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Introduction 

This paper documents the calculations used in UnWedge to determine the safety factor of wedges formed 

around underground excavations. This involves the following series of steps: 

1. Determine the wedge geometry using block theory (Goodman and Shi, 1985). 

2. Determine all of the individual forces acting on a wedge, and then calculate the resultant active 

and passive force vectors for the wedge. 

3. Determine the sliding direction of the wedge. 

4. Determine the normal forces on each wedge plane. 

5. Compute the resisting forces due to joint shear strength, and tensile strength (if applicable). 

6. Calculate the safety factor. 

 

If the Field Stress option is used, then the normal and shear forces on each wedge plane are determined 

from a boundary element stress analysis. See Section 8 and Section 9 for complete details. 
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1. Wedge Geometry 

The orientations of 3 distinct joint planes must always be defined for an UnWedge analysis. Using block 

theory, UnWedge determines all of the possible wedges which can be formed by the intersection of the 3 

joint planes and the excavation. 

The method used for determining the wedges is described in the text by Goodman and Shi, “Block Theory 

and Its Application to Rock Engineering”, (1985). 

In general, the wedges which are formed are tetrahedral in nature (i.e. the 3 joint planes make up 3 sides 

of a tetrahedron, and the fourth “side” is formed by the excavation boundary). However, prismatic wedges 

can also be formed. This will occur if two of the joint planes strike in the same direction, so that the 

resulting wedge is a prismatic, rather than a tetrahedral shape. 

When the wedge coordinates have been determined, the geometrical properties of each wedge can be 

calculated, including: 

• Wedge volume 

• Wedge face areas 

• Normal vectors for each wedge plane  
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2. Wedge Forces 

All forces on the wedge can be classified as either Active or Passive. In general, Active forces represent 

driving forces in the safety factor calculation, whereas Passive forces represent resisting forces. 

The individual force vectors are computed for each quantity (e.g. wedge weight, bolt force, water force, 

etc.), and then the resultant Active and Passive force vectors are determined by a vector summation of 

the individual forces. 

 

2.1. Active Force Vector 

The resultant Active force vector is comprised of the following components: 

A = W + C + X + U + E 

Where: 

A is the resultant active force vector 

W is the wedge weight vector 

C  is the shotcrete weight vector 

X is the active pressure force vector 

U is the water force vector 

E is the seismic force vector 

 

2.1.1. Wedge Weight Vector 

The wedge weight is usually the primary driving force in the analysis. 

W = (𝛾𝑟𝑉) ∙ 𝑔 
Where: 

W is the wedge weight vector 

𝛾𝑟 is the unit weight of rock 

𝑉 is the wedge volume 

�̂� is the gravity direction 

 

2.1.2. Shotcrete Weight Factor 

This accounts for the weight of shotcrete applied to a wedge. This quantity is sometimes neglected in 

wedge stability calculations. However, it can represent a significant load if the shotcrete thickness is 

substantial. 

𝐂 = (𝛾𝑠𝑡𝑎𝑒) ∙ �̂� 

Where: 
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𝐂 is the shotcrete weight vector 

𝛾𝑠 is the unit weight of shotcrete 

𝑡 is the shotcrete thickness 

𝑎𝑒 is the surface area of wedge on excavation face 

�̂� is the gravity direction 

 

2.1.3. Pressure Force (Active) Vector 

Pressure force is applied with the Pressure option in the Support menu and can be defined as either 

active or passive. 

𝐗 = ∑ 𝑝𝑖𝑎𝑖�̂�𝑖

𝑛

𝑖=1

 

Where: 

𝐗 is the resultant active pressure force vector 

𝑛 is the number of polygons making up the excavation wedge face  

(see Figure 1) 

𝑝𝑖 is the pressure on the 𝑖th polygon making up excavation wedge face 

𝑎𝑖 is the area of the 𝑖th polygon 

�̂�𝑖 is the outward (out of excavation) normal of the 𝑖th polygon 

 
If a wedge intersects a curved or non-linear portion of the excavation perimeter, then the excavation 

wedge face will be formed of a number of individual polygons. Each polygon is formed by the intersection 

of the wedge planes with a planar “strip” of the excavation boundary. These are the “polygons” referred to 

above, in the Pressure Force Vector calculation. See Figure 1. 

 
Figure 1: Example of Excavation Wedge Face Formed by Multiple Polygons 
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2.1.4. Water Force Vector 

In UnWedge there are two different methods for defining the existence of water pressure on the joint 

planes – Constant or Gravitational. 

 

Constant Pressure on Each Joint 

𝐔 = ∑ 𝑢𝑖𝑎𝑖�̂�𝑖

3

𝑖=1

 

Where: 

𝐔 is the resultant water force vector 

𝑢𝑖 is the water pressure on the 𝑖th joint face 

𝑎𝑖 is the area of the 𝑖th joint face 

�̂�𝑖 is the inward (into wedge) normal of the 𝑖th joint face 

 

Gravitational Pressure on Each Joint 

For the Gravitational water pressure option, the water pressure is assumed to vary linearly with depth 

from a user-specified elevation. 

To obtain an accurate estimate of the total water force on each joint face, each joint face is first 

triangulated into 𝑛 sub-triangles (3 vertices each). The pressure on each sub-triangle is calculated, and 

the total water force on each joint face is determined by a summation over all sub-triangles. 

𝐔 = ∑ ∑ 𝛾𝑤ℎ𝑖𝑗𝑎𝑖𝑗�̂�𝑖

𝑛

𝑗=1

3

𝑖=1

 

Where: 

𝐔 is the resultant water pressure force vector 

𝑖 is the joint face number; 3 for tetrahedron 

𝑗 is the triangle number for joint face 𝑖 

𝑛 is the number of triangles for joint face 𝑖 

𝛾𝑤 is the unit weight of water 

𝑎𝑖 is the area of the 𝑗th triangle making up the 𝑖th joint face 

�̂�𝑖 is the inward (into wedge) normal of the 𝑖th joint face 

ℎ𝑖𝑗  is the average depth of the 3 triangle vertices below ground surface 

ℎ𝑖𝑗 =
1

3
∑(𝑔𝑠𝑒 − 𝑦𝑖)

3

𝑖=1

 

𝑔𝑠𝑒 is the ground surface elevation 
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𝑦𝑖 is the elevation of the 𝑖th vertex in the triangle 

 

2.1.5. Seismic Force Vector 

This determines the seismic force vector if the Seismic option is applied. If the seismic coefficients have 

been specified in terms of orthogonal components (e.g. North / East / Up), then the resultant seismic 

force is the vector sum of the individual force components. 

𝐄 = (𝑘𝛾𝑟𝑉) ∙ �̂� 

Where: 

𝐄 is the seismic force vector 

𝑘 is the seismic coefficient  

𝛾𝑟 is the unit weight of rock 

𝑉 is the wedge volume 

�̂� is the direction of seismic force 

 

2.2. Passive Force Vector 

The resultant Passive Force Vector is the sum of the bolt, shotcrete and pressure (passive) support force 

vectors. 

𝐏 = 𝐇 + 𝐘 + 𝐁 

Where: 

𝐏 is the resultant passive force vector  

𝐇 is the shotcrete shear resistance force vector 

𝐘 is the passive pressure force vector 

𝐁 is the resultant bolt force vector 

 

2.2.1. Pressure Force (Passive) Vector 

Pressure force is applied with the Pressure option in the Support menu and can be defined as either 

active or passive. 

𝐘 = ∑ 𝑝𝑖𝑎𝑖�̂�𝑖

𝑛

𝑖=1

 

Where: 

𝐘 is the resultant passive pressure force vector 

𝑛 is the number of polygons making up the excavation wedge face  

(see Figure 1) 
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𝑝𝑖 is the pressure on the 𝑖th polygon making up excavation wedge face 

𝑎𝑖 is the area of the 𝑖th polygon 

�̂�𝑖 is the outward (out of excavation) normal of the 𝑖th polygon 

 

2.2.2. Bolt Force Vector 

Bolt forces are always assumed to be Passive in UnWedge. 

The resultant Bolt Force Vector is the sum of all individual bolt force vectors. For a description of how the 

bolt support forces are determined, see the UnWedge Help system. 

𝐁𝐩 = ∑ 𝑐𝑖�̂�𝑖

𝑛

𝑖=1

 

Where: 

𝐁𝐩 is the passive bolt force vector 

𝑐𝑖 is the capacity of the 𝑖th bolt 

�̂�𝑖 is the unit direction vector of the 𝑖th bolt 

 

2.2.3. Shotcrete Shear Resistance Force Vector 

Shotcrete forces are always assumed to be Passive in UnWedge. 

For a description of how the shotcrete support force is determined, see the UnWedge Help system. 
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3. Sliding Direction 

Next, the sliding direction of the wedge must be determined. The sliding (deformation) direction is 

computed by considering active forces only (𝐀 vector). Passive forces (𝐏 vector) DO NOT influence 

sliding direction. 

The calculation algorithm is based on the method presented in chapter 9 of “Block Theory and its 

application to rock engineering”, by Goodman and Shi (1985).  

For a tetrahedron there are 7 possible directions (�̂�0, �̂�1, �̂�2, �̂�3, �̂�12, �̂�13, �̂�23). These represent the modes of: 

falling / lifting (�̂�0), sliding on a single joint plane (�̂�1, �̂�2, �̂�3), or sliding along the line of intersection of two 

joint planes (�̂�12, �̂�13, �̂�23). 

Calculation of the sliding direction is a two-step process:  

1. Compute all possible sliding directions; and 

2. Determine which one of the possible sliding directions is the actual valid direction. 

 

3.1. Step 1: Compute List of 7 Possible Sliding Directions 

3.1.1. Falling (or Lifting) 

�̂�0 = �̂� =
𝐀

‖𝐀‖
 

Where: 

�̂�0 is the falling or lifting direction 

�̂� is the unit direction of the resultant active force 

𝐀  is the active force vector 

 

3.1.2. Sliding on a Single Face 𝒊 

�̂�𝑖 =
(�̂� × 𝐀) × �̂�𝑖

‖(�̂�𝑖 × 𝐀) × �̂�𝑖‖
 

Where: 

�̂�𝑖 is the sliding direction on joint 𝑖 

�̂�𝑖 is the normal to joint face 𝑖 directed into wedge 

𝐀  is the active force vector 

 

3.1.3. Sliding on Two Faces 𝒊 and 𝒋 

�̂�𝑖𝑗 =
�̂�𝑖 × �̂�𝑗

‖�̂�𝑖 × �̂�𝑗‖
 sign ((�̂�𝑖 × �̂�𝑗) ⋅ 𝐀) 

Where: 
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�̂�𝑖𝑗 is the sliding direction on joint 𝑖 and 𝑗 (along line of intersection) 

�̂�𝑖 is the normal to joint face 𝑖 directed into wedge 

�̂�𝑗 is the normal to joint face 𝑗 directed into wedge 

𝐀  is the active force vector 

 

3.2. Step 2: Compute Which of the Possible Sliding Directions is 

Valid 

For the following 8 tests, whichever satisfies the given inequalities is the sliding direction of the wedge. If 

none of these tests satisfies the given inequalities, the wedge is unconditionally stable. 

 

3.2.1. Falling Wedge 

𝐀 ∙ �̂�1 > 0 
𝐀 ∙ �̂�2 > 0 

𝐀 ∙ �̂�3 > 0 
𝐀 ∙ 𝑊 ≥ 0 

 

3.2.2. Lifting Wedge 

𝐀 ∙ �̂�1 > 0 

𝐀 ∙ �̂�2 > 0 
𝐀 ∙ �̂�3 > 0 

𝐀 ∙ 𝑊 < 0 
 

3.2.3. Sliding on Joint 1 

𝐀 ∙ �̂�1 ≤ 0 
�̂�1 ∙ �̂�2 > 0 

�̂�1 ∙ �̂�3 > 0 
 

3.2.4. Sliding on Joint 2 

𝐀 ∙ �̂�2 ≤ 0�̂�2 ∙ �̂�1 > 0 
�̂�2 ∙ �̂�1 > 0 

�̂�2 ∙ �̂�3 > 0 
 

3.2.5. Sliding on Joint 3 

𝐀 ∙ �̂�3 ≤ 0�̂�3 ∙ �̂�1 > 0 
�̂�3 ∙ �̂�1 > 0 

�̂�3 ∙ �̂�2 > 0 
 

3.2.6. Sliding on the Intersection of Joint 1 and Joint 2 

�̂�12 ∙ �̂�3 > 0 
�̂�1 ∙ �̂�2 ≤ 0�̂�2 ∙ �̂�1 ≤ 0 
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�̂�2 ∙ �̂�1 ≤ 0 
 

3.2.7. Sliding on the Intersection of Joint 1 and Joint 3 

�̂�13 ∙ �̂�2 > 0 

�̂�1 ∙ �̂�3 ≤ 0�̂�3 ∙ �̂�1 ≤ 0 
�̂�3 ∙ �̂�1 ≤ 0 

 

3.2.8. Sliding on the Intersection of Joint 2 and Joint 3 

�̂�23 ∙ �̂�1 > 0 

�̂�2 ∙ �̂�3 ≤ 0�̂�3 ∙ �̂�2 ≤ 0 
�̂�3 ∙ �̂�2 ≤ 0 

 

Where: 

𝐀  is the active force vector 

�̂�𝑖 is the inward (into the wedge) normal of joint 𝑖 

�̂�𝑖 is the sliding direction on joint 𝑖 

�̂�𝑖𝑗 is the sliding direction on joint 𝑖 and 𝑗 (along line of intersection) 

𝑊 is the weight vector 
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4. Normal Force 

The calculation of the normal forces on each of the two joint planes for a wedge first requires the 

calculation of the sliding direction. Once the sliding direction is known, the following equations are used to 

determine the normal forces given a resultant force vector, 𝐅. The force vector, 𝐅, is generally either the 

active or the passive resultant force vector. 

 

4.1. Falling or Lifting Wedge 

𝑁1 = 0 

𝑁2 = 0 

𝑁3 = 0 

Where: 

𝑁𝑖 is the normal force on the 𝑖th joint 

 

4.2. Sliding on Joint 1 

𝑁1 = −𝐅 ∙ �̂�1 

𝑁2 = 0 

𝑁3 = 0 

Where: 

𝑁𝑖 is the normal force on the 𝑖th joint 

𝐅  is the force vector 

�̂�1 is the inward (into the wedge) normal of joint 1 

 

4.3. Sliding on Joint 2 

𝑁1 = 0 

𝑁2 = −𝐅 ∙ �̂�2 

𝑁3 = 0 

Where: 

𝑁𝑖 is the normal force on the 𝑖th joint 

𝐅  is the force vector 

�̂�2 is the inward (into the wedge) normal of joint 2 

 

4.4. Sliding on Joint 3 

𝑁1 = 0 

𝑁2 = 0 
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𝑁3 = −𝐅 ∙ �̂�3 

Where: 

𝑁𝑖 is the normal force on the 𝑖th joint 

𝐅  is the force vector 

�̂�3 is the inward (into the wedge) normal of joint 3 
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4.5. Sliding on Joints 1 and Joint 2 

𝑁1 = −
(𝐅 × �̂�2) ∙ (�̂�1 × �̂�2)

(�̂�1 × �̂�2) ∙ (�̂�1 × �̂�2)
 

𝑁2 = −
(𝐅 × �̂�1) ∙ (�̂�2 × �̂�1)

(�̂�2 × �̂�1) ∙ (�̂�2 × �̂�1)
 

𝑁3 = 0 

Where: 

𝑁𝑖 is the normal force on the 𝑖th joint 

𝐅  is the force vector 

�̂�1 is the inward (into the wedge) normal of joint 1 

�̂�2 is the inward (into the wedge) normal of joint 2 

 

4.6. Sliding on Joint 1 and Joint 3 

𝑁1 = −
(𝐅 × �̂�3) ∙ (�̂�1 × �̂�3)

(�̂�1 × �̂�3) ∙ (�̂�1 × �̂�3)
 

𝑁2 = 0 

𝑁3 = −
(𝐅 × �̂�1) ∙ (�̂�3 × �̂�1)

(�̂�3 × �̂�1) ∙ (�̂�3 × �̂�1)
 

Where: 

𝑁𝑖 is the normal force on the 𝑖th joint 

𝐅  is the force vector 

�̂�1 is the inward (into the wedge) normal of joint 1 

�̂�3 is the inward (into the wedge) normal of joint 3 

 

4.7. Sliding on Joint 2 and Joint 3 

𝑁1 = 0 

𝑁2 = −
(𝐅 × �̂�3) ∙ (�̂�2 × �̂�3)

(�̂�2 × �̂�3) ∙ (�̂�2 × �̂�3)
 

𝑁3 = −
(𝐅 × �̂�2) ∙ (�̂�3 × �̂�2)

(�̂�3 × �̂�2) ∙ (�̂�3 × �̂�2)
 

Where: 

𝑁𝑖 is the normal force on the 𝑖th joint 

𝐅  is the force vector 

�̂�2 is the inward (into the wedge) normal of joint 2 

�̂�3 is the inward (into the wedge) normal of joint 3 
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5. Shear and Tensile Strength 

There are three joint strength models available in UnWedge:  

1. Mohr-Coulomb 

2. Barton-Bandis 

3. Power Curve 

Shear strength is computed based on the normal stress acting on each joint plane. The normal stress is 

computed based on the active and passive normal forces computed on the joint planes using the 

equations in the previous section. 

 

5.1. Compute Normal Stress on Each Joint 

First compute the stress on each joint plane based on the normal forces computed in Section 4. 

𝜎𝑛𝑖
=

𝑁𝑖

𝑎𝑖

 

Where: 

𝜎𝑛𝑖
 is the normal stress on the 𝑖th joint 

𝑁𝑖 is the normal force on the 𝑖th joint 

𝑎𝑖 is the area of the 𝑖th joint 

 

5.2. Compute Shear Strength of Each Joint 

Use the strength criteria defined for the joint, and the normal stress, to compute the shear strength. 

 

5.2.1. Mohr-Coulomb Strength Criterion 

𝜏𝑖 = 𝑐𝑖 + 𝜎𝑛𝑖
tan 𝜙𝑖 

Where: 

𝜏𝑖 is the shear strength of the 𝑖th joint 

𝑐𝑖 is the cohesion of the 𝑖th joint 

𝜎𝑛𝑖
 is the normal stress on the 𝑖th joint 

𝜙𝑖 is the friction angle of the 𝑖th joint 

 

5.2.2. Barton-Bandis Strength Criterion 

𝜏𝑖 = 𝜎𝑛𝑖
tan [𝐽𝑅𝐶𝑖 log10 (

𝐽𝐶𝑆𝑖

𝜎𝑛𝑖

) + 𝜙𝑟𝑖
] 
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Where: 

𝜏𝑖 is the shear strength of the 𝑖th joint 

𝐽𝑅𝐶𝑖 is the joint roughness coefficient of the 𝑖th joint 

𝐽𝐶𝑆𝑖 is the joint compressive strength of the 𝑖th joint 

𝜎𝑛𝑖
 is the normal stress on the 𝑖th joint 

𝜙𝑟𝑖
 is the residual friction angle of the 𝑖th joint 

 
 

5.2.3. Power Curve Strength Criterion 

𝜏𝑖 = 𝑐𝑖 + 𝑎𝑖(𝜎𝑛𝑖
+ 𝑑𝑖)

𝑏𝑖
 

Where: 

𝜏𝑖  is the shear strength of the 𝑖th joint 

𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 are the strength parameters of the 𝑖th joint 

𝜎𝑛𝑖
  is the normal stress on the 𝑖th joint 

 

5.3. Compute Resisting Force due to Shear Strength 

Force acts in a direction opposite to the direction of sliding (deformation). 

𝐽𝑖 = 𝜏𝑖𝑎𝑖 cos 𝜃𝑖 

Where: 

𝐽𝑖 is the magnitude of the resisting force due to the shear strength of the 𝑖th joint 

𝜏𝑖 is the shear strength of the 𝑖th joint 

𝑎𝑖 is the area of the 𝑖th joint 

𝜃𝑖 is the angle between the sliding direction and the 𝑖th joint 

 

5.4. Compute Resisting Force due to Tensile Strength 

Tensile strength is only applicable if it has been defined by the user. Tensile strength can only be defined 

for Mohr-Coulomb or Power Curve strength criteria; it cannot be defined for the Barton-Bandis strength 

criterion. 

Tensile strength acts in a direction normal to the joint plane. To compute the resisting force, the force is 

resolved in a direction opposite to the direction of sliding (deformation). 

𝑇𝑖 = 𝜎𝑡𝑖
𝑎𝑖 sin 𝜃𝑖 

Where: 

𝑇𝑖 is the magnitude of the resisting force due to the tensile strength of the 𝑖th joint 
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𝜎𝑡𝑖
 is the tensile strength of the 𝑖th joint 

𝑎𝑖 is the area of the 𝑖th joint 

𝜃𝑖 is the angle between the sliding direction and the 𝑖th joint 
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6. Factor of Safety 

UnWedge computes 3 separate factors of safety: 

1. Falling factor of safety 

2. Unsupported factor of safety 

3. Supported factor of safety 

The reported factor of safety is the maximum of the above three factors of safety. The logic of this is 

simple; support is assumed to never decrease the factor of safety from the unsupported value. The factor 

of safety can never be less than if the wedge was falling with only support to stabilize it. 

The equations are based on three joint planes making up a tetrahedral wedge.  

The limit equilibrium safety factor calculations only consider force equilibrium in the direction of sliding. 

Moment equilibrium is not considered. 

Factor of Safety: 

𝐹𝑆 = max(𝐹𝑆𝑓 , 𝐹𝑆𝑢, 𝐹𝑆𝑠) 

Where: 

𝐹𝑆𝑓 is the falling factor of safety 

𝐹𝑆𝑢 is the unsupported factor of safety 

𝐹𝑆𝑠 is the supported factor of safety 

 

6.1. Factor of Safety Definition 

𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑠𝑎𝑓𝑒𝑡𝑦 =
𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠  (𝑒. 𝑔.  𝑠ℎ𝑒𝑎𝑟 𝑜𝑟 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡)

𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠  (𝑒. 𝑔.  𝑤𝑒𝑖𝑔ℎ𝑡, 𝑠𝑒𝑖𝑠𝑚𝑖𝑐, 𝑤𝑎𝑡𝑒𝑟)
 

 

6.2. Falling Factor of Safety 

The falling factor of safety assumes that only passive support and tensile strength act to resist 

movement. Basically, the wedge is assumed to be falling so no influence of the joint planes (shear 

strength, failure direction) is incorporated. Driving forces are due to the active forces on the wedge 

as defined in Section 2.1. The falling direction is calculated from the direction of the active force 

vector. 

𝐹𝑆𝑓 =
−𝐏 ∙ �̂�0 + ∑ 𝑇𝑖

3
𝑖=1

𝐀 ∙ �̂�0

 

Where: 

𝐹𝑆𝑓 is the falling factor of safety 

𝐏  is the resultant passive force vector (Section 0) 

𝐀  is the resultant active force vector (Section 0) 
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𝑇𝑖 is the magnitude of the resisting force due to the tensile strength of the 𝑖th joint (Section 5.4) 

�̂�0 is the falling direction (Section 3) 

 

6.3. Unsupported Factor of Safety 

The unsupported factor of safety assumes that shear strength acts to resist movement. No passive 

support force is used. 

Driving forces are due to the active forces on the wedge as defined in Section 0. 

The sliding direction is calculated from the equations in Section 3. The shear strength is calculated based 

on the normal forces from the active force vector only. Normal forces from the passive force vector are 

not included. 

𝐹𝑆𝑢 =
∑ (𝐽𝑖

𝑢 + 𝑇𝑖)3
𝑖=1

𝐀 ∙ �̂�
 

Where: 

𝐹𝑆𝑢 is the unsupported factor of safety 

𝐽𝑖
𝑢 is the magnitude of the resisting force due to the unsupported shear strength of the 𝑖th joint 

 (Section 5.3) 

𝑇𝑖 is the magnitude of the resisting force due to the tensile strength of the 𝑖th joint (Section 5.4) 

𝐀  is the resultant active force vector (Section 0) 

�̂� is the sliding direction (Section 3) 

 

6.4. Supported Factor of Safety 

The supported factor of safety assumes that passive support forces and shear strength act to resist 

movement.  

Driving forces are due to the active forces on the wedge as defined in Section 0. The sliding direction is 

calculated from the equations in Section 3. The shear strength is calculated based on the normal force 

calculated from the active force vector plus the passive force vector. 

𝐹𝑆𝑠 =
−𝐏 ∙ �̂� + ∑ (𝐽𝑖

𝑢 + 𝑇𝑖)3
𝑖=1

𝐀 ∙ �̂�
 

Where: 

𝐹𝑆𝑠 is the supported factor of safety 

𝐽𝑖
𝑠 is the magnitude of the resisting force due to the supported shear strength of the 𝑖th joint  

 (Section 5.3) 

𝑇𝑖 is the magnitude of the resisting force due to the tensile strength of the 𝑖th joint (Section 5.4) 

𝐏  is the resultant passive force vector (Section 0) 

𝐀  is the resultant active force vector (Section 0) 
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�̂� is the sliding direction (Section 3) 

 

 

  



 23  rocscience.com 

7. Example Calculation 

7.1. Question:  

A 3 m by 3 m square tunnel has an axis that plunges at zero degrees and trends exactly north. Three joint 

planes have a dip and dip direction of 45/0, 45/60, and 45/300. The unit weight of rock is 2.7 tonnes/m3 

and all three joint planes have zero cohesion, zero tensile strength, and a 35-degree friction angle. If a 10 

tonne rock bolt is placed vertically through the center of the wedge, determine the factor of safety.  

7.2. Answer:  

Using block theory as described in Goodman and Shi (1985), the existence of a roof wedge is determined 

with the block code ULL (011). The actual coordinates of the vertices that form the maximum size block 

are also determined using the methods described in chapter 8 of the above reference. Using these 

methods, the volume of the block is calculated to be 3.375 m3. The area of each joint face is 5.5114 m2. 

The joint normals are calculated using the following equations (coordinate system is x = East, y = Up, z = 

South): 

𝑛1 = {𝑠𝑖𝑛 𝛼1 𝑠𝑖𝑛 𝛽1 𝑐𝑜𝑠 𝛼1 − 𝑠𝑖𝑛 𝛼1 𝑐𝑜𝑠 𝛽1} = {0 0.7071 −0.7071} 

𝑛2 = {−𝑠𝑖𝑛 𝛼2 𝑠𝑖𝑛 𝛽2 − 𝑐𝑜𝑠 𝛼2 𝑠𝑖𝑛 𝛼2 𝑐𝑜𝑠 𝛽2} = {−0.6124 −0.7071 0.3536} 

𝑛3 = {−𝑠𝑖𝑛 𝛼3 𝑠𝑖𝑛 𝛽3 − 𝑐𝑜𝑠 𝛼3 𝑠𝑖𝑛 𝛼3 𝑐𝑜𝑠 𝛽3} = {0.6124 −0.7071 0.3536} 

Where: 

𝑛𝑖 is the unit normal vector of the 𝑖th joint pointing into the block 

𝛼𝑖 is the dip of the 𝑖th joint 

𝛽𝑖 is the dip direction of the 𝑖th joint 

 

Figure 2: UnWedge Results 
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7.3. Determine the Factor of Safety: 

Step 1:  Determine active force vector (in this case, only due to the wedge weight) 

𝐀 = 𝐖 = (𝛾𝑟𝑉) ∙ �̂� = (2.7 × 3.375) ∙ {0 −1 0} = {0 −9.1125 0} 

 

Step 2:  Determine passive force vector (in this case, only due to the bolt capacity) 

𝐏 = 𝐇 + 𝐘 + 𝐁 

𝐇 = 𝐘 = {0 0 0} 

𝐁 = {0 10 0} ∙ 𝑒 

�̂� =  {0 1 0} 
�̂� = {0 −0.7071 −0.7071} 

𝑒 = −�̂� ∙ �̂� = 0.7071 
Where: 

𝑒 is the bolt orientation efficiency (cosine tension/shear method)  

�̂� is the bolt direction 

�̂� is the sliding direction 

𝐏 = 𝐁 = {0 10 0} ∗ 0.7071 = {0 7.071 0} 

 

Step 3:  Determine all possible sliding directions 

�̂�0 =
𝐀

‖𝐀‖
= {0 −1 0} 

 

�̂�1 =
(�̂�1 × 𝐀) × �̂�1

‖(�̂�1 × 𝐀) × �̂�1‖
= {0 −0.7071 −0.7071} 

�̂�2 =
(�̂�2 × 𝐀) × �̂�2

‖(�̂�2 × 𝐀) × �̂�2‖
= {0.6124 −0.7071 −0.3536} 

�̂�3 =
(�̂�3 × 𝐀) × �̂�3

‖(�̂�3 × 𝐀) × �̂�3‖
= {−0.6124 −0.7071 −0.3536} 

 

�̂�12 =
�̂�1 × �̂�2

‖�̂�1 × �̂�2‖
sign((�̂�1 × �̂�2) ∙ 𝐀) = {0.3780 −0.6547 −0.6547} 

�̂�13 =
�̂�1 × �̂�3

‖�̂�1 × �̂�3‖
sign((�̂�1 × �̂�3) ∙ 𝐀) = {−0.3780 −0.6547 −0.6547} 

�̂�23 =
�̂�2 × �̂�3

‖�̂�2 × �̂�3‖
sign((�̂�2 × �̂�3) ∙ 𝐀) = {0 −0.4472 −0.8944} 
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Step 4:  Determine valid sliding direction 

It can be shown that the equations for sliding on joint 1 are satisfied: 

𝐴 • �̂�1 = −6.4434 ≤ 0 

�̂�1 • �̂�2 = 0.25 > 0 

�̂�1 • �̂�3 = 0.25 > 0 

Therefore, the sliding direction is: 

�̂� = {0 −0.7071 −0.7071} 

 

Step 5:  Unsupported shear strength calculation 

Unsupported shear strength is a result of active normal force on the sliding plane. Normal force due to 

passive forces is not included. 

𝑁1
𝑢 = −𝐀 ∙ �̂�1 = 6.4434 tonnes 

𝜎𝑛1
𝑢 =

𝑁1
𝑢

𝑎1

=
6.4434

5.5114
= 1.1691 tonnes/m2 

𝜏1
𝑢 = 𝑐1 + 𝜎𝑛1

𝑢 tan 𝜙1 = 0 + 1.26 ∙ tan( 35∘) = 0.8186 tonnes/m2 

𝐽1
𝑢 = 𝜏1

𝑢𝑎1 cos 𝜃1 = 0.8823 ∙ 5.5114 ∙ cos( 0∘) = 4.5118 tonnes 

𝐽2
𝑢 = 𝐽3

𝑢 = 0 

 

Step 6:  Supported shear strength calculation 

Supported shear strength is a result of both active and passive normal force on the sliding plane. 

𝑁1
𝑠 = −𝐀 ∙ �̂�1 − 𝐏 ∙ �̂�1 = 6.4434 − 5.0 = 1.4434 𝑡𝑜𝑛𝑛𝑒𝑠 

𝜎𝑛1
𝑠 =

𝑁1
𝑠

𝑎1

=
1.4434

5.5114
= 0.2619 tonnes/m2 

𝜏1
𝑠 = 𝑐1 + 𝜎𝑛1

𝑠 tan 𝜙1 = 0 + 0.2619 ∙ tan( 35∘) = 0.1834 tonnes/m2 

𝐽1
𝑠 = 𝜏1

𝑠𝑎1 cos 𝜃1 = 0.1834 ∙ 5.5114 ∙ cos( 0∘) = 1.0107 tonnes 

𝐽2
𝑠 = 𝐽3

𝑠 = 0 

 

Step 7:  Factor of safety calculation 

𝐹𝑆𝑓 =
−𝐏 ∙ �̂�0 + ∑ 𝑇𝑖

3
𝑖=1

𝐀 ∙ �̂�0

=
−{0 7.071 0} ∙ {0 −1 0} + 0

{0 −9.1125 0} ∙ {0 −1 0}
=

7.071

9.1125
= 0.776 

𝐹𝑆𝑢 =
∑ (𝐽𝑖

𝑢 + 𝑇𝑖)3
𝑖=1

𝐀 ∙ �̂�
=

4.5118 + 0 + 0

{0 −9.1125 0} ∙ {0 −0.7071 −0.7071}
=

4.5118

6.4434
= 0.700 

𝐹𝑆𝑠 =
−𝐏 ∙ �̂� + ∑ (𝐽𝑖

𝑠 + 𝑇𝑖)3
𝑖=1

𝐀 ∙ �̂�
=

−{0 7.071 0} ∙ {0 −0.7071 −0.7071} + 1.0107 + 0 + 0

{0 −9.1125 0} ∙ {0 −0.7071 −0.7071}

=
6.0107

6.4434
= 0.933 

𝐹𝑆 = factor of safety = max( 𝐹𝑆𝑓 , 𝐹𝑆𝑢 , 𝐹𝑆𝑠) = 0.933 
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Since the supported factor of safety is the maximum value, all forces reported by UnWedge are derived 

from the supported factor of safety calculation. 
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8. Field Stress 

UnWedge has the ability to incorporate induced stresses around an excavation into the calculation of 

factor of safety. The induced stresses are a result of an applied constant or gravitational far-field stress. 

The presence of the excavation causes a re-distribution of stress around the perimeter. In order to 

compute the induced stress distribution around the excavation, a complete plane strain boundary element 

stress analysis is performed.  

Complete plane strain is well documented in the paper “The boundary element method for determining 

stresses and displacements around long openings in a triaxial stress field” by Brady and Bray (see 

references).  The method allows for the application of any three-dimensional far-field stress distribution, 

without restriction, and assumes that the strain along the tunnel axis is zero. A complete three-

dimensional stress tensor can then be calculated at any point in the rock mass surrounding the tunnel. 

The application in UnWedge utilizes the computer code developed for the Examine2D software program 

developed in the 1980’s. As a result, the implementation is well tested and accurate. 

The implementation of field stress into the factor of safety calculation influences both the calculation of 

the active force vector on the wedge and the normal and shear forces on each joint plane. 

• The normal forces on each joint plane are calculated from the distribution of stress across each 

joint plane. Thus, the normal force on each joint plane are specified by the stress analysis and 

are NOT calculated using the methods in Section 4.  

• Another difference is that generally there are normal forces on all planes, thus shear strength is 

incorporated into the resisting forces for all joint planes. The active force vector must also include 

the normal forces calculated on all joint planes from the stress analysis.  

It should be noted that the effect of stress cannot reduce the factor of safety from the value 

computed without stress in Section 6. The reasoning for this is that once any movement of the wedge 

occurs, contact with the rock mass is lost, and the factor of safety reverts to the unstressed value. As a 

result, if stress is included in the analysis, both the unstressed and the stressed factors of safety are 

calculated and the maximum of the two is reported. 

Another point regarding the use of field stress, is that the stress analysis assumes an infinitely long 

excavation in the direction of the excavation axis. The stress analysis results will be valid, as long as the 

ratio of the actual excavation length to width is greater than approximately 3. If this ratio is less than 3, 

then “end effects” will influence the true stress distribution, and the stress analysis results will be less 

accurate. 

Furthermore, because the stress analysis does not calculate the stress distribution around the ends of the 

excavation, field stress in UnWedge is only applicable for perimeter wedges, and cannot be applied to 

end wedges. 

To calculate the factor of safety using field stress, the following steps are performed: 

1. Perform the boundary element stress analysis for the excavation. 

2. Determine the wedge geometry using block theory. 

3. For each wedge, subdivide each joint plane into a number of triangles. By default, UnWedge uses 

approximately 100 triangles on each joint plane. 

4. Compute the stress tensor at the geometric center of each triangle created in step 3. 
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5. From the stress tensor, compute the stress vector associated with each triangle on each joint 

plane. 

 
𝜉𝑖𝑗 = 𝜎𝑖𝑗⨂�̂�𝑖 

 
Where: 

𝜉𝑖𝑗 is the stress vector on the 𝑗th triangle on the 𝑖th joint 

𝜎𝑖𝑗 is the stress tensor on the 𝑗th triangle on the 𝑖th joint 

�̂�𝑖 is the normal of the 𝑖th joint pointing into the wedge 

𝜎𝑖𝑗 = {

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

} 

6. Compute the normal stress magnitude for each triangle, from the stress tensor computed in step 

5. Make sure the tensile strength of the joint is utilized in the calculation (tensile failure). 

𝜎𝑛𝑖𝑗
= 𝜉𝑖𝑗 ∙ �̂�𝑖 

Where: 

𝜎𝑛𝑖𝑗
 is the normal stress magnitude on the 𝑗th triangle on the 𝑖th joint 

𝜉𝑖𝑗 is the stress vector on the 𝑗th triangle on the 𝑖th joint 

�̂�𝑖 is the normal of the 𝑖th joint pointing into the wedge 

 
7. Calculate the resultant normal force vector for all joints by accumulating the normal force vectors 

for each triangle. The normal force vector for each triangle is simply the normal stress vector 

calculated in step 6 multiplied by the area of the triangle. 

𝐐 = ∑ ∑ (𝑎𝑖𝑗𝜎𝑛𝑖𝑗
�̂�𝑖)

𝑛

𝑗=1

3

𝑖=1

 

Where: 

𝐐 is the resultant active force due to stresses on all joint planes 

𝑎𝑖𝑗 is the area of the 𝑗th triangle on the 𝑖th joint 

𝜎𝑛𝑖𝑗
 is the normal stress magnitude on the 𝑗th triangle on the 𝑖th joint 

�̂�𝑖 is the normal of the 𝑖th joint pointing into the wedge 

8. Calculate the active force vector that includes the resultant normal force vector for each joint 

computed in step 7. Use this vector to determine the mode and direction of failure (Section 3). 

𝐀 = 𝐖 + 𝐂 + 𝐗 + 𝐔 + 𝐄 + 𝐐 

Where: 

𝐀 is the resultant active force vector 

𝐖 is the wedge weight vector 
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𝐂  is the shotcrete weight vector 

𝐗 is the active pressure force vector 

𝐔 is the water force vector 

𝐄 is the seismic force vector 

𝐐 is the resultant active force due to stresses on all joint planes 

9. Using the normal stress on each triangle, compute the shear strength associated with each 

triangle. Add the shear strength of all triangles to get the total shear strength of each joint (see 

Section 5.2) 

10. Compute resisting force due to shear strength according to Section 5.3. 

11. Incorporate the resisting force due to shear strength and active force in the factor of safety 

equations in Section 6. 
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9. Example Field Stress Calculation 

9.1. Question:  

A 5 m by 5 m square tunnel has an axis that plunges at zero degrees and trends exactly north. Three joint 

planes have a dip and dip direction of 45/180, 45/60, and 45/300. The unit weight of rock is 2.7 

tonnes/m3.and all three joints have zero cohesion, zero tensile strength, and a 25-degree friction angle. 

Assume a constant stress tensor equal to:  

𝜎 = {

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

} = {
200 0 0

0 100 0
0 0 200

} 

is computed on the entire face of each joint from the stress analysis (x = East, y = Up and z = South). 

Determine the factor of safety of the unsupported roof wedge. 

Note: a constant stress tensor over the entire area of each joint plane, would (in general) never 

be computed from an actual stress analysis. This has only been assumed in this example to 

demonstrate the calculation procedure. 

9.2. Answer:  

Using block theory as described in Goodman and Shi, “Block Theory and its application to rock 

engineering”, the existence of a roof wedge is determined with the block code ULL (111). The actual 

coordinates of the vertices that form the maximum size block are also determined using the methods 

described in chapter 8 of the above reference. Using these methods, the volume of the block is calculated 

to be 5.208 m3. The area of each joint face is 5.103 m2. The joint normals are calculated using the 

following equations (coordinate system is x = East, y = Up, z = South): 

𝑛1 = {− 𝑠𝑖𝑛 𝛼1 𝑠𝑖𝑛 𝛽1 − 𝑐𝑜𝑠 𝛼1 𝑠𝑖𝑛 𝛼1 𝑐𝑜𝑠 𝛽1} = {0 −0.7071 −0.7071} 

𝑛2 = {−𝑠𝑖𝑛 𝛼2 𝑠𝑖𝑛 𝛽2 − 𝑐𝑜𝑠 𝛼2 𝑠𝑖𝑛 𝛼2 𝑐𝑜𝑠 𝛽2} = {−0.6124 −0.7071 0.3536} 

𝑛3 = {−𝑠𝑖𝑛 𝛼3 𝑠𝑖𝑛 𝛽3 − 𝑐𝑜𝑠 𝛼3 𝑠𝑖𝑛 𝛼3 𝑐𝑜𝑠 𝛽3} = {0.6124 −0.7071 0.3536} 

Where: 

𝑛𝑖 is the unit normal vector of the 𝑖th joint pointing into the block 

𝛼𝑖 is the dip of the 𝑖th joint 

𝛽𝑖 is the dip direction of the 𝑖th joint 
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Figure 3: UnWedge Results 

Determine the Factor of Safety: 

Since we are given the stress tensor on each joint plane, we can proceed directly to step 5 as defined in 

Section 8. Since the stress tensor is constant over each joint plane, use only one triangle which 

represents the entire joint face. There is no need to subdivide the joint face into numerous triangles. 

Step 5:  From the stress tensor, compute the stress vector associated with each triangle on each joint 

plane. 

𝜉11 = 𝜎11 ⊗ �̂�1 = {
200 0 0

0 100 0
0 0 200

} {
0

−0.7071
−0.7071

} = {0 −70.71 −141.4} 

𝜉21 = 𝜎21 ⊗ �̂�2 = {
200 0 0

0 100 0
0 0 200

} {
−0.6124
−0.7071
0.3536

} = {−122.5 −70.71 70.71} 

𝜉31 = 𝜎31 ⊗ �̂�3 = {
200 0 0

0 100 0
0 0 200

} {
0.6124

−0.7071
0.3536

} = {122.5 −70.71 70.71} 

 

Step 6:  Compute the normal stress magnitude for each triangle, from the stress tensor computed in step 

5. Make sure the tensile strength of the joint is utilized in the calculation (check tensile failure). 
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𝜎𝑛11
= {0 −70.71 −141.4} {

0
−0.7071
−0.7071

} = 150 tonnes/m2 

𝜎𝑛21
= {−122.5 −70.71 70.71} {

−0.6124
−0.7071
0.3536

} = 150 tonnes/m2 

𝜎𝑛31
= {122.5 −70.71 70.71} {

0.6124
−0.7071
0.3536

} = 150 tonnes/m2 

Since the friction angle is 25 degrees, the shear strength of all three joint planes is the normal stress (150 

tonnes/m2) multiplied by the tangent of 25 degrees which equals 69.95 tonnes/m2.  Since all three normal 

stresses are positive, there is no tension and the tensile strength check does not have to be done. 

Step 7:  Calculate the resultant normal force vector for all joints by accumulating the normal force vectors 

for each triangle. The normal force vectors for each triangle are simply the stress vectors calculated in 

step 6 multiplied by the area of the triangle. 

𝑄 = 5.103 ∙ 150 ∙ {0 −0.7071 −0.7071}

+ 5.103 ∙ 150 ∙ {−0.6124 −0.7071 0.3536}

+ 5.103 ∙ 150 ∙ {−0.6124 −0.7071 0.3536} 

𝑄 = {0 −1623.75 0} 

Step 8:  Calculate the active force vector that includes the resultant normal force vector for each joint 

computed in step 7. Use this vector to determine the mode and direction of failure (section 3). 

𝐀 = 𝐖 + 𝐐 = (𝛾𝑟𝑉) ∙ �̂� + {0 −1623.75 0}

= (2.7 ∙ 5.2083) ∙ {0 −1 0} + {0 −1623.75 0}

= {0 −1637.8 0} 

The mode of failure is falling in the direction {0 −1 0} 

Step 9:  Using the normal stress on each triangle, compute the shear strength associated with each 

triangle. Add the shear strength of all triangles to get the total shear strength of each joint (see Section 

5.2) 

𝜏1 = 𝜏2 = 𝜏3 = 150 tan 25° = 69.946 tonnes/m2 

Step 10:  Compute resisting force due to shear strength according to Section 5.3 

𝜃1 = 𝜃2 = 𝜃3 = 45° 

𝐽1 = 𝜏1𝑎1 cos 𝜃1 = 69.946 ∙ 5.103 ∙ 0.7071 = 252.39 tonnes 

𝐽2 = 𝜏2𝑎2 cos 𝜃2 = 69.946 ∙ 5.103 ∙ 0.7071 = 252.39 tonnes 

𝐽3 = 𝜏3𝑎3 cos 𝜃3 = 69.946 ∙ 5.103 ∙ 0.7071 = 252.39 tonnes 

Step 11:  Incorporate the resisting force due to shear strength and active force in the factor of safety 

equations in Section 6. 

Since the wedge is unsupported, only the unsupported factor of safety equation needs to be calculated 

(the falling factor of safety is zero and the supported factor of safety is the same as the unsupported 

factor of safety). 
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𝐹𝑆 = 𝐹𝑆𝑢 =
∑ (𝐽𝑖

𝑢 + 𝑇𝑖)
3
𝑖=1

𝐴 ∙ �̂�
=

252.39 + 252.39 + 252.39

{0 −1637.8 0} ∙ {0 −1 0}
=

757.19

1637.8
= 0.46 
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