
1.0 Structure of Surface Altering 

Surface Altering is based on a sequence of transformations applied to the geometry of the input surface. 

In this document, these steps are reviewed separately for 2D and 3D scenarios. Each step is solved using 

Bound Optimization BY Quadratic Approximation (BOBYQA) developed by Powell [1] algorithm 

implemented in NLopt library. 

2.0 2D Surface Altering 

In two-dimensional analyses, a non-circular surface in its simplest form can be described as a linear spline 

curve. Coordinate values of control points will form the optimization input. As an example, Figure 1 

illustrates a surface with 7 control points, yielding to 14 input variables to define the x and y coordinates 

of the 2D surface. The geometry of the surface can be altered by modifying these coordinates. SAO offers 

a systematic set of steps to perform this alteration to minimize the factor of safety such that it satisfies 

geometrical convexity and maintains the sequence of control points. These steps are repeated in multiple 

iterations until convergence criteria is met. A key consideration in SAO is to realize the entire surface 

geometry, such that changing coordinates of one control point affects the other points, which keeps the 

surface convex and ordered.  

 

Figure 1: A linear spline 2D slip surface 
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2 A) Compression and Expansion with End Points 

Firstly, the two end points can be translated within a defined limit to the left or right. Since these points 

are restricted to the slope boundary, only one of the x or y-coordinates of each point can be modified as 

the optimization input parameter. For non-vertical slopes, the x-coordinates of the two end points (𝑝1 

and 𝑝𝑛) for a surface with 𝑛 points are considered as optimization variables. When translating the left 

end-point (𝑝1), the right end-point (𝑝𝑛) is considered fixed, and all the in-between points are shifted in 

relation to the left node displacement. After displacements are applied on each point, the same 

translation is applied for right-end and in-between points, considering the left point fixed. Equation 1 

defines the displacement applied on point 𝑃𝑖, when end-point 𝑃𝑎 is displaced a distance of 𝑑𝑎 in the x-

direction, and end-point 𝑃𝑏 is fixed. 𝑥𝑎, 𝑥𝑏, and 𝑥𝑖 represent the x-coordinate of end points 𝑃𝑎, 𝑃𝑏 , and 

point 𝑃𝑖. 

 𝑑𝑖 = 𝑑𝑎 ×
𝑥𝑖 − 𝑥𝑏

𝑥𝑎 − 𝑥𝑏
 (1) 

 

This initial step in SAO gradually modifies the location of the slip surface through multiple iterations, while 

preserving the order between the control points. In the presence of vertical slopes, input variables may 

represent displacement in the 𝑦 direction. Figure 2 illustrates several scenarios that may occur with 

vertical slopes. In each case, depending on the location of the end-point and direction of displacement 

(positive or negative), displacement will be applied in either the 𝑥 or 𝑦 direction. 

 

 

Figure 2: Different cases in displacement of an end point in presence of vertical slope 

The boundary constraints for the end-point displacements can be determined based on the distance to 

slope limits. For example, in Figure 1, the left point is limited to D1 displacement to the left, and maximum 

D2 + D3 to the right. Our experiments show that introducing an extra constraint defined as a fraction of 
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surface width (see D2 in Figure 1) results in a steadier progress of SAO. Then, static left boundary 

constraints for left point in Figure 1 can be defined as min (D1, 𝛼D2). 

 

2 B) Compression and Expansion with Internal Points 

In this step, a pair of control points is selected from internal points.  An internal point is any surface control 

point, excluding the end points. Two sets of transformations will be applied to the surface geometry with 

respect to this control pair. In the first set, the control pair and all the points in between them will remain 

fixed (Figure 3, where 𝑃3 and  𝑃5 are selected as a control pair). This pair plus 𝑃4, which is between the 

pair, remain fixed. Displacement will be applied on the two end points. The remaining control points 

outside of the fixed region relocate proportional to the nearest end-point displacement (see displacement 

of  𝑃1, 𝑃2 𝑎𝑛𝑑  𝑃6 in Figure 3. Equation 1 can be used to compute displacements with respect to nearest 

fixed point. 

 

Figure 3: Scaling with respect to fixed points 

 

In the second set of transformations, the two end-points remain fixed and the x-coordinate of the internal 

control pair is the optimization parameter. The pair of control points can move on a straight line passing 

through them, e.g. see the dashed line passing through 𝑃3 and  𝑃5 in Figure 4-(a). All the internal points 

will be displaced proportional to the new location of the two internal control points, e.g. see Figure 4-(b) 

where 𝑃4  is displaced proportional to the new location of 𝑃5. 
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Figure 4 (a): Control pair move along a straight line; (b) Scaling of internal points proportional to new location of control 
pair 

Since there are multiple ways to select the two internal points, this step can be repeated for several 

combinations.  

 

2 C) Modifying Curvature 

Curvature of the slip surface can be modified by moving the inner spline control points along positive or 

negative in y-direction. Optimization input parameters for a surface with 𝑛 control points would be 𝑛 − 2, 

with each parameter representing the displacement of the y-coordinate of one control point excluding 

the first and last. The displacement for each point is constrained in two levels. The first level, known as 

static boundary constraint, is defined such that each varying control point remains within slope 

boundaries and under a straight line connecting the first point to the last one (Figure 3). 

 

Figure 5: Static boundary constraints in step B of 2D Surface Altering 

𝑈𝑆𝑖 and 𝐿𝑆𝑖 in Figure 3, represent upper and lower static bounds defined for control point 𝑖. Upper static 

bound for each control point is defined such that the point remains within slope geometry (𝑈𝑆2 in Figure 

3). The other factor used to set upper static bound is to keep the point under a straight line connecting 
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the two end-points of the surface (𝑈𝑆3 in Figure 3). Lower static bound is defined such that the control 

point remains within slope geometry (𝑙2 𝑎𝑛𝑑 𝑙3). In Slide software, we introduced an extra constraint 

based on slip surface width. This would limit upper or lower displacement for any point not to exceed 1.5 

× [distance between two end points]. This additional constraint can improve convergence behavior of 

SAO. 

 

 A second level of constraint, referred to as dynamic boundary constraint, needs to be applied to enforce 

convexity of the slip surface. Non-convex slip surfaces can result in negative tensions at base of the slip 

surface and output nonsensible failure factor of safety. Therefore, in slope stability analysis, it is important 

to maintain convexity of the slip surface through surface altering transformations.  The method used to 

determine dynamic boundary constraints is similar to the method adapted in [2]. 

 

Vertical displacement for each control point is applied in a sequence, starting from one of the two end 

points of the slip surface. Dynamic boundary constraints cannot be defined a priori to displacements 

applied to previous control points. Consider the slip surface in Figure 4, where displacements will be 

applied from left to right. Upper dynamic constraint for control point 𝑃𝑖 is defined based on the locations 

of the previous point, 𝑃𝑖−1, and the last point, 𝑃6. Therefore if a previous point, 𝑃𝑖−1, moves up toward 

positive y-direction, dynamic upper bound will shrink to zero. Upper dynamic constraint for point 4 in 

Figure 4 is displayed as 𝑈𝐷4. After determining the dynamic constraint, the point displacement, as an 

optimization input parameter, needs to be adjusted accordingly, 

 
𝑑′𝑖 =  𝑑𝑖 ×

𝐷𝑖

𝑆𝑖
 

(2) 

Where 𝑑𝑖 is the input displacement and 𝑑′𝑖 is modified displacement to be applied to point 𝑃𝑖.  𝐷𝑖 and 𝑆𝑖 

represent dynamic and static boundary constraints. Upper dynamic bound should remain non-negative, 

therefore if the location of the points is such that 𝑈𝐷𝑖 is determined negative, y-coordinate of point 𝑃𝑖 

will be changed such that upper dynamic bound is evaluated as zero. 



 

Figure 6:  Dynamic boundary constraints used to maintain convexity while altering the surface curvature 

Lower dynamic bound for point 𝑃𝑖 is determined by the line passing through two points before that, e.g. 

in Figure 4, where displacements are applied sequentially to points 𝑃1 to  𝑃6, 𝐿𝐷4 represents lower 

dynamic boundary constraint for point 𝑃4 and is determined by a line passing through  𝑃2 and  𝑃3. 

 

Due to the sequential nature of displacements applied on a surface point, each control point will be 

further constrained compared to the previous points. In other words, a desired displacement for control 

points close to the end of the sequence may never be achieved due to enforced dynamic constraints. To 

diminish this induced constraining effect, different solutions exist. One approach is to simply repeat step 

B in SAO twice per iteration, once from left to right and once vice versa. An alternative approach is to 

partition control points into a coarse and a fine set. Then apply displacements in the following order {𝑐1, 

𝑐2, …, 𝑐𝑚, 𝑓1, … , 𝑓𝑛}, where 𝑐𝑖 𝑎𝑛𝑑 𝑓𝑗 represent coarse and fine points. 

Steps A, B, and C described above will complete one iteration in 2D surface altering. Transformations in 

steps A and B are repeated until no significant difference in the input geometry or output factor of safety 

is achieved. For models with thin weak layers, an additional step can be introduced to improve SAO results 

(Section D).  

2 D) Weak Layer Snapping 

In presence of geology structures with weak layers, there is a good chance that the critical slip surface 

passes through the weak layer. Thin structured weak layers introduce the extra challenge of finding a 

proper set of transformations applied to the slip surface, such that it extends through the weak layer. In 

presence of weak layers, an additional step can be performed within step C. Going through each internal 
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control point in step C, where the y-coordinate of the control point is altered, an additional displacement 

can be applied such that the control point moves inside the weak layer. If this additional displacement 

yields to a smaller factor of safety, then the change will be accepted. 
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