides of the slope. Three different initial hydraulic boundary conditions (H=61m, H=62m, H=63m) for the right side of the slope are considered for the analyses in this section, shown in Figure 38.1. Constant hydraulic boundary head of 6m is applied on the left side of the slope. A mesh of 1621 six-noded triangular elements was used to model the problem. Figure 38.2 shows the soil permeability function used to model the hydraulic conductivity of the soil, Ng (1998).

The negative pore water pressure, which is commonly referenced to as the matric suction of soil, above the water table influences the soil shear strength and hence the factor of safety. Ng and Shi used the modified Mohr-Coulomb failure criterion for the unsaturated soils, which can be written as

 $\tau = c' + (\sigma_n - u_a) \tan \varphi' + (u_a - u_w) \tan \varphi_b$

where σ_n is the normal stress, φ_b is an angle defining the increase in shear strength for an increase in matric suction of the soil. Table 38.1 shows the material properties for the soil.

Both positive and negative pore water pressures predicted from groundwater analysis engine were used in the stability analysis. The Bishop simplified method is used in this analysis.

38.3. Geometry and Material Properties

c' (kPa)	$arphi^{'}$ (deg.)	$arphi_b$ (deg.)	γ (kN/m³)
10	38	15	16

38.4. Results

Table 38.2

H (total head at right side of slope)	Slide	Ng. & Shi (1998)
61m	1.621	1.636
62m	1.538	1.527
63m	1.407	1.436

Figure 38.2: Groundwater and slope stability results for H = 61m

Reinforced embankment, (2) materials, tension crack, geosynthetic

39.1. Introduction

This model is taken from Tandjiria (2002), their problem 1. It looks at the stability of a geosyntheticreinforced embankment on soft soil. The problem looks at the stability of the embankment if it consists of either a sand fill or an undrained clayey fill. Both are analyzed.

39.2. Problem Description

Verification problem #39 is shown in Figures 39.1 and 39.2. The purpose of this example is to compute the required reinforcement force to yield a factor of safety of 1.35. Both circular and non-circular surfaces are looked at. In each case, the embankment is modeled without the reinforcement; the critical slip surface is located, and then used in the reinforced model to determine the reinforcement force to achieve a factor of safety of 1.35. This is done for a sand or clay embankment, circular and non-circular critical slip surfaces. Both cases incorporate a tension crack in the embankment. In the case of the clay embankment, a water-filled tension crack is incorporated into the analysis. The reinforcement is located at the base of the embankment. The model was analyzed with both Spencer and GLE (half-sine interslice function) but Spencer was used for the force computation. The reinforcement is modeled as an active force since this is how Tandjiria et.al. modelled the force.

39.3. Geometry and Material Properties

Table 39.1: Clay fill model material properties

Figure 39.2: Sand Fill Embankment

Table 39.2: Sand fill model material properties

Material Name	<i>c</i> ່(kPa)	arphi (deg.)	γ (kN/m³)
Sand Fill	0	37	17
Soft Clay	20	0	20

39.4. Results

	Method	Factor of Safety	
	Spencer	0.975	
	GLE/M-P	0.975	
I	Note: Tandiiria (200	02) Spencer factor of	safety = 0.981

Table 39.2: Circular - Clay embankment with no reinforcement

Table 39.3: Noncircular - Clay embankment with no reinforcement

	Method	Factor of Safety	
	Spencer	0.935	
	GLE/M-P	0.936	-
I	Note: Tandiiria (20	02) Spencer factor of	safety = 0.941

Table 39.4: Circular - Sand embankment with no reinforcement

	Method	Factor of Safety	
	Spencer	1.209	
	GLE/M-P	1.218	
I	Note: Tandiiria (200	2) Spencer factor of	safety = 1.219

Table 39.5: Noncircular Results - Sand embankment with no reinforcement

Method	Factor of Safety	
Spencer	1.188	
GLE/M-P	1.178	
Note: Tandiiria (200	02) Spencer factor of	safety = 1.192

Table 39.6: Circular Results - Clay embankment with reinforcement

Method	Reinforcement Force (KN/m)	Factor of Safety
Spencer	169	1.35
Note: Tandiiria (2002) Deinforcement Force 170 KN/m		

Note: Tandiiria (2002) Reinforcement Force = 170 KN/m

Table 39.7: Noncircular Results – Cla	y embankment with reinforcement
---------------------------------------	---------------------------------

Method	Reinforcement Force (KN/m)	Factor of Safety	
Spencer	184	1.35	
Note: Tandiiria (2002) Reinforcement Force = 190 KN/m Table 39.8: Circular Results – Sand embankment with reinforcement			
Method	Reinforcement Force (KN/m)	Factor of Safety	
Spencer	44	1.35	
Note: Tandiiria (2002) Reinforcement Force = 45 KN/m			

Table 39.9: Noncircular Results - Sand embankment with reinforcement

Method	Reinforcement Force (KN/m)	Factor of Safety
Spencer	56	1.35

Note: Tandiiria (2002) Reinforcement Force = 56 KN/m

Slope, homogenous, sensitivity analysis

40.1. Introduction

This problem was taken from J. Perry (1993), Fig. 10. It looks at the non-linear power curve relation of effective normal stress to shear stress.

40.2. Problem Description

This problem consists of a simple homogeneous slope with 5 slices (Figure 40.1). The non-linear failure surface has been defined. The dry soil is assumed to follow non-linear power curve strength parameters. The factor of safety for the specified failure surface is required. A sensitivity analysis must also be carried out for parameters A and b.

40.3. Geometry and Material Properties

Figure 40.1: Geometry Setup in Slide

Table 40.1: Soil Properties

	Α	b	γ (kN/m³)
Mean	2	0.7	20.0
Rel. max/min	0.3	0.105	N/a

40.4. Results

Table 40.2

MethodFactor of SafetyJanbu Corrected0.944

Figure 40.2: Solution, using the Bishop simplified method

Figure 40.3: Sensitivity analysis on power curve A and power curve B

Figure 40.4: Perry's variation of factor safety with shear strength parameters

Slope, homogenous, ru pore pressure

41.1. Introduction

This problem was taken from Jiang, Baker, and Yamagami (2003). It examines a homogeneous slope with non-linear strength properties.

41.2. Problem Description

The slope geometry is shown in Fig. 41.1. The material strength is modeled with a power curve. Using the path search, the factor of safety and non-linear failure surface is calculated. Pore pressure ratio (Ru) for the clay is 0.3.

41.3. Geometry and Material Properties

41.4. Results

Table 41.2

Metho	od	Factor of Safety	
Bishop	D	1.656	
Janbu	Simplified	1.563	
Note:	Charles and	d Soares (1984) Bish	op Factor of Safety = 1.66
	Baker (2003	3) Janbu Factor of Sa	afety = 1.60
	Baker (2003	3) 2D dynamic progra	amming search Factor of Safety

= 1.56

Perry (1994) rigorous Janbu Factor of Safety = 1.67

Figure 41.3: Solution, using the Janbu simplified method

Dam, (3) materials, water table, ponded water, tension crack

42.1. Introduction

This problem was taken from Baker and Leshchinsky (2001). It is their example question regarding the use of safety maps as practical tools for slope stability analysis.

42.2. Problem Description

The geometry of the dam is shown in Figure 42.1. It consists of a clay core, granular fill surrounding the core, and a solid base. A dry tension crack at the top is included to simulate a 5m thick cracked layer. The circular slip surfaces for all safety factors must be plotted on the dam to obtain a safety map of regional safety factors (use 80x80 grid). The noncircular slip surface and its corresponding factor of safety is also calculated.

42.3. Geometry and Material Properties

Figure 42.1: Geometry Setup in Slide

Figure 42.2: Location of noncircular failure surface

Table 42.1: Soil Pro	perties
----------------------	---------

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Clay core	20	20	20
Granular fill	0	40	21.5
Hard base	200	45	24

42.4. Results

Table 42.2: Circular failure surface, 80x80 grid

Method

Factor of Safety

Spencer 1.925

Note: Baker (2001) Spencer non-circular FS = 1.91

Figure 42.3: Safety map featuring global minimum zone using Spencer method

Table 42.3: Noncircular using Random search with Optimization (zero faces)

Method	Factor of Safety	
Spencer	1.877	

Note: Baker (2001) Spencer non-circular FS = 1.91

Figure 42.4: Noncircular failure surface using Random search with optimization

Slope, homogenous, planar surface, RocPlane comparison

43.1. Introduction

This problem was taken from Baker (2001). It looks at planar failure surface safety factors relative to varying failure plane angles.

43.2. Problem Description

The slope in this problem is homogeneous and dry. The geometry is given in Figure 43.1. There are two tests that must be run on this slope: first, the plot of safety factor vs. x-coordinate is required for all critical failure planes passing through the toe of the slope. Then, the critical circular failure surfaces in Zone A must be determined, at which point the safety factor vs. x-coordinate for Zone A must be plotted. The goal of this problem is to locate the minimum safety factor and its variation as the function of failure plane angle changes.

43.3. Geometry and Material Properties

Figure 43.1: Geometry Setup in Slide

Note: For critical planar surface solution, use a block search with a focus point at the toe and a focus line along the bench. For the circular search, move the right limit (12, 10) to only include Zone A. Grid should go no higher than 17.5 to avoid anomalous results. Janbu simplified must be used to coincide with the author's use of the Culmann method.

Table 43.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Material 1	30	30	20

43.4. Results

Table 43.2

Method	Factor of Safety	Angle (deg)
Janbu Simplified (Non- circular)	1.352	49.5
Janbu Simplified (Circular)	1.329	49.5
RocPlane 2.0	1.351	49.5
Vistor Delver (2004) Culmenne		

Figure 43.2: Baker's Distribution (Reference plot)

Figure 43.5– Solution using RocPlane 2.0

Slope, homogenous

44.1. Introduction

This problem was taken from Baker (2003). It is his first example problem comparing linear and non-linear Mohr envelopes.

44.2. Problem Description

Verification problem #44 compares two homogeneous slopes of congruent geometry (Figure 44.1) under different strength functions (Table 44.1). The critical circular surface factor of safety and maximum effective normal stress must be determined for both Mohr-Coulomb strength criterion and Power Curve criterion. The power curve criterion was derived from Baker's own non-linear function:

$$au = P_a A \left(rac{\sigma}{P_a} + T
ight)^n$$
... Pa = 101.325 kPa

The power curve variables are in the form:

$$\tau = a(\sigma_n + d)^b + c$$

Finally, the critical circular surface factor of safety and maximum effective normal stress must be determined using the soil properties that Baker derives from his iterative process; these values should be compared to the accepted values.

44.3. Geometry and Material Properties

Table 44.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)	Α	n	т	а	b	С
Soil #1	0.0	38.0	19.5	0.58	0.86	0	1.107	0.86	0
Soil #2	5.3	23.0	19.5						

44.4. Results

Table 44.2

Strength Type	Method	Factor of Safety	Maximum effective normal stress (kPa)	
Power Curve/non-linear	Janbu Simplified	0.921	15.40	
	Spencer	0.960	11.51	
Mohr-Coulomb	Janbu Simplified	1.469	41.88	
	Spencer	1.536	37.55	
Mohr-Coulomb with	Janbu simplified	0.957	9.62	
$0.39 \text{ kPa}, \phi' = 38.6 \circ)$	Spencer	0.981	8.83	
Nata: Dalian (0000) man	line and an address FO	0.07 0.7		

Note: Baker (2003) non-linear results: FS = 0.97, $\sigma_{max} = 8.7$

Baker (2003) M-C results: FS = 1.50, σ_{max} = 40.2

Figure 44.2: Critical failure surface, using the power curve criterion, Janbu simplified

Figure 44.3: Critical failure surface, using the Mohr-Coulomb criterion, Janbu simplified

Figure 44.4: Mohr-Coulomb criterion with iterations, Janbu simplified

Slope, homogenous

45.1. Introduction

This problem was taken from Baker (2003). It is his second example problem comparing linear and nonlinear Mohr envelopes.

45.2. Problem Description

Verification problem #45 compares two homogeneous slopes of congruent geometry (Figure 45.1) under different strength functions (Table 45.1). The critical circular surface factor of safety and maximum effective normal stress must be determined for both Mohr-Coulomb strength criterion and Power Curve criterion. The power curve criterion was derived from Baker's own non-linear function:

$$au = P_a A \left(rac{\sigma}{P_a} + T
ight)^n$$
... Pa = 101.325 kPa

The power curve variables are in the form:

$$\tau = a(\sigma_n + d)^b + c$$

Finally, the critical circular surface factor of safety and maximum effective normal stress must be determined using the material properties that Baker derives from his iterative process; these values should be compared with the accepted values.

45.3. Geometry and Material Properties

Figure 45.1: Geometry Setup in Slide

Table 45.1: Soil Properties

Material	c´ (kN/m²)	φ΄ (deg.)	γ (kN/m³)	Α	n	Т	а	b	C
Clay	11.64	24.7	18	0.58	0.86	0	1.107	0.86	0
Clay, iterative results	2.439	30.392	18						

45.4. Results

Table 45.2

Strength Type	Method	Factor of Safety	Maximum effective normal stress (kPa)
Power Curve	Janbu Simplified	2.559	99.50
	Spencer	2.662	93.03
Mohr-Coulomb	Janbu Simplified	2.662	118.63
	Spencer	2.794	106.26
Mohr-Coulomb with iteration results	Janbu simplified	2.610	84.64
(c´ = 2.439kPa, φ´ = 30.392°)	Spencer	2.696	82.25

Note: Baker (2003) non-linear results: FS = 2.64, $\sigma_{max} = 78.1$

Baker (2003) M-C results: FS = 2.66, σ_{max} = 140.3

Figure 45.2: Critical failure surface, using the power curve criterion, Janbu simplified

Figure 45.3: Critical failure surface, using the Mohr-Coulomb criterion, Janbu simplified

Figure 45.4: Mohr-Coulomb criterion with iterations, Spencer

Dam, (2) materials, rapid drawdown, finite element groundwater seepage analysis, ponded water

46.1. Introduction

This problem was taken from Baker (1993). It examines the slope stability analysis of a dam under three loading conditions: 1) End of construction with an empty reservoir, 2) steady state with a full reservoir, and 3) rapid drawdown. It should be noted that this problem is actually a Validation Problem, as many of the clay permeability parameters used here were not given in Baker's paper, thus preventing exact reproduction of his calculations.

46.2. Problem Description

Problem #46 is divided into three loading conditions. All stages analyze the same dam (Figure 46.1, Figure 46.2) with the same soil properties (Table 1), given in Baker (1993).

Stage 1 requires the factor of safety and noncircular critical surface of the dam when the reservoir is dry and empty (i.e., post-construction).

Stage 2 utilizes a finite element groundwater analysis, and the factor of safety and noncircular critical surface of the dam is calculated under steady state conditions. The water is 10 m deep, and the water table is horizontal at elevation 0 m.

Stage 3 requires the factor of safety and noncircular failure surface of the dam after it has been subjected to rapid drawdown (i.e., undrained loading conditions). Undrained shear strength is not known at this stage and must be manually extracted from the author's data (Figure 46.3). This data can also be found as <Compacted Clay.fn6> and <Natural Clay.fn6>, which can be accessed under the discrete function in the modeller.

46.3. Geometry and Material Properties

Note: Mesh = 6 noded triangles. Tolerance = 1e-5. Minimum depth of noncircular surface is 5m. Limits are as they were before.

Note: there should be no ponded water in stage 3, as the dam is subjected to rapid drawdown

Table	46.1:	Soil	Pro	perties
rabic		001	1 10	perues

Material	c´ (kN/m²)	φ´ (deg.)	γ (kN/m3)	Ks	K2/K1	K1 Angle	а	n
Compacted Clay	6.5	40	18	7e-5	0.1	0	0	0
Natural Clay	0	32	18	7e-5	0.1	0	0.06	2

Note: Permeability values were not given in Baker (1993), so they were estimated. Estimated values are given in the dark box.

46.4. Results

Table 46.2: Stage 1 – Post-construction, Random search

Table 46.2: Stage 2 – steady state conditions, random search

Method		Factor of Safety		
Spencer		7.003		
Note: Baker (1993		3) FS = 6.98		

b) Pore pressure distribution

Figure 46.6: Critical failure surface, using the Spencer method

Table 46.2: Stage 3 – Rapid draw-down conditions, random search with optimization

Method		Factor of Safety		
Spencer		2.181		
Note:	Baker (1993	3) FS = 2.18		

Figure 46.7: Comparison of Baker's pore pressure contours with SLIDE's

Figure 46.8: Critical failure surface, using the Spencer method

Retaining wall, homogenous, planar failure, line load, shotcrete, soil nails

47.1. Introduction

This problem was taken from Sheahan (2003). It examines the Amherst test wall, a soil nailed wall in clay that was failed due to over-excavation.

47.2. Problem Description

Verification Problem #47 examines planar failure of a soil nailed wall, and its associated factor of safety. The wall is undrained and homogeneous (Table 47.1), and is reinforced by two rows of soil nails (Table 47.2). The shotcrete plate on the soil nails has a weight of 14.6 kN/m, which is modeled as a point load on top of the wall face. The critical planar slip surface and associated factor of safety are required.

47.3. Geometry and Material Properties

Table 47.1: Soil Properties

Ċ	(kN/m²)	γ	(kN/m ³)
C		-γ	

Table 47.2: Soil Nail Properties

Туре	Out-of-plane Spacing (m)	Tensile Strength (kN)	Plate Strength (kN)	Bond Strength (kN)	Length (m)	Number of rows
Passive	1.5	118	86	15	4.9	2

47.4. Results

Table 47.3: Block search

Method	Factor of Safety
Janbu Simplified	0.890
Janbu corrected	0.890

Figure 47.2: Critical failure surface, using the Janbu simplified method

Retaining wall, homogenous, planar failure, line load, soil nails, shotcrete

48.1. Introduction

This problem was taken from Sheahan (2003). It examines the Clouterre Test Wall, constructed in Fontainebleau sand and failed by backfill saturation. This test was carried out as part of the French national project on soil nailing.

48.2. Problem Description

Verification Problem #48 examines the relationship between failure plane angle and factor of safety for a homogeneous slope in which the primary resistance against failure is friction generated by soil weight. The test wall is reinforced by seven rows of soil nails, with a shotcrete plate weighing 13.2 kN/m, which is modeled as a point load acting on the wall face. The geometry, soil properties, and reinforcement properties are given in Section 48.3. The factor of safety is calculated for six different failure plane angles, ranging from 45–70 degrees.

48.3. Geometry and Material Properties

Table 48.2: Soil Nail Properties

Туре	Out-of-plane	Tensile	Plate	Bond
	Spacing (m)	Strength (kN)	Strength (kN)	Strength (kN)
Passive	1.5	15	59	7.5

48.4. Results

Failure Plane Angle (deg.)	Slide Factor of Safety	Sheahan Factor of Safety
45	1.123	1.176
50	1.043	1.070
55	0.989	0.989
60	0.945	0.929
65	0.922	0.893
70	0.923	0.887

Table 48.3

Retaining wall, (2) materials, grouted tiebacks, soldier piles

49.1. Introduction

This problem was taken from the SNAILZ reference manual (http://www.dot.ca.gov/hq/esc/geotech). It consists of a 2-material slope reinforced with a soldier pile tieback wall. This problem is done in imperial units.

49.2. Problem Description

Verification problem #49 consists of a slope with 2 materials and variable types of reinforcement. Each of the two rows of tiebacks have different bar diameters, resulting in different tensile capacities. The soldier pile in the SNAILZ problem is modeled using a micro-pile in **Slide**. The factor of safety for the given failure surface is calculated.

49.3. Geometry and Material Properties

Figure 49.1: Geometry Setup in Slide

Table 49.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Layer 1	600	24	120
Layer 2	300	34	130

Geotechnical tools, inspired by you.

Table 49.2: Soil Nail Properties

	Out-of plane Spacing (ft)	Tensile Strength (lb)	Plate Strength (lb)	Bond Strength (Ib/ft)
Grouted Tieback: top row	8	120344.9	120344.9	13571.68
Grouted Tieback: bottom row	8	164217.3	164217.3	13571.68
Micro-pile (active)	1	Pile shear strength: 5900 lb.		

49.4. Results

Method	Factor of Safety		
Janbu simplified	1.446		
Janbu corrected	1.479		

Reinforced slope, (2) materials, predefined slip surface, geosynthetic

50.1. Introduction

This problem was taken from the SNAILZ reference manual. It examines a slope which has been reinforced with geotextile layers. SNAILZ models the geotextile characteristics with soil nails that have equivalent parameters, as it is not equipped with a geotextile reinforcement option. This verification example attempts to replicate this model with **Slide**.

50.2. Problem Description

Verification problem #50 examines a 2-layer slope with multiple reinforcement parameters (Figure 50.1). Each horizontal, parallel row varies in length, tensile capacity, and bond strength (Table 50.2). The rows are all evenly spaced (1.8 ft) except for row 14 (1.6 ft). The rows are numbered starting at the crest. The factor of safety is required for the two failure surfaces given in Figure 50.2.

50.3. Geometry and Material Properties

Figure 50.1: Geometry Setup in Slide

Table	50.1:	Soil	Properties
i abio	00.1.	0011	1 10001000

Material	c´ (psf)	φ´ (deg.)	γ (pcf)
Layer 1	0	32	125
Layer 2	500	35	128

	Out-of-plane Spacing (ft)	Tensile Strength (Ib)	Plate Strength (lb)	Bond Strength (Ib/ft)	Length (ft)
Rows: 1,3,5,7,9,11	1	1103	1103	1206.37	4
Rows: 12,13,14	1	2212	2212	1206.37	20
Rows: 8	1	1103	1103	965.096	19
Rows: 6	1	1103	1103	732.822	21
Rows: 4	1	1103	1103	482.548	23
Rows: 2	1	1103	1103	241.274	25
Rows: 10	1	1103	1103	1206.31	19

Table 50.2: Soil Nail Properties (Active)

50.4. Results

Table 50.3					
Failure Plane Slide SNAILZ					
(designated by point on surface)	Factor of Safety	Factor of Safety			
(0,0)	1.577	1.60			
(0, -5)	1.417	1.46			

Table 50.4: Nail force

Nail Row	Max Force (Ib)
1-11	1103
12-14	2212

Figure 50.2: Safety factors for the given failure surfaces

Slope, (4) materials, water table, tension crack, seismic

51.1. Introduction

This problem was taken from Zhu (2003). It analyzes a four layered slope with a given failure surface, using twelve different methods.

51.2. Problem Description

Verification problem #51 examines a multiple layer slope with a circular failure surface. A tension crack is included in the top layer. The slope is also assumed to be under earthquake conditions, with a seismic coefficient of 0.1. The factor of safety for this surface - with 100 slices - is required, using all methods of analysis. A tolerance of 0.001 is used.

51.3. Geometry and Material Properties

Figure 51.1: Geometry Setup in **Slide**

Table 51.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Material	c´ (kN/m²)	φ΄ (deg.)	γ (kN/m³)
Layer 1 (top)	20	32	18.2
Layer 2	25	30	18
Layer 3	40	18	18.5

Geotechnical tools, inspired by you.

Mathad	Slide	Zhu	
Method	Factor of Safety	Factor of Safety	
Ordinary	1.145	1.066	
Bishop Simplified	1.278	1.278	
Janbu Simplified	1.112	1.112	
Corps of Engineers 2	1.422	1.377	
Lowe & Karafiath	1.288	1.290	
Spencer	1.293	1.293	
GLE/Morgenstern & Price	1.304	1.303	

Table 51.2

Slope, (4) materials, water table, tension crack

52.1. Introduction

This problem was taken from Zhu and Lee (2002). It analyzes a heterogeneous slope under wet and dry conditions. For each condition, 4 different failure surfaces were analyzed.

52.2. Problem Description

Verification problem #52 is a 4-material slope with a dry tension crack in the top (Figure 52.1). The factor of safety is calculated for 8 separate cases: 4 distinct failure surfaces under dry conditions, and the same 4 failure surfaces when a water table is included (Table 52.2). Surfaces 1 and 3 are circular, while 2 and 4 are noncircular. Surfaces 1 and 2 are shallow, and surfaces 3 and 4 are deep.

52.3. Geometry and Material Properties

Figure 52.1: Geometry Setup in Slide (dry condition)

Note: Surfaces 1 and 2 are done using the limits shown, however 3 and 4 are analyzed with 2 sets of limits forcing the failure surface to intersect the top and bottom bench through the middle of the bench. Surfaces 1 and 2 must pass through toe of slope; a search point is added to the toe. Surface 2 requires a block search window to be added, to keep the search shallow.

Material	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Layer 1 (top)	20	18	18.8
Layer 2	40	22	18.5
Layer 3	25	26	18.4
Layer 4 (bottom)	10	12	18

Table 52.1: Soil Properties

Table 52.2: Water Table Geometry - wet condition

Coordinates	Arc
(0, -20)	
(0, 0)	
(6, 3)	
	(10.568, 5.284)
	(25.314, 9.002)
	(39.149, 10.269)
(50, 10.269)	

~ ordinatos ۸

Table 52.3: Surface 1 – Circular, shallow (Dry Condition)

	Slide	Zhu
Method	Factor of Safety	Factor of Safety
Bishop simplified	2.010	2.011
Ordinary	1.934	1.935
Morgenstern-Price	2.017	2.035
Spencer	2.017	2.035

Note: Zhu's limit equilibrium factor of safety = 2.035

Table 52.4: Surface 1 – Circular, shallow (Wet Condition)

Mothod	Slide	Zhu
Method	Factor of Safety	Factor of Safety
Bishop simplified	1.526	1.534
Ordinary	1.514	1.496
Morgenstern-Price	1.533	1.559
Spencer	1.533	1.559

	Slide	Zhu
Method	Factor of Safety	Factor of Safety
Bishop simplified	2.069	N/a
Ordinary	1.977	N/a
Morgenstern-Price	2.167	2.104
Spencer	2.163	2.087

Table 52.5: Surface 2 – Noncircular, shallow – Block search (Dry Condition)

Note: Zhu's limit equilibrium factor of safety = 2.049

Table 52.6: Surface 2 – Noncircular, shallow – Block search (Wet Condition)

Mothod	Slide	Zhu
Wethod	Factor of Safety	Factor of Safety
Bishop simplified	1.479	N/a
Ordinary	1.471	N/a
Morgenstern-Price	1.561	1.628
Spencer	1.554	1.616

	Slide	Zhu
Method	Factor of Safety	Factor of Safety
Bishop simplified	1.804	1.429
Ordinary	1.495	1.229
Morgenstern-Price	1.790	1.823
Spencer	1.804	1.836

Table 52.7: Surface 3 – Circular, deep – Grid search (30x30) (Dry Condition)

Note: Zhu's limit equilibrium factor of safety = 1.744

Table 52.8: Surface 3 – Circular, deep – Grid search (30x30) (Wet Condition)

Mothod	Slide	Zhu
Method	Factor of Safety	Factor of Safety
Bishop simplified	1.176	1.079
Ordinary	1.036	0.922
Morgenstern-Price	1.174	1.197
Spencer	1.189	1.211

	Slide	Zhu
Method	Factor of Safety	Factor of Safety
Bishop simplified	1.624	N/a
Ordinary	1.150	N/a
Morgenstern-Price	1.776	1.765
Spencer	1.796	1.772

Table 52.9: Surface 4 – Noncircular, deep – Path search (Dry Condition)

Note: Zhu's limit equilibrium factor of safety = 1.709

Table 52.10: Surface 4 – Noncircular, deep – Path search (Wet Condition)

Mothod	Slide	Zhu
wethod	Factor of Safety	Factor of Safety
Bishop simplified	1.073	N/a
Ordinary	0.799	N/a
Morgenstern-Price	1.162	1.141
Spencer	1.175	1.150

Slope, homogenous, water table, tension crack, planar failure, RocPlane comparison

53.1. Introduction

This problem was taken from Priest (1993). It is his example question on the analysis of rigid blocks, and the sensitivity of various parameters.

53.2. Problem Description

Verification problem #53 analyzes a homogeneous slope undergoing failure along a specified noncircular surface (Figure 53.1). The slope has a tension crack at the crest 15m deep. A water table is also present, filling the tension crack 25% at the line of failure. Starting at the right, the water table is horizontal until it passes over the intersection between the tension crack and the failure plane, at which point it linearly approaches the toe. The factor of safety for the block is calculated.

53.3. Geometry and Material Properties

Table 53.1: Soil Propertie	es
----------------------------	----

Material	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Material 1	20	30	25

Table 53.2

Method	Factor of Safety
Slide - Janbu Simplified	1.049
RocPlane	1.049

Note: Priest's factor of safety = 1.049

Figure 53.2 Comparison for sensitivity results in rw c', ϕ ' and β s: (a) Reference's results from Priest (1993); (b) results from **Slide**

Slope, homogenous, micro piles

54.1. Introduction

This problem was taken from Yamagami (2000). It looks at the reinforcement of an unstable slope, using stabilizing piles.

54.2. Problem Description

Verification problem #54 analyzes a homogeneous slope (Figure 54.1) with a circular failure surface. The single row of micro-piles acts as passive reinforcement. The piles are spaced 1 m horizontally, with a shear strength of 10.7 kN. The factors of safety for the slope with and without reinforcement is calculated.

54.3. Geometry and Material Properties

Table 54.1: Soil Properties

Material	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Material 1	4.9	10	15.68

Table 54.2

Method	Factor of Safety
Slide – no pile	1.102
Slide – with pile	1.193
Yamagami – no pile	1.10
Yamagami – with pile	1.20

Figure 54.2: Circular failure surface, no pile

Figure 54.3: Circular failure surface, with reinforcing pile

Slope, homogenous, water table

55.1. Introduction

In December 2000, Pockoski and Duncan released a paper comparing eight different computer programs for analysis of reinforced slopes. This is their first test slope.

55.2. Problem Description

Verification problem #55 analyses a homogeneous, unreinforced slope. A water table is present (Figure 55.1). The circular critical surface and factor of safety is required.

Note: For this paper, Slide was optimized for maximum precision. An 80x80 grid was used with a tolerance of 0.0001. Analysis methods used were: Bishop, Janbu simplified, Ordinary/Fellenius, Spencer, and Lowe-Karafiath.

55.3. Geometry and Material Properties

Table 55.1: Soil Properties

Material	c´ (psf)	∳´ (deg.)	γ (pcf)
Sandy clay	300	30	120

Table 55.2

Method	Slide	UTEXAS4	SLOPE/W	WINSTABL	XSTABL	RSS
Spencer	1.300	1.30	1.30	1.34		
Bishop simplified	1.293	1.29	1.29	1.34	1.29	1.29
Janbu simplified	1.151	1.15	1.15	1.20	1.24	1.15
Lowe-Karafiath	1.318	1.32			-	
Note: SNAIL FS =	= 1.22 (Wed	lae method)				

SNAIL FS = 1.22 (Wedge method)

GOLD-NAIL FS = 1.32 (Circular method)

Figure 55.2: Circular failure surface, using Spencer method

Slope, homogenous, water table, tension crack

56.1. Introduction

In December 2000, Pockoski and Duncan released a paper comparing eight different computer programs for analysis of reinforced slopes. This is their second test slope.

56.2. Problem Description

Verification Problem #56 analyses an unreinforced homogeneous slope. A water table is present, as is a dry tension crack (Figure 56.1). The circular critical failure surface and factor of safety for this slope is calculated (40x40 grid).

56.3. Geometry and Material Properties

Figure 56.1: Geometry Setup in Slide

Table 56.1: Soil Properties

Material	c´ (psf)	φ´ (deg.)	γ (pcf)
Sandy clay	300	30	120

Table 56.2

Method	Slide	UTEXAS4	SLOPE/W	WINSTABL	XSTABL	RSS
Spencer	1.290	1.29	1.29	1.32		
Bishop simplified	1.285	1.28	1.28	1.31	1.28	1.28
Janbu simplified	1.141	1.14	1.14	1.18	1.23	1.13
Lowe-Karafiath	1.304	1.31				
	4 40 /11/	اممادم مدرما	Ň			

Note: SNAIL FS = 1.18 (Wedge method)

GOLD-NAIL FS = 1.30 (Circular method)

Slope, (2) materials, water table, tension crack, composite surfaces

57.1. Introduction

In December 2000, Pockoski and Duncan released a paper comparing eight different computer programs for analysis of reinforced slopes. This is their third test slope.

57.2. Problem Description

Verification problem #57 analyses an unreinforced layered slope with a dry tension crack at the surface. A water table is also present. The circular critical failure surface and factor of safety are required. This slope was analyzed with and without composite surfaces in order to compare results with programs that either have this option or do not.

57.3. Geometry and Material Properties

Figure 57.1: Geometry Setup in Slide

Table 57.1: Soil Properties

Material	c´ (psf)	φ´ (deg.)	γ (pcf)
Sandy clay	300	35	130
Highly Plastic Clay	0	25	130

Method	Slide	SLOPE/W	XSTABL
Spencer	1.400	1.40	
Bishop simplified	1.392	1.39	1.41
Janbu simplified	1.222	1.21	1.34
Lowe-Karafiath	1.385		
Ordinary	1.257	0.85	

Table 57.2: Composite surfaces/Noncircular

Note: SNAIL FS = 1.39 (Wedge method)

Figure 57.2: Noncircular failure surface, using Spencer method

Method	Slide	UTEXAS4	WINSTABL	RSS
Spencer	1.422	1.42	1.45	
Bishop simplified	1.417	1.41	1.39	1.41
Janbu simplified	1.263	1.20	1.23	1.24
Lowe-Karafiath	1.414	1.12		
Ordinary	1.319			
Note: GOLD-NAIL F	S = 1.40 (C	Circular metho	od)	

Table 57.3: No composite surfaces/Circular

Figure 57.3: Circular failure surface, using Spencer method

Retaining wall, (8) materials, water table, grouted tieback

58.1. Introduction

In December 2000, Pockoski and Duncan released a paper comparing eight different computer programs for analysis of reinforced slopes. This is their fourth test slope.

58.2. Problem Description

Verification problem #58 analyzes a tied-back wall in layered soil. A water table is present. Each layer lies horizontal. The tied-back wall is modelled by three identical rows of active grouted tieback reinforcement (Table 58.2). The circular critical failure surface (surface must be at least 25 ft deep) and factor of safety is calculated.

Note:

The problem gives reinforcement parameters in the form:

Tieback Spacing 4 ft.

1.08" Diameter 270 ksi Steel

4 k/ft Allowable Pullout

In order to convert these to Slide parameters for grouted tieback reinforcement:

Out-of-plane Spacing = Tieback spacing

Tensile and Plate Capacity = Yield strength * πr^2 (lbs)

Bond Strength = Allowable pullout (lbs/ft)***

***Allowable pullout is given in ft⁻¹. The conversion that one must undergo to get Bond Strength gives the exact same number in lbs/ft. This conversion method must be applied to all questions pertaining to this paper.

58.3. Geometry and Material Properties

Figure 58.1: Geometry Setup in Slide

Table 58.1: Soil Properties

Layer	c´ (psf)	φ´ (deg.)	γ (pcf)
Granular Fill (GF)	0	30	120.4
Cohesive Fill (CF)	0	30	114.7
Organic Silt (OS)	900	0	110.2
OC Crust (OC)	2485	0	117.8
Upper Marine Clay (UM)	1670	0	117.8
Middle Marine Clay (MM)	960	0	117.8
Lower Marine Clay (LM)	1085	0	117.8
Glaciomarine Deposits (GD)	1500	0	147.1

Geotechnical tools, inspired by you.

Table 58.2: Grouted Tieback Properties - All Rows

Tensile Cap. (Ibs)	Plate Cap. (Ibs)	Bond Strength (Ib/ft)	Bond Length (ft)	Out-of-Plane spacing (ft)
247343.87	247343.87	4000	40	4

58.4. Results

Table 58.3: Circular Method

Method	Slide	UTEXAS4	SLOPE/W	WINSTABL
Spencer	1.145	1.14	1.14	1.20
Bishop simplified	1.147	1.14	1.14	1.16
Janbu simplified	1.061	1.13	1.05	1.12
Lowe-Karafiath	1.175	1.20		
Ordinary	1.129		1.12	

Note: GOLD-NAIL FS = 1.19 (Circular method) RSS only allows horizontal reinforcement XSTABL does not allow for reinforcement SNAIL FS = 1.03 (Wedge method – noncircular)

Figure 58.2: Circular failure surface, using the Spencer method

Retaining wall, homogenous, water table, grouted tieback

59.1. Introduction

In December 2000, Pockoski and Duncan released a paper comparing eight different computer programs for analysis of reinforced slopes. This is their fifth test slope.

59.2. Problem Description

Verification Problem #59 analyzes a tieback wall in homogeneous sand. One row of active grouted tieback support is used. A water table is present. The circular critical failure surface and factor of safety is calculated. To eliminate undesirable critical surfaces, do not allow for tension cracks caused by reverse curvature, and place a focus search point at the toe of the wall.

59.3. Geometry and Material Properties

Table 59.1: Soil Properties

Material	c´ (psf)	φ´ (deg.)	γ (pcf)
Sand	0	30	120

Table 59.2: Grouted Tieback Properties

Tensile	Plate Cap.	Bond Strength	Bond	Out-of-Plane
Cap. (Ibs)	(Ibs)	(Ib/ft)	Length (ft)	spacing (ft)
184077.69	184077.69	5000	22	8

59.4. Results

Table 59.3

Method	Slide	UTEXAS4	SLOPE/W	WINSTABL
Spencer	0.596	0.65	0.60	0.59
Bishop simplified	0.582	0.56	0.60	0.74
Janbu simplified	0.583	0.64	0.61	0.76
Lowe-Karafiath	0.588	0.76		
Ordinary	0.859		0.62	

Note: GOLD-NAIL FS = 0.62 (Circular method) RSS only allows horizontal reinforcement XSTABL does not allow for reinforcement SNAIL FS = 0.62 (Wedge method – noncircular)

Retaining wall, (2) materials, tension crack, distributed load, soil nails

60.1. Introduction

In December 2000, Pockoski and Duncan released a paper comparing eight different computer programs for analysis of reinforced slopes. This is their seventh test slope.

60.2. Problem Description

Verification problem #60 analyzes a soil nailed wall in homogeneous clay. There is a dry tension crack down to the first nail. Two uniformly distributed loads of 500 lb/ft and 250 lb/ft are applied to the high bench (Figure 60.1). Five parallel rows of passive soil nails reinforce the wall; each row has identical strength characteristics. The circular critical surface (through the toe) and corresponding factor of safety is calculated.

60.3. Geometry and Material Properties

Figure 60.1: Geometry Setup in Slide

Table 60.1: Soil Properties

Material	c´ (psf)	φ´ (deg.)	γ (pcf)
Sand	800	0	120

Table 60.2: Soil Nail Properties

Tensile	Plate	Bond Strength	Out-of-Plane spacing (ft)
Cap. (Ibs)	Cap. (Ibs)	(Ib/ft)	
25918.14	25918.14	1508	5

60.4. Results

Table 60.3: Circular failure surface

Method	Slide	UTEXAS4	SLOPE/W	WINSTABL
Spencer	1.009	1.02	1.02	0.99
Bishop simplified	0.997	1.00	1.01	1.06
Janbu simplified	1.041	1.08	1.07	1.10
Lowe-Karafiath	1.021	1.00		
Ordinary	0.997		1.00	

Note:

GOLD-NAIL FS = 0.91 (Circular method) RSS only allows horizontal reinforcement XSTABL does not allow for reinforcement SNAIL FS = 0.84 (Wedge method – noncircular)

Slope, homogenous, composite surfaces

61.1. Introduction

This problem was taken from Baker (2003). It is his third example problem comparing linear and nonlinear Mohr envelopes.

61.2. Problem Description

Verification problem #61 compares two homogeneous slopes of congruent geometry (Figure 44.1) under different strength functions (Table 61.1). The critical circular surface factor of safety and maximum effective normal stress must be determined for both Mohr-Coulomb strength criterio and Power Curve criterion. The power curve criterion was derived from Baker's own non-linear function:

$$au = P_a A \left(rac{\sigma}{P_a} + T
ight)^n$$
... Pa = 101.325 kPa

The power curve variables are in the form:

$$\tau = a(\sigma_n + d)^b + c$$

Finally, the critical circular surface factor of safety and maximum effective normal stress must be determined using the material properties that Baker derives from his iterative process; these values should be compared to the accepted values.

61.3. Geometry and Material Properties

	Baker's Parameters		Slide Paramaters				
Material	А	n	Т	а	b	С	d
Clay	0.535	0.6	0.0015	3.39344	0.6	0	0.1520

Table 61.1: Soil Properties - Power Curve criterion

Table 61.2: Soil Properties – Mohr-Coulomb criterion

Material	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Clay	6.0	32	18

61.4. Results

Table 61.3

Strength Type	Method	Factor of Safety	Maximum effective normal stress (kPa)
Power Curve	Janbu Simplified	1.348	36.33
	Spencer	1.468	31.21
Mohr-Coulomb	Janbu Simplifed	1.291	30.05
	Spencer	1.366	26.44
Note: Bake	r (2003) non-linear re	sults $FS = 1.48$ σ_{m}	ov – 21 4

Baker (2003) non-linear results: FS = 1.48, σ_{max} = 21.4

Baker (2003) M-C results: FS = 1.35, σ_{max} = 27.5

Figure 61.2: Circular critical surface with power curve criteria, Spencer method

Figure 61.3: Circular critical surface with Mohr-Coulomb criteria, Spencer method

Slope, homogenous, ru pore pressure, seismic

62.1. Introduction

This problem is taken from Loukidis *et al.* (2003). The paper provides a method for determining the critical seismic coefficient, k_c. This coefficient corresponds to a factor of safety of 1. This is their first example problem.

62.2. Problem Description

Verification problem #62 examines a simple homogeneous slope with seismic loading (Figure 62.1). The slope is analyzed using circular and noncircular* slip surfaces, both of which pass through the toe of the slope. Two pore pressure conditions are also accounted for: a dry slope, and $R_u = 0.5$. The goal of this verification problem is to reproduce a safety factor of 1 (Spencer) using Loukidis' critical seismic coefficients (Table 62.1).

Note: *Loukidis examines a log-spiral surface. In order to model this type of noncircular surface with **Slide**, a path search with Monte-Carlo optimization was performed.

62.3. Geometry and Material Properties

Figure 62.1: Geometry Setup in Slide

Table 62.1: Seismic Coefficients

Dry Slope	0.432
R _u = 0.5	0.132

Table 62.2: Soil Properties

Material	c´ (kPa)	φ´ (deg.)	γ (kN/m³)
Clay	25	30	20
Table 62.3: Dry slope ($k_c = 0.432$)

Туре	Spencer	Bishop Simplified	
Circular (Grid search)	1.001	0.991	
Noncircular (Path search with optim	nization) 0.999	0.989	
Note: Loukidis fact	or of safety (Spencer) =	= 1.000	

Figure 62.2: Circular slip surface, using the Spencer method

Figure 62.3: Non-circular slip surface, using the Spencer method

Table 62.4: $R_u = 0.5 (k_c = 0.132)$

Figure 62.5: Non-circular slip surface, using the Bishop simplified method

Slope, (3) materials, seismic

63.1. Introduction

This problem is taken from Loukidis *et al.* (2003). The paper provides a method for determining the critical seismic coefficient, k_c. This coefficient corresponds to a factor of safety of 1. This is their second example problem.

63.2. Problem Description

Verification problem #63 analyzes a layered, dry slope under seismic loading conditions. The goal is to duplicate a Spencer safety factor of 1.000 using the author's seismic coefficient of 0.155. A log-spiral surface is analyzed by Loukidis; this is modeled in **Slide** by doing a path search with Monte-Carlo optimization. The critical slip surface passes through the material boundary point on the slope between the middle and lower layers (limits are included in Figure 63.1).

63.3. Geometry and Material Properties

Figure 63.1: Geometry Setup in Slide

Table	63.1:	Soil	Properties
-------	-------	------	------------

Layer	c (kN/m²)	φ (deg.)	γ (kN/m³)
Тор	4	30	17
Middle	25	15	19
Bottom	15	45	19

Table 63.2

Figure 63.2: Critical slip surface, using the Spencer method

Embankment, (4) materials, water table, tension crack

64.1. Introduction

This model is taken from Figure 4-1 of USACE (2003).

64.2. Problem Description

The problem as shown in Figure 64.1 is a non-homogeneous three-layer embankment with material properties given in Table 64.1 There is a 7-foot tension crack located at the peak of the embankment, and a groundwater surface between the layer of sand and the embankment. This problem calculates the factor of safety via Spencer's Method using a circular slip surface as shown below.

64.3. Geometry and Material Properties

Figure 64.1: Geometry Setup in Slide

Table	64.1:	Soil	Properties
-------	-------	------	------------

	Unit Weight		Shear Stre	ngth
Soil	Moist γ (pcf)	Sat'd γ (pcf)	c´ (psf)	φ΄ (deg.)
Embankment	115	120	1000	5
Sand	125	130	0	35
Foundation Clay	110	115	3000	0
Rock	160	165	0	45

Table 64.2

Method	Factor of Safety
Bishop	2.447
Spencer	2.445
GLE	2.447
Janbu Corrected	2.430

Note: Reference factor of safety (Spencer) = 2.44 [USACE]

Figure 64.2: Solution, using the Spencer method

Embankment, (4) materials, water table, ponded water

65.1. Introduction

This model is taken from Figure 4-3 of USACE (2003).

65.2. Problem Description

The problem as shown in Figure 66.1 is a three-layer slope with material properties given in Table 66.1 This example demonstrates conditions with an upstream slope and a low pool of water. The factor of safety is calculated using a circular slip surface, located as shown below.

65.3. Geometry and Material Properties

Figure 65.1: Geometry Setup in Slide

Table 65.1: Soil Properties

	Unit Weight		Shear Streng	gth
Soil	Moist γ (pcf)	Sat'd γ (pcf)	c´ (psf)	φ΄ (deg.)
Embankment	115	120	100	35
Sand	125	130	0	35
Foundation Clay	110	115	0	28
Rock	160	165	0	45

Geotechnical tools, inspired by you.

Table 65.2

Method	Factor of Safety
Bishop	2.716
Spencer	2.736
GLE	2.744
Janbu Corrected	2.650

Note: Reference factor of safety (Bishop) = 2.71 [USACE]

Figure 65.2: Solution, using the Spencer method

Embankment, (4) materials, water table, ponded water

66.1. Introduction

This model is taken from Figure 4-3 of USACE (2003).

66.2. Problem Description

The problem as shown in Figure 66.1 is a three-layer slope with material properties given in Table 66.1 This example demonstrates conditions with an upstream slope and a low pool of water. The factor of safety is calculated using a circular slip surface, located as shown below.

66.3. Geometry and Material Properties

Figure 66.1: Geometry Setup in **Slide**

Table 66.1: Soil Properties

Soil	γ (pcf)	c´ (psf)	φ´ (deg.)
Embankment	115	200	25
Foundation Sand	130	0	35
Foundation Clay	115	0	27

Geotechnical tools, inspired by you.

Table 66.2

Method	Factor of Safety
Bishop	2.307
Spencer	2.307
GLE	2.309
Janbu Corrected	2.290

Figure 66.2: Solution, using the Spencer method

Embankment, (2) materials

67.1. Introduction

This model is taken from example F-5 of USACE (2003).

67.2. Problem Description

This problem analyzes the stability at the end of construction of the embankment shown in Figure 67.1. The slope is non-homogeneous, consisting of embankment soil and foundation soil. Both soils are finegrained and undrained during construction. The factor of safety is calculated using a circular slip surface, with center of rotation located 259 feet above and 101 feet to the right of the toe of the slope.

67.3. Geometry and Material Properties

Table 67.1: Soil Properties

Soil	γ (pcf)	c´ (psf)	φ´ (deg.)
Embankment	135	1780	5
Foundation	127	1600	2

Geotechnical tools, inspired by you.

Table 67.2

Figure 67.2: Solution, using the Spencer method

Embankment, (3) materials, ponded water

68.1. Introduction

This model is taken from example E-10 of USACE (2003).

68.2. Problem Description

This problem analyzes the stability of the undrained ($\phi = 0$) slope in Figure 68.1. The slope consists of three layers with differing material strength and 8 feet of water outside of it. The slip circle used to evaluate the slope, has center of rotation located 8.4 ft to the right and 36 feet above the toe of the slope. The circle is tangent to the base of soil 3.

68.3. Geometry and Material Properties

Figure 68.1: Geometry Setup in Slide

Table 68.1: Soil Properties

Soil	γ (pcf)	c´ (psf)
1	120	600
2	100	400
3	105	500

Table 68.2

Method	Factor of Safety
Bishop	1.241
Spencer	1.241
GLE	1.244
Janbu Corrected	1.385

Note: Reference Factor of Safety = 1.33 [USACE]

Figure 68.2: Solution, using the Spencer method

Embankment, (2) materials, water table, ponded water

69.1. Introduction

This model is taken from example F-6 of USACE (2003).

69.2. Problem Description

Figure 69.1 shows a slope with steady seepage. The two-layered slope is made up of two zones – the embankment fill and the foundation. The stability of the slope is analyzed using a slip circle of radius 280 feet.

69.3. Geometry and Material Properties

Soil	γ (pcf)	c´ (psf)	φ´ (deg.)
Embankment	130	0	34
Foundation	125	0	35

Table 69.2

Method	Factor of Safety
Bishop	2.011
Spencer	2.026
GLE	2.027
Janbu Corrected	1.830

Note: Reference factor of safety = 2.01 [USACE]

Figure 69.2: Solution, using the Spencer method

Submerged slope, homogenous, water table, ponded water

70.1. Introduction

This problem is taken from Figure 6.27 on page 88 of Duncan and Wright (2005).

70.2. Problem Description

Figure 70.1 and Figure 70.2 show a submerged slope with different water levels above the slope. The slope is homogeneous. The critical slip surface is assumed to be circular and located using auto refine search.

70.3. Geometry and Material Properties

γ (pcf)	c´ (psf)	φ´ (deg.)
128	100	20

Table 70.2: Case 1 – Water table at 30 feet above the crest

Figure 70.3: Solution to case 1 (circular), using the Spencer Method

Method	Factor of Safety (Circular)	Factor of Safety (Non-Circular)
Bishop	1.603	1.560
Spencer	1.599	1.590
GLE	1.599	1.579
Note:	Reference factor of safety = 1.60 [Duncan and Wright]	

Figure 70.4: Solution to case 2 (circular), using the Spencer method

Slope, homogenous, finite element groundwater seepage analysis, water table

71.1. Introduction

This problem is taken from Figure 6.37 and 6.38 on page 100 of Duncan and Wright (2005).

71.2. Problem Description

A homogeneous slope with water level located at 75 ft at the right end (Figure 71.1). The pore water pressure is modelled using finite element seepage analysis in case 1 (Figure 71.1) and using piezometric line approximation in case 2 (Figure 71.2). The critical slip surface is assumed to be circular and located using auto refine search for both cases.

71.3. Geometry and Material Properties

Table 7	71.1:	Soil	Properties
---------	-------	------	------------

c´ (psf)	φ´ (°)	γ (pcf)
200	20	125

Table 71.2: Case 1 – Finite Element seepage analysis

Method	Factor of Safety (Circular)	Factor of Safety (Non-Circular)
Bishop	1.141	1.081
Spencer	1.141	1.146
GLE	1.141	1.157
Note:	Reference factor of safety = 1.138 [Duncan and Wright]	

Figure 71.3: Solution to Case 1, using the Spencer method

Method	Factor of Safety (Circular)	Factor of Safety (Non-Circular)
Bishop	1.142	1.081
Spencer	1.142	1.146
GLE	1.141	1.157
Note:	Reference factor of safety = 1.1	41 [Duncan and Wright]

Figure 71.4: Solution to Case 2, using the Spencer method

Table 71.3: Case 2 – Piezometric Line approximation

Embankment dam, (4) materials, finite element groundwater seepage analysis, ponded water

72.1. Introduction

This problem is taken from Figure 6.39 and Figure 6.40 on page 101 of Duncan and Wright (2005).

72.2. Problem Description

A symmetric earth embankment dam resting on a layered soil foundation with ponded water of elevation 302 feet on the left side is shown in Figure 72.1 and 72.2. The left face and right face of the dam is constructed using shell material. The pore water pressure is modelled using two approaches. They are finite element seepage analysis and piezometric line approximation. Two cases are studied in this verification. The global critical slip surface is of interest in case 1 and the critical slip surface tangent to elevation 197 feet is of interest in case 2. Both circular and non-circular critical slip surfaces were studied in case 1 and only circular critical slip surface was studied in case 2.

72.3. Geometry and Material Properties

Table 72.1: Soil Properties

Material	k (ft/s)	c' (psf)	φ' (⁰)	γ (pcf)
Outer Shell	1.67 x 10 -4	0	34	125
Clay Core	1.67 x 10 ⁻⁸	100	26	122
Foundation Clay	1.67 x 10 ⁻⁷	0	24	123
Foundation Sand	1.67 x 10 ⁻⁵	0	32	127

Table 72.2: Case 1(a) - Global critical slip surface - finite element seepage analysis

Method	Factor of Safety (circular)	Factor of Safety (non-circular)
Bishop	1.149	0.988
Spencer	1.158	1.085
GLE	1.161	1.096
Note: Reference factor of safety = 1.11 [Duncan and Wright]		

Figure 72.3: Solution to Case 1(a) (Circular), using the Bishop method

Method	Factor of Safety (circular)	Factor of Safety (non-circular)
Bishop	1.306	1.196
Spencer	1.301	1.241
GLE	1.303	1.232
Note: Reference factor of safety = 1.30 [Duncan and Wright]		

Table 72.3: Case 1(b) – Global critical slip surface - piezometric line approximation

Figure 72.4: Solution to Case 1(b) (Circular), using the Bishop method

Table 72.4: Case 2(a) - Critical slip surface tangent to El. 197 - finite element seepage analysis

Method	Factor of Safety (circular)	Factor of Safety (non-circular)
Bishop	1.312	1.236
Spencer	1.312	1.382
GLE	1.319	1.395

Note:

Reference factor of safety = 1.37 [Duncan and Wright]

Figure 72.5: Solution to Case 2(a), using the Spencer method

Method	Factor of Safety (circular)	Factor of Safety (non-circular)	
Bishop	1.563	1.489	
Spencer	1.557	1.632	
GLE	1.556	1.630	
Note:	Reference factor of safety = 1.57 [Duncan and Wright]		

Table 72.5: Case 2(b) – Critical slip surface tangent to El. 197 – piezometric line approximation

Figure 72.6: Solution to Case 2(b), using the Bishop method

Excavated slope, (4) materials, tension crack

73.1. Introduction

This problem is an analysis of the excavated slope for reactor 1 at Bradwell (Duncan and Wright, 2005 and Skempton and LaRochelle, 1965).

73.2. Problem Description

Figure 73.2 shows the cross section of the excavated slope. The lower part of the excavation is in the London Clay and is inclined at ½: 1 (H:V). The London Clay is overlain by Marsh Clay. The clay fill from the excavation is placed on top of the Marsh clay. The Marsh Clay and the clay fill are both inclined at 1:1 (H:V). The clay fill is modelled to crack to the full depth of the fill (11.4). The critical slip surface is assumed to be circular for all cases.

73.3. Geometry and Material Properties

Figure 73.2: Excavated Slope Geometry in Slide

Table	73.1:	Soil	Properties
-------	-------	------	------------

Material	c (psf)	φ (°)	γ (pcf)
Clay Fill	1	35	110
Marsh Clay	300	0	105
London Clay (brown and blue)	$c_z + (y_z - y) \Delta c_z$	0	120

Table 73.2:	Undrained	Strength	Parameters	for London	Clay

c _z (psf)	Depth, y _z (ft)	y (ft)	∆c _z (psf/ft)
750	- 3 to -9.5	-3	90
1335	-9.5 to -14	-9.5	82
1704	-14 to -24	-14	53
2234	-24 to -27	-24	47
2375	-27 to -29	-27	47
2469	< -29	-29	39

Method	Reference Factor of Safety [Duncan and Wright]	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.76	1.762	1.696
Janbu Simplified	1.63	1.628	1.589
Janbu Corrected	1.74	1.736	1.676
Spencer	1.76	1.758	1.712

Table 73.2

Safety Factor 0.000 1.758 Method: spencer 0.500 Factor of Safety: 1.758 Center: 130.424, 122.750 1.000 Radius: 157.125 8-1.500 Left Slip Surface Endpoint: 25.268, 6.000 Right Slip Surface Endpoint: 97.437, -30.874 2.000 Left Slope Intercept: 25.268 17.500 Right Slope Intercept: 97.437 -30.874 2.500 3.000 3.500 4.000 <u>с</u>. 4.500 5.000 5.500 6.000+ 0 30 -25 6 50 75 125 150 25 100

Figure 73.3: Solution, using the Spencer method (Circular)

Figure 73.4: Solution, using the Spencer method (Non-circular)

Embankment, (2) materials

74.1. Introduction

This problem is taken from Figure 7.12 on page 120 of Duncan and Wright (2005)

74.2. Problem Description

Figure 74.1 shows an embankment constructed of cohesionless material resting on saturated clay foundation. The critical slip surface is assumed to be circular and located using auto refine search.

74.3. Geometry and Material Properties

Figure 74.1: Sand Embankment on Saturated Clay Foundation

Table 74.1: Soil Properties

Material	c (psf)	φ (°)	γ (pcf)
Embankment (Sand)	0	40	140
Foundation (Saturated Clay)	2500	0	140

Figure 74.2: Solution, using the Spencer method (Circular)

Figure 74.3: Solution, using the Spencer method (Non-circular)

Dyke, (4) materials

75.1. Introduction

This problem is an analysis of one of the planned James Bay dykes. The model is taken from Figure 7.16 on page 124 of Duncan and Wright (2005).

75.2. Problem Description

Figure 75.1 shows the planned cross section of James Bay Dyke. Two cases are studied in this problem. The first case assumes that the critical slip surface is circular and the second case assumes that the critical slip surface is non-circular. The critical slip surface is located using auto refine search in case 1, and it is located using block search in case 2.

75.3. Geometry and Material Properties

Figure 75.1: Circular Critical Slip Surface

Table 75.1: Soil Properties

Material	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Fill	0	30	20
Clay "crust"	41	0	20
Marine Clay	34.5	0	18.8
Lacustrine Clay	31.2	0	20.3

Geotechnical tools, inspired by you.

Table 75.2: Case 1 – Circular critical slip surface

Method	Factor of Safety
Bishop	1.468
GLE	1.466
Spencer	1.464

Figure 75.2: Solution to Case 1, using the Spencer method (Circular)
Table 75.3: Case 2 -	- Non-circular	critical slip surface
----------------------	----------------	-----------------------

Method	Factor of Safety
Bishop	1.105
Spencer	1.167
GLE	1.142

Figure 75.3: Solution to Case 2, using the Spencer method

Embankment dam, homogenous, finite element groundwater seepage analysis, ponded water

76.1. Introduction

This problem is taken from Figure 7.19 on page 128 of Duncan and Wright (2005)

76.2. Problem Description

A symmetric homogeneous earth embankment resting on an impermeable foundation with a ponded water of elevation 40 feet on its left side is shown in both Figure 76.1 and Figure 76.2. Seepage is assumed to have developed at a steady-state rate in this verification problem. The pore water pressure is modelled using finite element seepage analysis and piezometric line approximation. The critical slip surface is assumed to be circular and located using auto refine search for both cases.

Figure 76.1: Finite Element Seepage Analysis

Figure 76.2: Piezometric Line Approximation

Table 76.1: Soil Properties

c' (psf)	φ' (⁰)	γ (pcf)	k _{sat} (ft/s)	k _{unsat} (ft/s)
100	30	100	1.67 x 10 ⁻⁷	1.67 x 10 ⁻¹⁰

76.4. Results

Table 76.2: Case 1 – Finite Element seepage analysis

Method	ractor of ballety (offetial)
Bishop	1.068
Spencer	1.075
GLE	1.074

Method Factor of Safety (Circular)

Note: Reference factor of safety = 1.19 & 1.08 (from chart) [Duncan and Wright]

Figure 76.3: Solution to Case 1, using the Spencer method (Circular)

Method	Factor of Safety (Circular)
Bishop	1.090
Spencer	1.100
GLE	1.094

Table 76.3: Case 2 – Piezometric line approximation

Figure 76.4: Solution to Case 2, using the Spencer method (Circular)

Dam, (2) materials, finite element groundwater seepage analysis, ponded water

77.1. Introduction

This problem is taken from Figure 7.24 on page 131 of Duncan and Wright (2005)

77.2. Problem Description

A symmetric earth dam with thick core and with ponded water of elevation 315 on its left side resting on an impervious foundation is shown in Figure 77.1 and Figure 77.2. Seepage is assumed to have developed at a steady-state rate. The pore water pressure is modelled using finite element seepage analysis and piezometric line approximation. The global critical slip surface occurs at shallow circles at the toe. However, in this verification problem, it is the deeper slip surface that is of interest. The deeper critical slip surface is assumed to be circular and tangent to the boundary between the dam and its foundation. It is located using slope search for both cases.

Figure 77.1: Finite Element Seepage Analysis

Table 77.1: Soil Properties

Zone	c' (psf)	φ' (⁰)	γ (pcf)	k (ft/s)
Core	0	20	120	1.67x 10 ⁻⁷
Shell	0	38	140	1.67x 10⁻⁵

77.4. Results

Table 77.2: Case 1 - Finite element seepage analysis

Method	Reference Factor of Safety [Duncan and Wright]	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.62	1.658	1.541
Spencer	1.69	1.724	1.640

Figure 77.3: Solution to Case 1, using the Spencer method

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.584	1.478
Spencer	1.648	1.570

Table 77.3: Case 2 - Piezometric line approximation

Figure 77.4: Solution to Case 2, using the Spencer method

Slope, homogenous

78.1. Introduction

This problem is taken from Figure 14.3 on page 216 of Duncan and Wright (2005)

78.2. Problem Description

A simple, pure cohesive slope is shown in Figure 78.1. Three different foundation thicknesses (30 feet-thick, 46.5 feet-thick and 60 feet-thick) are tested and for each case two slip surfaces are of interest in this verification problem. The first slip surface passes through the toe and the second slip surface is tangent to the bottom of the foundation. The slip surfaces are assumed to be circular.

c (psf)	φ (°)	γ (pcf)
1000	0	100

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.126	0.947
Spencer	1.200	0.878
GLE	1.186	0.914

Table 78.2: Case 1(a) - 30 feet-thick foundation – slip surface passes through the toe

Note: Reference factor of safety = 1.124 [Duncan and Wright]

Figure 78.2: Solution to Case 1(a), using the Spencer method

Table 78.3: Case 1(b) – 30 feet-thick foundation – slip surface is tangent to the bottom of the foundation

Figure 78.3: Solution to Case 1(b), using the Spencer method

Table 78.4: Case 2(a) – 46.5 feet-thick foundation – slip surface passes through the toe

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.126	0.947
Spencer	1.200	0.880
GLE	1.186	0.910

Note: Reference factor of safety = 1.124 [Duncan and Wright]

Figure 78.4: Solution to Case 2(a), using the Spencer method

Table 78.5: Case 2(b) – 46.5 feet-thick foundation – slip surface is tangent to the bottom of the foundation

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.130	0.890
Spencer	1.129	0.887
GLE	1.129	0.887

Note: Reference factor of safety = 1.124 [Duncan and Wright]

Figure 78.5: Solution to Case 2(b), using the Spencer method

MethodFactor of Safety
(Circular)Factor of Safety
(Non-circular)Bishop1.1250.947Spencer1.2020.878GLE1.1850.910

Note: Reference factor of safety = 1.124 [Duncan and Wright]

Figure 78.6: Solution to Case 3(a), using the Spencer method

Table 78.7: Case 3(b) - 60 feet-thick foundation - slip surface is tangent to the bottom of the foundation

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.125	0.873
Spencer	1.124	0.829
GLE	1.124	0.837

Note: Reference factor of safety = 1.119 [Duncan and Wright]

Figure 78.7: Solution to Case 3(b), using the Spencer method

Slope, (2) materials, infinite slope failure

79.1. Introduction

This problem is taken from Figure 14.4 on page 217 of Duncan and Wright (2005)

79.2. Problem Description

Figure 79.1 shows a cohesionless slope. Two slip surfaces are of interest in this verification problem. The first is a slip surface that is very shallow (infinite slope mechanism) and the second is a deep slip surface that is tangent to the bottom of the foundation.

Figure 79.1: A Cohesionless Earth Embankment

Table	79.1:	Soil	Properties
-------	-------	------	------------

Zone	c' (psf)	φ' (⁰)	γ (pcf)
Embankment	0	30	120
Foundation	450	0	120

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.412	1.225
Spencer	1.400	1.361
GLE	1.404	1.373

Table 79.2: Case 1 – Deep slip surface tangent to the bottom of the foundation

Note: Reference factor of safety = 1.40 [Duncan and Wright]

Figure 79.2: Solution to Case 1, using the Spencer method

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.444	1.444
Spencer	1.443	1.443
GLE	1.443	1.443

Table 79.3: Case 2 – Very shallow slip surface (infinite slope mechanism)

Note: Reference factor of	of safety = 1.44	[Duncan and	Wright]
---------------------------	--------------------	-------------	---------

Figure 79.3: Solution to Case 2, using the Spencer method

Embankment, (6) materials

80.1. Introduction

This problem is taken from Figure 14.5 on page 218 of Duncan and Wright (2005).

80.2. Problem Description

An embankment wall resting on a stratified soil foundation is shown in Figure 80.1. The center point of the critical slip surface is approximated to be at (142, 147). For the given center point, several slip surfaces are located by varying the radius. In this verification problem, two slip surfaces are analyzed. The first is tangent to 0 feet-depth line and the second is tangent to 15 feet-depth line.

80.3. Geometry and Material Properties

Figure 80.1: An Embankment Resting on A Stratified Soil Foundation

Table 80.1: Soil Properties

Material	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Embankment	1	35	120
Foundation – Layer I	950	0	110
Foundation – Layer II	1	32	122
Foundation – Layer III	500	0	98
Foundation – Layer IV	1	37	131
Foundation – Layer V	600	0	103

Geotechnical tools, inspired by you.

Method	Factor of Safety
Bishop	2.549
Spencer	2.545
GLE	2.550

Table 80.2: Case 1 - Slip surface is tangent to 0 feet-depth line

Note: Reference factor of safety = 2.56 [Duncan and Wright]

Figure 80.2: Solution to Case 1, using the Spencer method

Method	Factor of Safety
Bishop	1.398
Spencer	1.359
GLE	1.358

Table 80.3:	Case 2 -	Slip	surface	is t	tangent to	15	feet-depth line

Figure 80.3: Solution to Case 2, using the Spencer method

Embankment, (2) materials, infinite slope failure

81.1. Introduction

This problem is taken from Figure 14.7 on page 220 of Duncan and Wright (2005)

81.2. Problem Description

Figure 81.1 shows an earth embankment. Two critical slip surfaces are of interest in this verification problem. The first is a deep slip surface tangent to the bottom of the foundation and the second is a very shallow (infinite slope mechanism) slip surface.

81.3. Geometry and Material Properties

Figure 81.1: Geometry Setup in Slide

Table 81.1: Soil Properties

Zone	c' (psf)	φ' (°)	γ (pcf)
Embankment	0	30	124
Foundation	500	0	98

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.230	1.081
Spencer	1.209	1.183
GLE	1.217	1.174

Table 81.2: Case 1 – Deep slip surface tangent to the bottom of the foundation

Note: Reference factor of safety = 1.21 [Duncan and Wright]

Figure 81.2: Solution for Case 1, using the Spencer method

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.155	1.155
Spencer	1.155	1.155
GLE	1.155	1.155

Table 81.3: Case 2 – Very shallow (infinite slope mechanism) slip surface

Figure 81.3: Solution for Case 2, using the Spencer method

Embankment, (2) materials, water table

82.1. Introduction

This problem is taken from Figure 14.20a on page 230 of Duncan and Wright (2005).

82.2. Problem Description

Figure 82.1 shows an earth embankment. The pore water pressure is modelled using piezometric line approximation. The critical slip surface is assumed to be circular and located using auto refine search.

82.3. Geometry and Material Properties

Figure 82.1: Geometry Setup in Slide

Table 82.1: Soil Properties

Zone	c' (psf)	φ' (⁰)	γ (pcf)
Embankment	600	25	125
Foundation	0	30	132

Table 82.2

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.533	1.444
Spencer	1.540	1.534
GLE	1.540	1.527

Note: Reference factor of safety values varied from 1.528 to 1.542 for different subtended angle, which defines the number of slices.

Reference factor of safety used (FS average) = 1.535 [Duncan and Wright]

Figure 82.2: Solution, using the Spencer method

Embankment, (2) materials

83.1. Introduction

This problem is taken from Figure 14.20-b on page 230 of Duncan and Wright (2005).

83.2. Problem Description

An embankment wall is shown in Figure 83.2. Two undrained shear strength profiles for its foundation are tested. The foundation's undrained shear strength profiles are shown in Figure 83.1. The slip surface that is tangent to the bottom of the foundation is of interest for the second profile. The slip surfaces in this verification problem are assumed to be circular.

Table 83.1: Soil Properties

Zone	c´ (psf)		φ' (⁰)	γ (pcf)
Embankment	0		36	123
Foundation	Case 1	$c' = 200 + 15 \times depth$	0	07
Foundation	Case 2	c' = 300	0	97

83.4. Results

Table 83.2: Case 1 – Undrained shear strength profile I

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.313	1.119
Spencer	1.285	1.262
GLE	1.294	1.229

Note: Reference factor of safety values varied from 1.276 to 1.323 for different subtended angle, which defines the number of slices.

Figure 83.3: Solution to Case 1, using the Spencer method

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.335	1.067
Spencer	1.330	1.182
GLE	1.331	1.195

Table 83.3: Case 2 - Undrained shear strength profile II

Note: R Reference factor of safety values varied from 1.295 to 1.328 for different subtended angle, which defines the number of slices.

Reference factor of safety used (FS average) = 1.312 [Duncan and Wright]

Figure 83.4: Solution to Case 2, using the Spencer method

Embankment, (2) materials

84.1. Introduction

This problem is taken from Figure 15.9 on page 244 of Duncan and Wright (2005).

84.2. Problem Description

An earth embankment is shown in Figure 84.1. Four undrained shear strength profiles for the foundation are analyzed. The undrained shear strength profiles can be generalized as:

$$c_u = 300 + c_z z$$

where z is depth (in feet) and c_z is the rate of increase in undrained shear strength. c_z value varies among profiles. The critical slip surfaces in this verification problem are assumed to be circular.

84.3. Geometry and Material Properties

Figure 84.1: An Earth Embankment in Slide

Table 84.1: Soil Properties

Zone	c' (psf)	φ' (⁰)	γ (pcf)
Embankment	0	35	125
Foundation	$c_{u} = 300 + c_{z} z$	0	100

Table 3.2

Table 8	4.2: cz	values
---------	---------	--------

Profile	c _z (psf/ft)
I	0
II	5
Ш	10
IV	15

Table 84.3	Case '	1 —	Undrained	shear	strength	profile	L
10010 04.0.	ouse		onununu	Jucui	Juongun	promo	

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	0.761	0.684
Spencer	0.756	0.740
GLE	0.762	0.747

Note: Reference factor of safety = 0.75 [Duncan and Wright]

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	0.909	0.814
Spencer	0.898	0.903
GLE	0.908	0.908

Table 84.4: Case 2 - Undrained shear strength profile II

Note: Reference factor of safety = 0.90 [Duncan and Wright]

Figure 84.3: Solution to Case 2, using the Spencer method

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.045	0.937
Spencer	1.032	1.018
GLE	1.034	1.024

Table 84.5: Case 3 – Undrained shear strength profile III

Figure 84.4: Solution to Case 3, using the Spencer method

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.154	1.023
Spencer	1.134	1.116
GLE	1.138	1.103

Table 84.6: Case 4 – Undrained shear strength profile IV

Note: Reference factor of safety = 1.13 [Duncan and Wright]

Figure 84.5: Solution to Case 4, using the Spencer method

Reinforced slope, homogenous, grouted tieback

85.1. Introduction

This problem is taken from Figure 6.34 on page 95 of Duncan and Wright (2005).

85.2. Problem Description

A saturated clay slope with a single support placed at its mid-height is shown in Figure 85.1. The used support has a capacity of 9,000 lb/ft. Two cases of support applications are investigated in this verification problem. The first one is active support and the second one is passive support.

c (psf)	φ (°)	γ (pcf)
350	0	98

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)	
Bishop	1.531	1.418	
Spencer	1.884	2.016	
GLE	1.575	2.051	

Table 85.2: Case 1 – Active Support

Table	85.3:	Case	2 –	Passive	Support
-------	-------	------	-----	---------	---------

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)	
Bishop	1.324	1.245	
Spencer	1.872	1.575	
GLE	1.378	1.491	

10000. Reference factor of safety = 1.52 [Durban and Wight]	Note: Reference	factor of safety	y = 1.32	[Duncan a	and Wright]
---	-----------------	------------------	----------	-----------	-------------

Figure 85.3: Solution to Case 2, using the GLE method
Reinforced slope, homogenous, grouted tieback

86.1. Introduction

This problem is taken from Figure 7.28 on page 135 of Duncan and Wright (2005) (see also the STABGM user's documentation).

86.2. Problem Description

A reinforced fill slope resting on a much stronger rock foundation is shown in Figure 86.1. Each of the used supports has a capacity of 800 lb/ft and is 20 feet long. The supports are spaced 4 feet apart vertically and the first support is located 4 feet above the foundation. The global slope failure, not the local failure between supports, is of interest.

86.3. Geometry and Material Properties

Figure 86.1: A Reinforced Fill Slope on a Strong Rock Foundation in Slide

Table 86.1: Soil Properties

c (psf)	φ' (⁰)	γ (pcf)
0	37	130

Table 86.2

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.629	1.585
Spencer	1.620	1.594
GLE	1.622	1.588

Figure 86.2: Solution, using the Spencer method

Retaining wall, (3) materials, geotextile

87.1. Introduction

This problem is taken from the Baseline case studied in the "Geosynthetic Reinforced Multitiered Walls", a paper by Leshchinsky, D. and Han, J. (2004).

87.2. Problem Description

A three-tiered wall is shown in Figure 87.1. The material properties are presented in Table 87.1. The support properties are tabulated in Table 87.2. The global slope failure, not the local failure at each tier, is of interest.

87.3. Geometry and Material Properties

Figure 87.1: A Three-tiered Wall in Slide

Table 87.1: Soil Properties

Zone	c (kPa)	φ (°)	γ (kN/m³)
Reinforced and retained fill	0	34	18
Foundation soil	10	34	18
Blocks	2.5	34	18

Table 87.2: Support Properties

Length (m)	Tensile Strength (kN/m)	Pullout Strength	
6.3	10.0	80%	

87.4. Results

Table 87.3

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.040	0.989
Spencer	1.097	1.103
GLE	1.168	1.118

Note: Reference factor of safety = 0.99 (using finite difference method) & 1.00 (circular slip surface using the Bishop method) [Leshchinsky and Han]

Figure 87.2: Solution, using the Bishop simplified method

Retaining wall, (3) materials, geotextile

88.1. Introduction

This problem is taken from the Fill Quality case studied in the "Geosynthetic Reinforced Multitiered Walls", a paper by Leshchinsky, D. and Han, J. (2004).

88.2. Problem Description

A three-tiered wall is shown in Figure 88.1. The model has the same geometry as the model in verification problem #87, but different reinforced and retained fill strength. The purpose of this model is to quantify the effect of fill quality on the stability characteristic of a multi-tiered wall. The material properties are given in Table 88.1. The support properties are shown in Table 88.2.

88.3. Geometry and Material Properties

Figure 88.1: A Three-tiered Wall in Slide

Table 88.1: Soil Properties

Zone	c (kPa)	φ (°)	γ (kN/m³)
Reinforced and retained fill	0	25	18
Foundation soil	10	34	18
Blocks	2.5	34	18

Table 88.2: Support Properties

Length (m)	Tensile Strength (kN/m)	Pullout Strength	
6.3	22.0	80%	

88.4. Results

Table 88.3

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.045	1.040
Spencer	1.043	1.037
GLE	1.043	1.033

Note: Reference factor of safety = 0.99 (using finite difference method) & 1.00 (circular slip surface using the Bishop method) [Leshchinsky and Han]

Retaining wall, (3) materials, geotextile

89.1. Introduction

This problem is taken from the Reinforcement Length case studied in the "Geosynthetic Reinforced Multitiered Walls", a paper by Leshchinsky, D. and Han, J. (2004).

89.2. Problem Description

A three-tiered wall is shown in Figure 89.1. The support used in this model has a shorter length than that of verification model #87. The purpose of this model is to quantify the effect of reinforcement length on the stability characteristic of a multi-tiered wall. The material properties are given in Table 89.1. The support properties are presented in Table 89.2.

89.3. Geometry and Material Properties

Figure 89.1: A Three-tiered Wall in Slide

Table 89.1: Soil Properties

Zone	c (kPa)	φ (°)	γ (kN/m³)
Reinforced and retained fill	0	34	18
Foundation soil	10	34	18
Blocks	2.5	34	18

Table 89.2: Support Properties

Length (m)	Tensile Strength (kN/m)	Pullout Strength	
4.2	11.4	80%	

89.4. Results

Table 89.3

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	0.976	0.988
Spencer	0.971	0.966
GLE	0.971	0.962

Note: Reference factor of safety = 0.98 (using finite difference method) & 1.00 (circular slip surface using the Bishop method) [Leshchinsky and Han]

Figure 89.2: Solution, using the Spencer method

Retaining wall, (3) materials, geotextile

90.1. Introduction

This problem is taken from the Reinforcement Type case studied in the "Geosynthetic Reinforced Multitiered Walls", a paper by Leshchinsky, D. and Han, J. (2004).

90.2. Problem Description

A three-tiered wall is shown in Figure 90.1. This model uses two support types. The purpose of this model is to quantify the effect of reinforcement type on the stability characteristic of a multi-tiered wall. The material properties are given in Table 90.1. The support properties are presented in Table 90.2.

90.3. Geometry and Material Properties

Figure 90.1: A Three-tiered Wall in Slide

Table 90.1: Soil Properties

Zone	c (kPa)	φ (°)	γ (kN/m³)
Reinforced and retained fill	0	34	18
Foundation soil	10	34	18
Blocks	2.5	34	18

Geotechnical tools, inspired by you.

Table 90.2: Support Properties

Туре	Length (m)	Tensile Strength (kN/m)	Pullout Strength
#1 (upper 8 layers)	6.3	7.5	80%
#2 (lower 7 layers)	6.3	11.0	80%

90.4. Results

Table	90.3	;
-------	------	---

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.004	0.978
Spencer	1.002	1.146
GLE	1.004	1.158

Note: Reference factor of safety = 1.01 (using finite difference method) & 1.00 (circular slip surface using the Bishop method) [Leshchinsky and Han]

Retaining wall, (3) materials, geotextile

91.1. Introduction

This problem is taken from the Foundation Soil case studied in the "Geosynthetic Reinforced Multitiered Walls", a paper by Leshchinsky, D. and Han, J. (2004).

91.2. Problem Description

A three-tiered wall is shown in Figure 91.1. The model has the same geometry as the model in verification problem #87, but different foundation soil strength. The purpose of this model is to quantify the effect of foundation soil strength on the stability characteristic of a multi-tiered wall. The material properties are shown in Table 91.1. The support properties are given in Table 91.2.

91.3. Geometry and Material Properties

Figure 91.1: A Three-Tiered Wall in Slide

Table 91.1: Soil Properties

Zone	c (kPa)	φ (°)	γ (kN/m³)
Reinforced and retained fill	0	34	18
Foundation soil	0	18	18
Blocks	2.5	34	18

Table 91.2: Support Properties

Length (m)	Tensile Strength (kN/m)	Pullout Strength
6.3	10.0	80%

91.4. Results

Table 91.3

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	0.985	0.783
Spencer	0.964	0.829
GLE	0.963	1.007

Note: Reference factor of safety = 0.86 (using finite difference method) & 1.00 (circular slip surface using the Bishop method) [Leshchinsky and Han]

Figure 91.2: Solution, using the Spencer method

Retaining wall, (3) materials, geotextile

92.1. Introduction

This problem is taken from the Water case studied in the "Geosynthetic Reinforced Multitiered Walls", a paper by Leshchinsky, D. and Han, J. (2004).

92.2. Problem Description

A three-tiered wall is shown in Figure 92.1. The model has the same geometry as the model in verification problem #87 with an addition of water seepage. The purpose of this model is to quantify the effect of water seepage on the stability characteristic of a multi-tiered wall. The material properties are shown in Table 92.1. The support properties are given in Table 92.2.

92.3. Geometry and Material Properties

Figure 92.1: A Three-Tiered Wall in Slide

Table 92.1: Soil Properties

Zone	c (kPa)	φ (°)	γ (kN/m³)
Reinforced and retained fill	0	34	18
Foundation soil	10	34	18
Blocks	2.5	34	18

Geotechnical tools, inspired by you.

Table 92.2: Support Properties

Length (m)	Tensile Strength (kN/m)	Pullout Strength
6.3	9.25	80%

92.4. Results

Table 92.3

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.037	1.040
Spencer	1.111	1.131
GLE	1.111	1.132

Note: Reference factor of safety = 1.01 (using finite difference method) & 1.00 (circular slip surface using the Bishop method) [Leshchinsky and Han]

Figure 92.2: Solution, using the Bishop simplified method

Retaining wall, (3) materials, distributed load, geotextile

93.1. Introduction

This problem is taken from the Surcharge case studied in the "Geosynthetic Reinforced Multitiered Walls", a paper by Leshchinsky, D. and Han, J. (2004).

93.2. Problem Description

A three-tiered wall is shown in Figure 93.1. The model has the same geometry as the model in verification problem #87 with an addition of surcharge on the uppermost tier. The purpose of this model is to quantify the effect of surcharge on the stability characteristic of a multi-tiered wall. The material properties are shown in table 93.1. The support properties are given in table 93.2.

93.3. Geometry and Material Properties

Figure 93.1: A Three-tiered Wall in Slide

Table 93.1: Soil Properties

Zone	c (kPa)	φ (°)	γ (kN/m³)
Reinforced and retained fill	0	34	18
Foundation soil	10	34	18
Blocks	2.5	34	18

Table 93.2: Support Properties

Length (m)	Tensile Strength (kN/m)	Pullout Strength
6.3	11.6	80%

93.4. Results

Table 93.3

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	0.958	0.981
Spencer	0.957	0.995
GLE	0.956	1.050

Note: Reference factor of safety = 1.02 (using finite difference method) & 1.00 (circular slip surface using the Bishop method) [Leshchinsky and Han]

Figure 93.2: Solution, using the Spencer method

Retaining wall, (3) materials, geotextile

94.1. Introduction

This problem is taken from the Number of Tiers case studied in the "Geosynthetic Reinforced Multitiered Walls", a paper by Leshchinsky, D. and Han, J. (2004).

94.2. Problem Description

A five-tiered wall is shown in Figure 94.1. The purpose of this model is to quantify the effect of number of tiers on the stability characteristic of a multi-tiered wall. The material properties are given in table 94.1. The support properties are presented in table 94.2.

94.3. Geometry and Material Properties

Figure 94.1: A Three-Tiered Wall in Slide

Table 94.1: Soil Properties

Zone	c (kPa)	φ (°)	γ (kN/m³)
Reinforced and retained fill	0	34	18
Foundation soil	10	34	18
Blocks	2.5	34	18

Table 93.2: Support Properties

Length (m)	Tensile Strength (kN/m)	Pullout Strength
6.3	10.1	80%

94.4. Results

Table 94.3

Method	Factor of Safety (Circular)	Factor of Safety (Non-circular)
Bishop	1.040	0.990
Spencer	1.129	1.075
GLE	1.194	1.074

Note: Reference factor of safety = 1.00 (using finite difference method & circular slip surface using the Bishop method) [Leshchinsky and Han]

Embankment dam, homogenous, rapid drawdown, water table

95.1. Introduction

This rapid drawdown problem is taken from Appendix G of the Engineering Manual EM 1110-2-1902, "Engineering and Design – Stability of Earth and Rock-Fill Dams," by Corps of Engineers (1970).

95.2. Problem Description

The slope in Figure 95.1 is analyzed for slope stability. An initial water level is assumed at elevation 110 ft. Rapid drawdown brings the water level down to an elevation of 24 ft. Material properties of the slope are given in Table 95.1. One circular slip surface is considered. This slip surface is centered at coordinates (169.5, 210) and has a radius of 210 ft. The Army Corps of Engineers 2-stage rapid drawdown method is used.

95.3. Geometry and Material Properties

Unit Weight	Effective Str	ess Envelope	R-Envelope	
U	Intercept, c'	Slope, Φ'	Intercept, c _R	Slope, Φ_R
135 pcf	0	30°	1200 psf	16°

Table 95.2

Rapid Drawdown Method	Factor of Safety
Army Corp. Eng. 2 Stage	1.347

Note: Reference factor of safety = 1.35 (using Army Corp. Eng. 2 Stage method) [Corps of Engineers]

Figure 95.2: Solution, using the Army Corp. Eng. 2-stage rapid drawdown method

Embankment dam, homogenous, rapid drawdown, water table

96.1. Introduction

This rapid drawdown problem is similar to Verification Problem #95, also taken from Appendix G of the Engineering Manual EM 1110-2-1902, "Engineering and Design – Stability of Earth and Rock-Fill Dams," by Corps of Engineers (1970).

96.2. Problem Description

The slope in Figure 96.1 is analyzed for slope stability. An initial water level is assumed at elevation 110 ft. Rapid drawdown brings the water level down to an elevation of 24 ft. Material properties of the slope are given in Table 96.1. One circular slip surface is considered. This slip surface is centered at coordinates (169.5, 210) and has a radius of 210 ft. The Duncan, Wright and Wong 3-stage rapid drawdown method is used.

96.3. Geometry and Material Properties

Figure 96.1: Slope Subjected to Rapid Drawdown

Table 96.1: Slope Soil Properties

Unit Weight	Effective Stress Envelope		R-Envelope	
5	Intercept, c'	Slope, Φ'	Intercept, c _R	Slope, Φ_R
135 pcf	0	30°	1200 psf	16°

Table 96.2

Figure 96.2: Solution, using the Duncan, Wright and Wong 3-stage rapid drawdown method

Embankment dam, homogenous, rapid drawdown, water table

97.1. Introduction

This rapid drawdown problem is taken from the "Slope Stability during Rapid Drawdown" paper by Duncan, Wright and Wong (1990). It is based on the Pilarcitos Dam in California.

97.2. Problem Description

The slope in Figure 97.1 is analyzed for slope stability. An initial water level is assumed at a height of 72 ft. Rapid drawdown brings the water level down to a height of 37 ft. Material properties of the slope are given in Table 97.1. Various slip surfaces are considered to find the minimum factor of safety.

97.3. Geometry and Material Properties

Table 97.1: Dam Soil Properties

Unit Weight	Effective Stress Envelope		R-Envelope	
5	Intercept, c'	Slope, Φ'	Intercept, c _R	Slope, Φ_R
135 pcf	0	45°	60 psf	23°

Rapid Drawdown Method	Factor of Safety (from Slide)	Factor of Safety (from Duncan, Wright and Wong, 1990)
Army Corp. Eng. 2 Stage	0.823	0.82
Lowe and Karafiath	1.047	1.05
Duncan, Wright, Wong 3 Stage	1.043	1.05

Table 97.2

Figure 97.2: Solution, using the Army Corp. Eng. 2-stage rapid drawdown method

Embankment dam, (5) materials, rapid drawdown, water table

98.1. Introduction

This rapid drawdown problem is taken from the "Slope Stability during Rapid Drawdown" paper by Duncan, Wright, and Wong (1990). It is based on the Walter Bouldin Dam in Alabama.

98.2. Problem Description

The slope in Figure 98.1 is analyzed for slope stability. An initial water level is assumed at a height of 47 ft. Rapid drawdown brings the water level down to a height of 15 ft. Material properties of the slope are given in Table 98.1. Various slip surfaces are considered to find the minimum factor of safety.

98.3. Geometry and Material Properties

Figure 98.1: Walter Bouldin Dam Model

Table 98.1: Dam Material Properties

Material Unit Weigh	Unit	Effective Stress Envelope		R-Envelope	
	Weight	Intercept, c'	Slope, Φ'	Intercept, c _R	Slope, Φ_R
Riprap	125 pcf	0	40.0°		
Clayey Silty Sand	128 pcf	240	32.7°	650 psf	13.0°
Micaceous Sand	123 pcf	220	22.5°	450 psf	11.0°
Cretaceous Clay	124 pcf	180	19.0°	180 psf	13.0°
Clayey Sandy Gravel	125 pcf	0	40.0°		

Geotechnical tools, inspired by you.

Table 98.2				
Rapid Drawdown Method	Factor of Safety (from Slide)	Factor of Safety (from Duncan, Wright and Wong, 1990)		
Army Corp. Eng. 2 Stage	0.931	0.93		
Lowe and Karafiath	1.075	1.09		
Duncan, Wright, Wong 3 Stage	1.039	1.04		

Figure 98.2: Solution, using the Army Corp. Eng. 2-stage rapid drawdown method

Embankment dam, (3) materials, rapid drawdown, water table

99.1. Introduction

This rapid drawdown problem is taken from the "Slope Stability during Rapid Drawdown" paper by Duncan, Wright and Wong (1990). It is a hypothetical pumped storage project dam.

99.2. Problem Description

The slope in Figure 99.1 is analyzed for slope stability. An initial water level is assumed at a height of 285 ft. Rapid drawdown brings the water level down to the height of 120 ft. Soil properties of the slope are given in Table 99.1. Various slip surfaces are considered to find the minimum factor of safety.

99.3. Geometry and Material Properties

Figure 99.1: Pumped Storage Project Dam Model

Table 99.1: Dam Material Properties

Material Unit Weig	Unit	Effective Stress Envelope		R-Envelope	
	Weight	Intercept, c'	Slope, Φ'	Intercept, c _R	Slope, Φ_R
Compacted Rockfill	142 pcf	0	37°		
Silty Clay Core	140 pcf	0	36°	2000 psf	18°
Silty Clay Random Zone	140 pcf	0	36°	2000 psf	18°

Geotechnical tools, inspired by you.

Table 99.2				
Rapid Drawdown Method	Factor of Safety (from Slide)	Factor of Safety (from Duncan, Wright and Wong, 1990)		
Army Corp. Eng. 2 Stage	1.345	1.37		
Lowe and Karafiath	1.620	1.58		
Duncan, Wright, Wong 3 Stage	1.534	1.56		

Geotechnical tools, inspired by you.

Embankment dam, homogenous, rapid drawdown, water table

100.1. Introduction

This rapid drawdown problem is taken from the "Stability Charts for Earth Slopes During Rapid Drawdown" paper by Morgenstern (1963). It is a simple slope subjected to complete drawdown.

100.2. Problem Description

The slope in Figure 100.1 is analyzed for slope stability. An initial water level is assumed at a height of 100 ft. Rapid drawdown brings the water level completely down to 0 ft. Soil properties of the slope are given in Table 100.1. Various slip surfaces are considered to find the minimum factor of safety.

100.3. Geometry and Material Properties

Table 100.1: Dam Soil Properties

Unit Weight	Effective Stress Envelope		B-Bar Value
	Intercept, c'	Slope, Φ'	
124.8 pcf	312 psf	30°	1

Figure 100.2: Solution, using B-Bar rapid drawdown method

Embankment dam, homogenous, rapid drawdown, water table

101.1. Introduction

This rapid drawdown problem is similar to verification problem #100 and is taken from the "Stability Charts for Earth Slopes During Rapid Drawdown" paper by Morgenstern (1963). It is a simple slope subjected to drawdown.

101.2. Problem Description

The slope in Figure 101.1 is analyzed for slope stability. An initial water level is assumed at a height of 100 ft. Rapid drawdown brings the water level down to 50 ft. Soil properties of the slope are given in Table 101.1. Various slip surfaces are considered to find the minimum factor of safety.

101.3. Geometry and Material Properties

Table 101.1: Slope Material Properties

Unit Weight	Effective Stress Envelope		B-Bar Value
	Intercept, c'	Slope, Φ'	o
124.8 pcf	312 psf	30°	1

	Table 101.2	
Rapid Drawdown Method	Factor of Safety (from Slide)	Factor of Safety (from Morgenstern, 1963)
B-Bar	1.417	1.41

Figure 101.2: Solution, using the B-Bar rapid drawdown method

Embankment dam, homogenous, rapid drawdown

102.1. Problem Description

This problem investigates the stability of an earth dam subjected to rapid drawdown conditions. The dam material is a homogenous, isotropic soil with the soil properties outlined in Table 102.1.

102.2. Geometry and Material Properties

Figure 102.1 shows the **Slide** model used to perform the stability analysis.

Figure 102.1: Geometry Setup in Slide

Table 102.1: Soil Properties

Property	Value
с′	13.8 kPa
arphi'	37º
γ	18.2 kN/m ³
Ε	1 x 10⁵ kPa
ν	0.3

102.3. Results

Figure 102.2 shows the **Slide** results for the earth dam under dry conditions. The calculated factor of safety of 2.455(Spencer method) corresponds closely with the value of 2.43 quoted in the "Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage" paper by Huang and Jia (2008).

Figure 102.3 shows the **Slide** analysis for initial steady state before rapid drawdown. Total head contours are also shown. The calculated factor of safety of 1.745 corresponds closely with the value of 1.70 quoted in Huang and Jia (2008).

Transient analysis considered a φ^b value of both 0° and 37°. **Slide** results at different times for the two cases are plotted on Figures 102.4 and Figure 102.5, along with values from Huang and Jia (2008). The Slide results correspond closely with the published ones. Figures 102.6 to Figure 102.11 show the Slide model results for both cases at various analysis times. Tables 102.2 and Table 102.3 list these values.

Figure 102.2: Slide Results for Dry Conditions, using the Spencer method

Figure 102.4: Factors of Safety Plot for ϕ^{b} = 0°

Figure 102.5: Factors of Safety Plot for ϕ^{b} = 37°

Figure 102.6: **Slide** Results for $\phi^{b} = 0^{o}$ at 80 h, using the Spencer method

Figure 102.7: **Slide** Results for $\phi^{b} = 0^{o}$ at 300 h, using the Spencer method

Figure 102.8: **Slide** Results for $\phi^{b} = 0^{\circ}$ at 1500 h, using the Spencer method

Figure 102.9: **Slide** Results for $\varphi^{b} = 37^{\circ}$ at 80 h, using the Spencer method

Figure 102.10: **Slide** Results for $\phi^{b} = 37^{\circ}$ at 300 h, using the Spencer method

Figure 102.11: Slide Results for $\varphi^{b} = 37^{\circ}$ at 1500 h, using the Spencer method

Time (h)	Factor of Safety (Slide)	Factor of Safety (Huang and Jia, 2008)
0	1.745	1.683
60	1.805	1.805
70	1.820	1.840
75	1.828	1.858
80	1.836	1.875
85	1.844	1.893
90	1.852	1.909
100	1.868	1.940
300	2.094	2.274
600	2.243	2.360
1000	2.330	2.374
1500	2.376	2.374

Table 102.2: Factors of Safety for $\phi^{b} = 0^{o}$

Table 102.3: Factors of Safety for $\phi^b = 37^o$

Time (h)	Factor of Safety (Slide)	Factor of Safety (Huang and Jia, 2008)
0	1.815	1.764
60	1.886	1.930
70	1.904	1.982
75	1.913	2.009
80	1.923	2.035
85	1.932	2.065
90	1.942	2.098
100	1.961	2.134
300	2.220	2.595
600	2.416	2.754
1000	2.542	2.804
1500	2.612	2.813

Undrained slope, multi-model optimization (MMO)

103.1. Problem Description

This example comes from Guo & Griffiths (2020). In the image below, the three different cohesion ratios lead to three different modes of failure using finite element method (FEM) with Shear Strength Reduction (SSR). This slope was replicated in Slide2 and was computed with multi-modal Particle Swarm (PS) search and Surface Altering (SA) optimization.

Figure 103.1: The three strength ratios and failure modes used in Guo and Griffiths (2020)

103.2. Results

The materials were set up as shown:

Material Name	•	Color	Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Cohesion Type	Water Surface	Ru
Material 1			20	Undrained	60	Constant	None	0
Base1.4			20	Undrained	84	Constant	None	0
Base1.5			20	Undrained	90	Constant	None	0
Base1.6			20	Undrained	96	Constant	None	0

Figure 103.2: The corresponding materials defined in Slide2

The results using Spencer method are shown below. The first row shows the MMO results with strength ratios of 1.4, 1.5, and 1.6 respectively. The second row shows the same results using regular, uni-modal, PS with SA.

Figure 103.3: Slide2 results for MMO (top row) and uni-modal (bottom row)

It can be seen that in the case of limit equilibrium, the split into the two failure modes must occur somewhere between the 1.5 and 1.6 ratios.

Newmark analysis, seismic analysis, multi-modal optimization (MMO)

104.1. Introduction

This example is based on Tutorial 28 Seismic Analysis with Newmark Method. Two groups were defined: one is the MMO PS with SA, and the other is the uni-modal PS with SA for comparison. Note that an area filter of 1 m was applied in the Surface Options dialog to eliminate some very shallow surfaces. The Spencer method is used, as it is in the tutorial.

104.2. Problem Description

The first row shows the MMO results for each seismic scenario. The second row shows the same results using regular, uni-modal, PS with SA. The four scenarios are:

- <u>No Seismic</u>: regular slope stability analysis
- Seismic coefficient of 0.15: seismic coefficient applied, otherwise regular slope stability analysis
- <u>Critical acceleration</u>: returns critical seismic coefficient such that the factor of safety (FS) is 1.

• Newmark displacement: returns associated displacement for surface, given seismic record

Figure 104.1: Slide2 results for MMO (top row) and uni-modal (bottom row)

The most critical MMO result for each scenario is compared to the corresponding uni-modal result below and they are found to be in very good agreement.

Table 104.1: Slide2 MMO vs uni-modal results for each scenario

	MMO (most critical)	Uni-modal
No Seismic	FS = 1.359	FS = 1.360
Seismic coefficient of 0.15	FS = 0.978	FS = 0.980
Critical acceleration	Ky = 0.139	Ky = 0.140
Newmark displacement	Disp = 5.042 cm	Disp = 5.081 cm

Geotechnical tools, inspired by you.

As an additional verification, the Ky = 0.147 surface in the third scenario, which was quite different from the critical surface, was computed with a regular slope stability analysis, and a seismic coefficient of 0.147. The results were as shown:

Figure 104.2: Ky = 0.147 applied to corresponding surface found using MMO

An additional view of interest is the comparison of all the surfaces between the MMO (left) and uni-modal (right) for the Newmark displacement scenario. Several distinct high displacement regions are visible with the MMO algorithm which are not clear with the uni-modal:

Figure 104.3: MMO vs uni-modal all surfaces view for Newmark scenario

Anisotropic surface, multi-modal optimization (MMO)

105.1. Problem Description

This example is based on **Slide2** Tutorial 32 Anisotropic Surface. The purpose of this example is to ensure that the most critical surface found by MMO PS with SA is in agreement with that found by unimodal PS with SA. The methods used are Bishop, Janbu Simplified, Spencer, and GLE.

Figure 105.1: Tutorial model used in this example

105.2. Results

The most critical MMO result for each method is compared to the corresponding uni-modal result below and they are found to be in very good agreement.

results for each method
results for each metho

	MMO (most critical)	Uni-modal
Bishop	0.970	0.976
Janbu Simplified	0.935	0.938
Spencer	1.086	1.084
GLE	1.017	1.015

Geotechnical tools, inspired by you.

The view below compares the MMO (left) and uni-modal (right) results for Bishop. A filter has been applied to only display surfaces with FS less than 1. This is a good way to understand the difference between the MMO and uni-modal algorithms. Note that the MMO algorithm seeks minima everywhere and hence is able to find a bigger region with surfaces that have an FS below 1. The uni-modal algorithm works to converge to the lowest FS region and hence only the region about the critical surface is found.

Figure 105.2: MMO vs uni-modal all surfaces with FS < 1

Support, Ito & Matsui pile

106.1. Problem Description

This example comes from Cai & Ugai (2000) where the Ito & Matsui pile was used in a Bishop's circular analysis in order to compare to finite element analysis. The results of their Bishop analysis are compared to Slide2 below:

Figure 106.1: Cai & Ugai (2000) model used in this example

106.2. Results

The pile spacing was varied in each scenario following the paper, and the results from the paper and Slide2 are shown below:

Pile (Spacing/Diameter)	Cai & Ugai (2000) FS	Slide2 FS
No Pile	1.13	1.14
2	1.54	1.54
3	1.37	1.43
4	1.31	1.33
6	1.25	1.25

Table 106.1: FS for Cai & Ugai (2000) vs Slide2 for each pile spacing

It can be surmised that any differences are due to the different search methods used and hence surfaces found in the paper vs. **Slide2**.

Retaining walls, gabion walls, supports

107.1. Introduction

This example is from Cao L. et al. (2016) in which WSP conducted a case study of a wall failure in Vancouver, British Columbia using Slide. The purpose of this verification is to demonstrate the analysis of a gabion wall using (a) an equivalent cohesion method and (b) a mesh method.

Figure 107.1: Drawing of gabion wall provided by Cao et Al. (2016)

Figure 107.2: Slide model of gabion wall provided by Cao et Al. (2016)

107.2. Problem Description

As shown in Figure 106.1, the study consists of a 6m tall gabion wall with a base width of 4m, each layer being composed of 1m tall x 1m wide x 4m long gabions. While Slide does not conduct internal stability calculations, the results of the overall slope stability are of interest. The case study assumed the material parameters of the gabion wall. The equivalent cohesion method simulates the existence of steel mesh via a non-zero value of c, while the mesh method explicitly models the steel mesh using geosynthetic supports.

107.3. Geometry and Material Properties

Figure 107.3: Gabion Wall Model in Slide (equivalent cohesion method)

Figure 107.4: Gabion Wall Model in Slide (mesh method)

A helpful feature is the ability to specify the length of any line and its angle in the prompt line from a selected point. The format is as follows:

@#<Deg

The # symbol represents the line length. Deg is a value between 0 to 360 representing the angle. Note that the angle is relative to the horizontal on the right side of a selected point. This can be used to draw the gabion wall.

A second set of limits is defined at the bottom of the wall (12, 95.33) and the top of the slope (16.85, 101.813) to filter out smaller slip surfaces.

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Soil #1	0	32	21
Soil #2	0	30	20
Gabion Wall	100*	45	20

Fable 107.1:	Soil	Properties
--------------	------	------------

*For the mesh method, cohesion = 0. For the equivalent cohesion method, the cohesion of the gabion wall can be estimated using the following equations (Grodecki, 2017):

$$c_r = \frac{\Delta \sigma_3}{2} \tan\left(45^\circ + \frac{\varphi}{2}\right)$$
$$\Delta \sigma_3 = \frac{2f_t \varepsilon_c}{d\varepsilon_a (1 - \varepsilon_a)}$$
$$\varepsilon_c = \frac{1 - \sqrt{1 - \varepsilon_a}}{1 - \varepsilon_a}$$

Table 107.2: Additional Assumed Gabion Properties

<i>f</i> _t [kN/m]	71
d [m]	1
ε _a	0.07
c_r [kPa] (Calculated)	100

Table 107.3: Geosynthetic Support Properties

Force Application	Active
Force Direction	Tangent to Slip Surface
Strip Coverage	100%
Allowable Tensile Strength	71
Anchorage	Both Ends
Connection Strength Input	Constant
Connection Strength	71

107.4. Results

The critical FS for each method is shown below.

```
Table 107.4
```

Model	Equivalent Cohesion Method		Mesh Method	
Method	FS, Grid Search (Circular)	FS, Cuckoo Search (Non-Circular)	FS, Grid Search (Circular)	FS, Cuckoo Search (Non-Circular)
Bishop	1.373	1.032	1.378	1.034
Janbu	1.156	0.962	1.156	0.966
Spencer	1.386	1.25	1.392	1.26
GLE	1.387	1.29	1.394	1.291

Figure 107.6: Solution for Equivalent Cohesion Method Using Cuckoo Search and Bishop Method

Figure 107.7: Solution for Mesh Method Using Circular Search and Bishop Method

Figure 107.8: Solution for Mesh Method Using Cuckoo Search and Bishop Method

Retaining walls, gabion walls, supports

108.1. Introduction

This example is a stepped gabion wall with the steps facing outwards. The purpose of this verification is to demonstrate the analysis of a gabion wall using (a) an equivalent cohesion method and (b) a mesh method.

108.2. Problem Description

The wall consists of a 4m tall gabion wall composed of 1m tall x 1m wide x 1m long gabions. While **Slide** does not conduct internal stability calculations, the results of the overall slope stability are of interest. The equivalent cohesion method simulates the existence of steel mesh via a non-zero value of c, while the mesh method explicitly models the steel mesh using geosynthetic supports.

108.3. Geometry and Material Properties

Figure 108.1: Gabion Wall Model in Slide (equivalent cohesion method)

laterial Name	Color	Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (deg)	Water Surface	R
Soil #1		21	Mohr- Coulomb	5	30	None	0
Soll #2		20	Mohr- Coulomb	0	25	None	0
Gabion		23	Mohr- Coulomb	U	42	None	0
0, 5.456)						(1	4.47
, 0)	_						

A helpful feature is the ability to specify the length of any line and its angle in the prompt line from a selected point. The format is as follows:

@#<Deg

The # symbol represents the line length. Deg is a value between 0 to 360 representing the angle. Note that the angle is relative to the horizontal on the right side of a selected point. This can be used to draw the gabion wall.

A second set of limits is defined at the bottom of the wall (14.473, 5.456) and the top of the slope (18, 9) for the mesh method to filter out smaller slip surfaces.

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Soil #1	5	30	21
Soil #2	0	25	20
Gabion Wall	59.7*	42	23

*For the mesh method, cohesion = 0. For the equivalent cohesion method, the cohesion of the gabion wall can be estimated using the following equations (Grodecki, 2017):

$$c_r = \frac{\Delta \sigma_3}{2} \tan\left(45^\circ + \frac{\varphi}{2}\right)$$
$$\Delta \sigma_3 = \frac{2f_t \varepsilon_c}{d\varepsilon_a (1 - \varepsilon_a)}$$
$$\varepsilon_c = \frac{1 - \sqrt{1 - \varepsilon_a}}{1 - \varepsilon_a}$$

Table 108.2: Additional Assumed Gabion Properties

<i>f</i> _t [kN/m]	100
d [m]	1
ε _a	0.06
c_r [kPa] (Calculated)	59.7

Table 108.3: Geosynthetic Support Properties

Force Application	Active
Force Direction	Tangent to Slip Surface
Strip Coverage	100%
Allowable Tensile Strength	100
Anchorage	Both Ends
Connection Strength Input	Constant
Connection Strength	100

108.4. Results

The critical FS for each method is shown below.

```
Table 108.4
```

Model	Equivalent Cohesi	on Method	Mesh Method		
Method	FS, Grid Search (Circular)	FS, Cuckoo Search (Non-Circular)	FS, Grid Search (Circular)	FS, Cuckoo Search (Non-Circular)	
Bishop	1.787	1.512	1.835	1.522	
Janbu	1.566	1.43	1.604	1.44	
Spencer	1.791	1.72	1.839	1.731	
GLE	1.791	1.723	1.837	1.716	

Figure 108.4: Solution for Equivalent Cohesion Method Using Cuckoo Search and Bishop Method

Figure 108.5: Solution for Mesh Method Using Circular Search and Bishop Method

Figure 108.6: Solution for Mesh Method Using Cuckoo Search and Bishop Method

Retaining walls, gabion walls, weak layers

109.1. Introduction

This example is a stepped gabion wall with the steps facing outwards. Weak layers have been added to the gabion wall to simulate potential weak joint failure or shear failure through the gabion wall. The purpose of this verification is to demonstrate the modeling of gabion walls using an equivalent cohesion method along with weak layers.

109.2. Problem Description

The wall consists of a 4m tall gabion wall composed of 1m tall x 1m wide x 1m long gabions. A series weak layers have been specified and added between the horizontal lines of the gabion wall. Note that vertical weak layers would cause the slip surfaces to clip vertically and should be avoided in general.

109.3. Geometry and Material Properties

Figure 109.1: Gabion Wall Model in in Slide

A helpful feature is the ability to specify the length of any line and its angle in the prompt line from a selected point. The format is as follows:

@#<Deg

The # symbol represents the line length. Deg is a value between 0 to 360 representing the angle. Note that the angle is relative to the horizontal on the right side of a selected point. This can be used to draw the gabion wall.

Table 109.1: Soil Properties

	c´ (kN/m²)	φ´ (deg.)	γ (kN/m³)
Soil #1	5	30	21
Soil #2	0	25	20
Gabion Wall	59.7*	42	23

*The cohesion of the gabion wall can be estimated using the following equations (Grodecki, 2017):

$$c_r = \frac{\Delta\sigma_3}{2} \tan\left(45^\circ + \frac{\varphi}{2}\right)$$
$$\Delta\sigma_3 = \frac{2f_t\varepsilon_c}{d\varepsilon_a(1 - \varepsilon_a)}$$
$$\varepsilon_c = \frac{1 - \sqrt{1 - \varepsilon_a}}{1 - \varepsilon_a}$$

Table 109.2: Additional Assumed Gabion Properties

<i>f</i> _t [kN/m]	100
d [m]	1
\mathcal{E}_a	0.06
<i>c_r</i> [kPa] (Calculated)	59.7

For properties, the weak layer is assumed have a friction angle of 90% of the gabion fill. The joint has a tensile strength of 20.4kN/m. Cohesion can then be determined by multiplying the width of the gabion (1m) by the tensile strength. Cohesion is therefore 20.4kPa.

Block search polylines should be defined at the weak layers.

Note: Values of 45 to -45 and 135 to 225 degrees are used for the block search line projection angles.

A second set of limits is defined at the bottom of the wall (14.473, 5.456) and the top of the slope (18, 9) to filter out smaller slip surfaces.

109.4. Results

The critical FS for each method is shown below.

Method	FS, Block Search (Non-Circular)
Bishop	1.799
Janbu	1.610
Spencer	1.803
GLE	1.804

Table 109.2

Figure 109.2: Solution, using Block Search and Bishop method

Retaining walls, equivalent fluid pressure

110.1. Introduction

The Retaining Wall (EFP) support type is used to model retaining walls whose capacity is defined by an equivalent fluid pressure (EFP) profile. This verification problem will do a simple verification for this support type.

110.2. Problem Description

In this model a retaining wall with a triangular pressure distribution will be considered.

110.3. Geometry and Material Properties

Figure 110.1: Cantilevered Retaining Wall (triangular pressure profile)

Table 110.1

The wall is five feet tall, and the equivalent fluid pressure profile is defined as follows:

Relative Distance	Equivalent Fluid Pressure (psf)		
0 (top of wall)	0		
1 (bottom of wall)	125		

The results will be verified using a triangular distributed load. This is a good verification because the distributed load is integrated and applied to the slice at the centroid. This is precisely what the Retaining Wall (EFP) support type does as well.

Figure 110.2: Triangular distributed load used for verification

110.4. Results

The results using Spencer method are shown below. As expected, the results are identical:

Figure 110.3 - Results using Spencer's method are matching as expected

As an additional verification, it should be noted that the last force in the support force diagram is 312.5, or the area of the pressure profile (5*125/2).

Helical anchor

111.1. Introduction

The Helical Anchor support type is used to model helical anchors. This verification problem will demonstrate how the support capacity is calculated and used in Slide2 through a hand calculation.

111.2. **Problem Description**

A helical anchor in a model with a single pre-defined critical surface is considered. Considering only a single surface will make the hand calculation feasible.

111.3. Geometry and Properties

Figure 111.1: Model with single surface and helical anchor

111.4. Hand Calculation

We will calculate by hand the force diagram of the capacity of the anchor by determining the capacities of the three failure modes and their associated failure types.

- 1. Pullout
 - a. Shallow Failure
 - b. Cylindrical Shear

- c. Individual Bearing
- 2. Stripping
 - a. Shallow Failure
 - b. Cylindrical Shear
 - c. Individual Bearing
- 3. Tensile

The location of the bottom plate is assumed to be at the end of the anchor. Subsequent plates are generated and separated based on the number of helices and spacing. In this example, given that there are 3 plates spaced apart 1m, the plates are located at (10.5, 7.5), (11.5, 7.5), and (12.5, 7.5,).

Soil Shear Strength

The shear strength t developed by each increment of soil along the anchor is given by:

(111.1) $\tau = c + q' tan \phi_s$

where c is the cohesion of the soil, q' is the effective normal stress, and ϕ_s is the friction angle of the soil. The cohesion, normal stress, and angle of friction are assumed to be effective stress parameters. In this example, the shear strength is constant along the anchor.

Failure Mode 1: Pullout

The three failure types considered for pullout (shallow failure, cylindrical shear, and individual bearing) are also considered for stripping. We will go over them here.

Shallow failure occurs when the soil failure surface of the mobilized soil within the anchor extends to the surface. In **cylindrical shear**, the mobilized soil between the plates forms a cylindrical volume of soil. In **individual bearing**, all plates fail within an area of localized soil, independent of one another (Perko, 2009).

At any point along the support, the ultimate pullout capacity for shallow failure can be determined using the following equation:

(111.2)
$$Pu_{s} = \tau(\pi d_{a}h + \pi d_{a}(n-1)s)$$
$$Pu_{s} = \tau \pi d_{a}(h + (n-1)s)$$

where *h* is the distance from the slip surface to the shallowest helix along the anchor, also known as embedment depth, d_a is average helix diameter, *n* is the total number of helices within the soil, and *s* is the spacing between helices.

At any point along the support, the ultimate pullout capacity in **cylindrical shear** can be determined using the following equation:

(111.3)
$$Pu_c = \tau \pi d_a (n-1)s + A_{sh} (1.3cN_c + q'N_q)$$

where A_{sh} is the area of the shallowest helix from the slip surface. N_c and N_q are bearing capacity factors and can be determined using the following equations (Perko, 2009):

(111.4) $N_a = e^{\pi t a n \phi} t a n^2 (45 + \phi_s/2)$

(111.5) $N_c = (N_q - 1) cot \phi_s$

At any point along the support, the ultimate pullout capacity for **individual bearing** can be determined using the following equations:

(111.6) $Pu_b = \sum_{i=1}^n A_i (1.3cN_c + q'N_q)$

where A_i is the area of helix *i* (Perko, 2009).

Note that if the slip surface passes through the anchor such that no plate exists within the slope, no capacity is developed in the anchor. This holds true for stripping as well, but with the slip surface passing through the anchor such no plate exists within the moving soil mass.

Failure Mode 2: Stripping

The stripping capacity of the helical anchor utilizes the same equations for pullout with the addition of the head assembly capacity H. Stripping is taken as an inverse pullout situation, in which the embedment depth h is now from the slip surface to the shallowest plate within the moving soil mass. The equations for shallow failure, cylindrical shear, and individual bearing, respectively are as follows:

(111.7)	$Su_s = \tau$	$\pi d_a(h+)$	(n -	(1)s) + H
---------	---------------	---------------	------	-----------

(111.8) $Su_c = \tau \pi d_a (n-1)s + A_{sh} (1.3cN_c + q'N_q) + H$

(111.9)
$$Su_b = \sum_{i=1}^n A_i (1.3cN_c + q'N_q) + H$$

Failure Mode 3: Tensile

The tensile capacity is simply the input tensile capacity divided by the spacing:

(111.10) Tensile force = T/S

Overall Capacity and Force Diagram

The maximum force which can be mobilized by each failure mode, per unit width of slope, is given by the following equations:

(111.11)	Pullout: F1 =	$min(Pu_s, Pu_c, Pu_b)/S$
----------	---------------	---------------------------

(111.12) Tensile: F2 = T/S

(111.13) $Stripping: F3 = min(Su_s, Su_c, Su_b) / S$

At any point along the length of the tieback, the force which is applied to the slip surface by the tieback, is given by the MINIMUM of these three forces.

 $(111.14) \qquad Applied Force = min(F1, F2, F3)$

Hand Calculations

The maximum force which can be mobilized by each failure mode, per unit width of slope, is given by the following equations:

Assume the point at which capacity is to be calculated is (11, 7.5). The failure capacity types are calculated though the following method:

Shear strength:

Since surface and anchor are horizontal, the effective stress is the same at any point along the anchor.

q' = Unit weight x depth
q' =
$$20kN/m^3 \times (12 - 7.5)$$

q' = $90kN/m^3$

Soil shear strength can then be calculated as:

 $\tau = c + q' tan \phi_s$ $\tau = 15 + (90) tan (35)$ $\tau = 78.0187 kN/m^3$

Equivalent Plate Area

$$EPA = \frac{\pi}{4} (d_a^2 - d_{shaft}^2)$$
$$EPA = \frac{\pi}{4} (0.2^2 - 0.1^2)$$
$$EPA = 0.02356m^2$$

Bearing Capacity Factors

 $N_q = e^{\pi tan\phi} tan^2 (45 + \phi_s/2)$ $N_q = e^{\pi tan(35)} tan^2 (45 + (35)/2)$ $N_q = 33.2961$ $N_c = (N_q - 1) cot \phi_s$ $N_c = (33.2961 - 1) cot (35)$ $N_c = 46.1236$

Pullout – Shallow Failure $Pu_s = \tau \pi d_a (h + (n - 1)s)$ $Pu_s = (78.0187)\pi (0.2)[(11.5 - 11) + (2 - 1)(1)]$ $Pu_s = 73.5309kN$

Pullout – Cylindrical Shear Failure $Pu_c = \tau \pi d_a (n - 1)s + A_{sh} (1.3cN_c + q'Nq)$ $Pu_c = (78.0187)\pi (0.2)(2 - 1)(1) + (0.02356)[1.3(15)(46.1236) + 90(33.2961)]$ $Pu_c = 140.8117$ kN

Geotechnical tools, inspired by you.

Pullout - Individual Bearing Failure

$$Pu_b = \sum_{i=1}^{n} A_i (1.3cN_c + q'N_q)$$

$$Pu_b = (2)0.02356[1.3(15)(46.1236) + 90(33.2961)]$$

$$Pu_b = 183.5823kN$$

Stripping - Shallow Failure

 $Su_s = \tau \pi d_a (h + (n - 1)s) + H$ $Su_s = (78.0187)\pi (0.2)[(11 - 10.5) + (1 - 1)(1)] + 80$ $Su_s = 104.5103$

Stripping – Cylindrical Shear Failure

 $Su_c = \tau \pi d_a (n-1)s + A_{sh} (1.3cN_c + q'Nq) + H$ $Su_c = (78.0187)\pi (0.2)(1-1)(1) + (0.02356)[1.3(15)(46.1236) + 90(33.2961)] + 80$ $Su_c = 171.7912 \text{kN}$

Stripping – Individual Bearing Failure

$$Su_b = \sum_{i=1}^{n} A_i (1.3cN_c + q'N_q) + H$$

$$Su_b = (1)0.02356[1.3(15)(46.1236) + 90(33.2961)] + 80$$

$$Su_b = 171.7912 \text{kN}$$

Minimum and Applied Force

- $F1 = \min(Pu_s, Pu_c, Pu_b) / S$
- F1 = min(73.5309, 140.8117, 183.5823) / 1
- F1 = 73.5309kN/m
- F2 = 85/1
- F2 = 85kN/m
- F3 = min (140.5103, 171.7912, 171.7912)/1

F3 = 140.5103kN/m

Applied Force = min (F1, F2, F3)

Geotechnical tools, inspired by you.

Applied Force = 73.5309kN/m

Calculations Table

Splitting the anchor into 10 equal increments, table 111.1 contains the results for each capacity along the anchor:

Segment (m)	Plate Location	Normal Stress (kPa)	Soil Shear Strength (kN/m)	Tensile (kN/m)	Pullout			Stripping			Min	Failu
					Shallow Failure (kN//m)	Individual Bearing (kN/m)	Cylindrical Shear (kN/m)	Shallow Failure (kN/m)	Individual Bearing (kN/m)	Cylindrical Shear (kN/m)	Capacity (kN/m)	re Model
0	-	90	78.0187	85	245.1029	275.3961	189.8399	80.0000	80.0000	80.0000	80.0000	Stripping
0.5	-	90	78.0187	85	220.5926	275.3961	189.8399	80.0000	80.0000	80.0000	80.0000	Stripping
1	-	90	78.0187	85	196.0823	275.3961	189.8399	80.0000	80.0000	80.0000	80.0000	Stripping
1.5	-	90	78.0187	85	171.5720	275.3961	189.8399	80.0000	80.0000	80.0000	80.0000	Stripping
2	-	90	78.0187	85	147.0617	275.3961	189.8399	80.0000	80.0000	80.0000	80.0000	Stripping
2.5	-	90	78.0187	85	122.5515	275.3961	189.8399	80.0000	80.0000	80.0000	80.0000	Stripping
3	1	90	78.0187	85	98.0412	183.5974	140.8193	80.0000	80.0000	80.0000	80.0000	Stripping
3.5	-	90	78.0187	85	73.5309	183.5974	140.8193	104.5103	171.7987	171.7987	73.5309	Pullout
4	2	90	78.0187	85	49.0206	91.7987	91.7987	129.0206	171.7987	171.7987	49.0206	Pullout
4.5	-	90	78.0187	85	24.5103	91.7987	91.7987	153.5309	263.5974	220.8193	24.5103	Pullout
5	3	90	78.0187	85	0.0000	0.0000	0.0000	178.0412	263.5974	220.8193	0.0000	Pullout

Table 111.1: Capacity at 10 increments along the anchor

111.5. Results

The model was created in **Slide2**. The applied force at the point of interest was 73.5309 kN as shown below. This is in exact agreement with the segment at 3.5 m in the table.

Figure 111.2: Force applied by helical anchor.

The support force diagram looks as follows. The failure modes and values are in perfect agreement with the hand calculations in Table 111.1.

112. References

- 1. Arai, K., and Tagyo, K. (1985), "Determination of noncircular slip surface giving the minimum factor of safety in slope stability analysis." Soils and Foundations. Vol.25, No.1, pp.43-51.
- 2. Baker, R. (1980), "Determination of the critical slip surface in slope stability computations." International Journal for Numerical and Analytical Methods in Geomechanics, Vol.4, pp.333-359.
- 3. Borges, J.L. and Cardoso, A.S. (2002), "Overall stability of geosynthetic-reinforced embankments on soft soils." Geotextiles and Geomembranes, Vol. 20, pp. 395-421.
- 4. Cai, F., & Ugai, K. (2000). Numerical analysis of the stability of a slope reinforced with piles. *Soils and foundations*, *40*(1), 73-84.
- 5. Cao, L., Peaker, S., & Ahmad, S. (2016), "A case study of embankment retaining wall in Ontario" GeoVancouver 2016.
- 6. Chen, Z. and Shao, C. (1988), "Evaluation of minimum factor of safety in slope stability analysis" Canadian Geotechnical Journal, Vol. 25, pp.735-748.
- 7. Chowdhury, R.N. and Xu, D.W. (1995), "Geotechnical system reliability of slopes." Reliability Engineering and System Safety. Vol. 47, pp. 141-151.
- 8. Craig, R.F., (1997). Soil Mechanics, 6th Edition.
- 9. Duncan, M.J., (2000), "Factors of Safety and Reliability in Geotechnical Engineering." Journal of Geotechnical and Geoenvironmental Engineering. April, pp. 307-316.
- 10. El-Ramly, H., Morgenstern, N.R. and Cruden, D.M. (2003), "Probabilistic stability analysis of a tailings dyke on presheared clay-shale." Canadian Geotechnical Journal, Vol. 40, pp. 192-208.
- 11. Fredlund, D.G. & Krahn, J. (1977), "Comparison of slope stability methods of analysis." Canadian Geotechnical Journal Vol. 14, No. 3, pp 429-439.
- 12. Giam, P.S.K. & I.B. Donald (1989), "Example problems for testing soil slope stability programs." Civil Engineering Research Report No. 8/1989, Monash University, ISBN 0867469218, ISSN 01556282.
- 13. Giam, P.S.K. (1989), "Improved methods and computational approaches to geotechnical stability analysis." Ph.D. Thesis, Dept. of Civil Engineering, Monash University.
- 14. Greco, V.R. (1996), "Efficient Monte Carlo technique for locating critical slip surface." Journal of Geotechnical Engineering. Vol.122, No.7, July, pp. 517-525.
- 15. Grodecki, M. (2017), "Numerical modelling of gabion joints." Technical Transactions 2/2017, 84-88.
- 16. Guo, S. & Griffiths, D. (2020), "Failure Mechanisms in Two-layer Undrained Slopes." Canadian Geotechnical Journal. 10.1139/cgj-2019-0642.
- Hassan, A.M. and Wolff, T.E. (1999), "Search algorithm for minimum reliability index of earth slopes." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 4, April, 1999, pp. 301-308.
- 18. Ireland, H.O. (1954), "Stability analysis of the Congress Street open cut in Chicago." Geotechnique. Vol. 4, pp. 163-168.

Geotechnical tools, inspired by you.

- 19. Kim, J., Salgado, R., Lee, J. (2002), "Stability analysis of complex soil slopes using limit analysis." Journal of Geotechnical and Geoenvironmental Engineering. Vol.128, No.7, July, pp. 546-557.
- 20. Li, S.K. and Lumb, P. (1987), "Probabilistic design of slopes." Canadian Geotechnical Journal, Vol. 24, No. 4, pp. 520-535.
- 21. Low, B. (1989), "Stability analysis of embankments on soft ground." Journal of Geotechnical Engineering, Vol.115, No.2, pp. 211-227.
- 22. Malkawi, A.I.H.,Hassan, W.F., and Sarma, S.K. (2001), "Global search method for locating general slip surfaces using monte carlo techniques." Journal of Geotechnical and Geoenvironmental Engineering. Vol.127, No.8, August, pp. 688-698.
- 23. Ng, C.W.W. and Shi Q. (1998), "A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage" Computers and Geotechnics, Vol.22, No.1, pp.1-28.
- 24. Perko, H. A. (2009). "Helical Piles: A Practical Guide to Installation." Hoboken: John Wiley & Sons Inc.
- 25. Pilot, G., Trak, B. and La Rochelle, P. (1982). "Effective stress analysis of the stability of embankments on soft soils." Canadian Geotechnical Journal, vol.19, pp. 433-450.
- 26. Prandtl, L. (1921), "Uber die Eindringungsfestigkeit (Harte) plastischer Baustoffe und die Festigkeit von Schneiben (On the penetrating strength (hardness) of plastic construction materials and the strength of curring edges)." Zeitschrift fur Agnewandte Mathematik und Mechanik, vol.1, pp.15-20.
- 27. Sharma, S. (1996), "XSTABL, an integrated slope stability analysis program for personal computers", Reference manual, version 5. Interactive Software Designs Inc., Moscow, ID.
- 28. Spencer, E. (1969), "A method of analysis of the stability of embankments assuming parallel interslice forces." Geotechnique, Vol.17, pp.11-26.
- 29. Tandjiria, V., Low, B.K., and Teh, C.I. (2002), "Effect of reinforcement force distribution on stability of embankments.", Geotextiles and Geomembranes, No. 20, pp. 423-443.
- Wolff, T.F. and Harr, M.E. (1987), "Slope design for earth dams." In *Reliability and Risk Analysis in Civil Engineering 2*, Proceedings of the Fifth International Conference on Applications of Statistics and Probability in Soil and Structural Engineering, Vancouver, BC, Canada, May, 1987, pp. 725-732.
- 31. XSTABL (1999), Reference Manual, Version 5.2, pp. 57-60.
- 32. Yamagami, T. and Ueta, Y. (1988), "Search noncircular slip surfaces by the Morgenstern-Price method." Proc. 6th Int. Conf. Numerical Methods in Geomechanics, pp. 1335-1340.
- Perry, J. (1993), "A technique for defining non-linear shear strength envelopes, and their incorporation in a slope stability method of analysis." Quarterly Journal of Engineering Geology, No.27, pp. 231-241.
- 34. Jiang, J-C., Baker, R., and Yamagami, T. (2003), "The effect of strength envelope nonlinearity on slope stability computations." Canadian Geotechnical Journal, No.40, pp.308-325.
- 35. Baker, R., and Leshchinsky, D. (2001), "Spatial Distributions of Safety Factors." Journal of Geotechnical and Geoenvironmental Engineering, February 2001, pp. 135-144.

- 36. Baker, R. (2003), "Inter-relations between experimental and computational aspects of slope stability analysis." International Journal for Numerical and Analytical Methods in Geomechanics, No.27, pp. 379-401.
- 37. Baker, R. (1993), "Slope stability analysis for undrained loading conditions." International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 17, pp. 15-43.
- 38. Sheahan, T., and Ho, L. (2003), "Simplified trial wedge method for soil nailed wall analysis." Journal of Geotechnical and Geoenvironmental Engineering, February 2003, pp. 117-124.
- 39. SNAILZ (1999), Reference Manual, Version 3.XX, pp. 1-43.
- 40. Zhu, D., Lee, C.F., and Jiang, H.D. (2003), "Generalised framework of limit equilibrium methods for slope stability analysis." Géotechnique, No. 4, pp. 377-395.
- 41. Zhu, D., and Lee, C. (2002), "Explicit limit equilibrium solution for slope stability." International Journal for Numerical and Analytical Methods in Geomechanics, No. 26, pp. 1573-1590.
- 42. Priest, S. (1993), "Discontinuity analysis for rock engineering." Chapman & Hall, London, pp. 219-226.
- 43. Yamagami, T., Jiang, J.C., and Ueno, K. (2000), "A limit equilibrium stability analysis of slope with stabilizing piles." Slope Stability 2000, pp. 343-354.
- 44. Pockoski, M., and Duncan, J.M., "Comparison of Computer Programs for Analysis of Reinforced Slopes." Virginia Polytechnic Institute and State University, December 2000.
- 45. Loukidis, D., Bandini, P., and Salgado, R. (2003), "Stability of seismically loaded slopes using limit analysis." Géotechnique, No. 5, pp. 463-479.

46. US Army Corps of Engineers (2003), "Engineering and Design: Slope Stability." Engineer Manual 1110-2-1902.
Geotechnical tools, inspired by you.